CS161
Complexity

Theory

Lecture10
May 4, 2023

Hardness vs. randomness

* BMY pseudo-random generator:
— one generator fooling all poly-size bounds
— one-way-permutation is hard function
—implies hard function in NP N coNP

* New idea (Nisan-Wigderson):
— for each poly-size bound, one generator
— hard function allowed to be in

E = U, DTIME(2kn)

May 4, 2023 CS151 Lecture 10

Comparison
BMY: Vv & >0 PRG G® NW: PRG G
seed length t=md t=0O(log m)
running time t*m m¢
output length m % m\>
error €< 1/fpd (all d)

<

€
fooling size s =me(alle) s=m

May 4, 2023 CS151 Lecture 10

NW PRG

* NW: for fixed constant 8, G = {G,} with
seed length t=O(log n) t=0(log m)

running time n° me
output length m =nd m
error €<1/m

foolingsize s=m
* Using this PRG we obtain BPP =P
— to fool size nk use G s

—running time O(nk + nck/8)2t= poly(n)
May 4, 2023 CS151 Lecture 10

NW PRG

* First attempt: build PRG assuming E
contains unapproximable functions

Definition: The function family
f={fn}, f:{0,1}" = {0,1}

is s(n)-unapproximable if for every family
of size s(n) circuits {Cn}:

Pry[Cn(x) = fa(x)] < %2 + 1/s(n).

May 4, 2023 CS151 Lecture 10

One bit

» Suppose f = {f, } is s(n)-unapproximable,
for s(n) = 29, and in E

« a “1-bit” generator family G = {G}:
Gn(y) =y © fiogn(y)
+ Idea: if not a PRG then exists a predictor

that computes fiog n With better than %2 +
1/s(log n) agreement; contradiction.

May 4, 2023 CS151 Lecture 10

One bit

 Suppose f = {f, } is s(n)-unapproximable,
for s(n) = 25", and in E

* a “1-bit” generator family G = {G}:
Gi(y) =Y © fiogn(y)
—seed length t = log n

—output lengthm =logn + 1 (want n®)
—fooling size s = s(log n) = nd
— running time ne
—error € ~ 1/s(log n) = 1/n®
May 4, 2023 CS151 Lecture 10 7

Nearly-Disjoint Subsets

Definition: S4,S,,...,Sm € {1...t}isan (h, a)
design if
—foralli,|S|=h
—foralli#j,|Sin S| <a

F

May 4, 2023 CS151 Lecture 10 10

Many bits

* Try outputting many evaluations of f:
G(y) = f(bi(y)) © f(ba(y)) © ... © f(bm(y))

» Seems that a predictor must evaluate
f(bi(y)) to predict i-th bit

* Does this work?

May 4, 2023 CS151 Lecture 10

Many bits

* Try outputting many evaluations of f:
Gly) = f(b(y)) @ f(ba(y)) © ... © f(bm(y))

« predictor might notice correlations without
having to compute f

* but, more subtle argument works for a
specific choice of by...bm

May 4, 2023 CS151 Lecture 10

10

Nearly-Disjoint Subsets

Lemma: for every ¢ >0and m <ncanin
poly(n) time construct an

(h =log n, a = elog n) design
S$1,S2,...,Sm € {1...t} with t = O(log n).

May 4, 2023 CS151 Lecture 10 "

Nearly-Disjoint Subsets

* Proof sketch:
— pick random (log n)-subset of {1...t}

—set t = O(log n) so that expected overlap with
a fixed S; is €log n/2

— probability overlap with S;is > €log n is at
most 1/n

— union bound: some subset has required small
overlap with all S; picked so far...

—find it by exhaustive search; repeat n times.

May 4, 2023 CS151 Lecture 10 12

11

12

The NW generator

« f € E s(n)-unapproximable, for s(n) = 25

* S4,...,Sm € {1...1} (log n, a = dlog n/3)
design with t = O(log n)

Gn(Y)=fiog n(Vis1) © fiogn(Vis2) © - © fiog n(Vism)
frog nt

010100101111101010111001010 ‘

[]
seedy

May 4, 2023 CS151 Lecture 10

13

The NW generator
Gn(Y)=fiog n(Yis1) © fog n(Yis2) © - © fiog n(Yism)
fiogn: | 010100101111101010111001010 ‘

%

S,
|
* Proof (continued):
PrIP(Gn(y)1...i1) = Ga(y)] > Yo+ &/m

— fix bits outside of S; to preserve advantage:
Pry[P(Ga(ay'B)1...it) = Galay'B)] > Y2+ elm

May 4, 2023 CS151 Lecture 10

The NW generator

Theorem (Nisan-Wigderson): G={G,} is a
pseudo-random generator with:

—seed length t = O(log n)
— output length m = nd3
—running time ne
—fooling size s = m
—error € =1/m

May 4, 2023

CS151 Lecture 10

The NW generator

* Proof:

—assume does not e-pass statistical test C =
{Cn} of size s:

IPrC(x) = 1] = Pr,[C(Gnly)) = 1]| > €

— can transform this distinguisher into a
predictor P of size s’ = s + O(m):

Pry[P(Gn(y)1---i-1) = Gn<y)\] > 1/2 +¢e/m

May 4, 2023 CS151 Lecture 10

14

15

The NW generator

Gn(Y):flog n(Y|S1) © flog n(Y|Sz) o.
flog n’

. © fI09 n(ylsm)
010100101111101010111001010 ‘

vy’ 3
=
* Proof (continued):

— Gy(ay'p); is exactly fiogn(Y)

—forj#i, as vary y’, G,(ay'B); varies over 22 values!

— hard-wire up to (m-1) tables of 22 values to provide
Go(ay'B)s.. i

May 4, 2023 CS151 Lecture 10

Gn(Y)=fiog n(Yis1) © fiog n(Yis,) ©

* size m + O(m) + (m-1)2¢
<s(log n) = nd

+ advantage £/m=1/m?>
1/s(log n) = n's

« contradiction

May 4, 2023

The NW generator

-+ ©Fiog n(Yism) output
010100101111101010111001010 | S Fognly)

fiognt

[|

T

hardwired tables

CS151 Lecture 10

17

18

Worst-case vs. Average-case

Theorem (NW): if E contains 2%M-unapp-
roximable functions then BPP = P.

* How reasonable is unapproximability
assumption?

* Hope: obtain BPP = P from worst-case
complexity assumption

— try to fit into existing framework without new
notion of “unapproximability”

May 4, 2023 CS151 Lecture 10 19

Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan)

If E contains functions that require size
290 circuits, then E contains 22M —unapp-
roximable functions.

* Proof:
—main tool: error correcting code

19

May 4, 2023 CS151 Lecture 10 20

Error-correcting codes
* Error Correcting Code (ECC):

C:zk - In

. k

message m € X cm) 7%%“ R
« received word R

— C(m) with some positions corrupted
« if not too many errors, can decode: D(R) =m
» parameters of interest:

— rate: k/n

— distance:
d = ming =, A(C(m), C(m’))

May 4, 2023 CS151 Lecture 10 21

Distance and error correction

» Cis an ECC with distance d

+ can uniquely decode from up to
|d/2] errors

May 4, 2023 CS151 Lecture 10 22

20

21

Distance and error correction

+ can find short list of messages (one
correct) after closer to d errors!

Theorem (Johnson): a binary code with
distance (¥ - 8?)n has at most O(1/3?)
codewords in any ball of radius (2 - d)n.

May 4, 2023 CS151 Lecture 10 23

22

Example: Reed-Solomon

+ alphabet = Fy: field with q elements

+ message m € 5k

* polynomial of degree at most k-1
Pm(X) = Zizo. k1 MX

» codeword C(m) = (pm(X))x e Fq

* rate = k/q

May 4, 2023 CS151 Lecture 10 24

23

24

Example: Reed-Solomon

Claim: distanced=q—k + 1

—suppose A(C(m), C(m’)) <q—-k+1

—then there exist polynomials pm(x) and pm:(x)
that agree on more than k-1 points in Fy

— polnomial p(x) = pm(X) - pm’(X) has more than
k-1 zeros

— but degree at most k-1...
— contradiction.

May 4, 2023 CS151 Lecture 10 25

25

Codes and hardness

* Reed-Solomon (RS) and Reed-Muller
(RM) codes are efficiently encodable

« efficient unique decoding?
—yes (classic result)

« efficient list-decoding?
—yes (RS on problem set)

May 4, 2023 CS151 Lecture 10 28

Example: Reed-Muller

* Parameters: t (dimension), h (degree)
alphabet X = Fq: field with g elements

* message m € X

» multivariate polynomial of total degree at
most h:

Pm(X) = Zizo...k-1 MM,

{Mi} are all monomials of degree < h

May 4, 2023 CS151 Lecture 10

26

Example: Reed-Muller

M;is monomial of total degree h
—-eg. X12XoX43

—need # monomials (h+t choose t) > k
codeword C(m) = (pm(X))x e (Fot

- rate = k/q!
+ Claim: distance d = (1 - h/q)qt

— proof: Schwartz-Zippel: polynomial of degree
h can have at most h/q fraction of zeros

May 4, 2023 CS151 Lecture 10 27

26

27

Codes and Hardness

» Use for worst-case to average case:
truth table of :{0,1}°9% > {0,1}
(worst-case hard)
m: [0[1] 1]o]o[o]1]0]
truth table of f:{0,1}°9" - {0,1}
(average-case hard)

Enc(m): [0] 1]1]0]0]0]1]0]0]0]0[1]O]

May 4, 2023 CS151 Lecture 10

28

29

Codes and Hardness

* if n = poly(k) then
fe Eimpliesf € E

* Want to be able to prove:
if f is s’-approximable,
then f is computable by a
size s = poly(s’) circuit

May 4, 2023 CS151 Lecture 10 30

29

Codes and Hardness

« Key: circuit C that approximates f' implicitly
gives received word R

r:[0]0] 1 /o[o] 1[o[o]o[H]0]0]

Enc(m):[0]1]1]0]o[o]1]o]o]0]0]1]0]

+ Decoding procedure D “computes” f

exactly a + Requires special
A notion of efficient

May 4, 2023 CS151 Lecture 10 deCOdI ng 31

31

Encoding

» encoding procedure (continued):
— Hadamard code Had:{0,1}*99 — {0,1}d
« = Reed-Muller with field size 2, dim. log q, deg. 1
« distance 2 by Schwartz-Zippel

—final codeword: (Had(pm(x)))x e Fol

« evaluate p,, at all points, and encode each
evaluation with the Hadamard code

May 4, 2023 CS151 Lecture 10 34

Codes and Hardness
/ f:{0,1}osk — {0,1}
m:|0[1/1/0/0|0 IV {0,1}°s" > {0,1}

encmy[0] 1]1]0]0J0] 1]0]0]0]0]1]0]

small circuit C

R: (0@ 1[oJl[o[1]o[o[o@J0] |approximating f

i ;T 7777~ -~ 5| small circuit
\\ 1 |that computes
procedure : c : f exactly

Encoding

* use a (variant of) Reed-Muller code
concatenated with the Hadamard code

—q (field size), t (dimension), h (degree)

encoding procedure:
/

—message m € {0,1}
—subset S € Fqof size h

— efficient 1-1 function Emb: [k] —» St
—find coeffs of degree h polynomial pn:Fqt = Fq

I :__m for which pn,(Emb(i)) = m; for all i (linear algebra)
S g -
May 4, 2023 CS151 Lecture 10 32 May 4, 2023 Cs151 Lecture 10 33
32 33
Encoding Decoding
m: [0[1[1]0[0[0[1]0] i~ Enc(m):[0[1]1]0]0]0[1]0[0[0]O[1]
pm degree h
Emb: [K] - St polynomial with R:[o]o] 1[ofd]o[1]o]o]0]

Pm(Emb(i)) = m;

evaluate at
all x € Fy!

encode each symbol

with

Had:{0,1}°s a{0,1}4

e

[5[2]7]1]2[s]0]3[6]83]

May 4, 2023 CS151 Lecture 10 35

34

» small circuit C computing R, agreement 7z + §
» Decoding step 1
— produce circuit C’ from C
« given x € F.t outputs “guess” for pn(x)

» C’' computes {z : Had(z) has agreement % + §/2
with x-th block}, outputs random z in this set

May 4, 2023 CS151 Lecture 10 36

35

36

Decoding

» Decoding step 1 (continued):
—for at least 6/2 of blocks, agreement in block
is at least %2 + §/2
— Johnson Bound: when this happens, list size
is S = O(1/62), so probability C’ correct is 1/S
— altogether:
* Pr{C'(x) = pm(X)] 2 Q(6°)
» C’ makes q queries to C
« C’ runs in time poly(q)

May 4, 2023 CS151 Lecture 10

37

37

Decoding

e [5]2]7]1]2]9]0]3[6]8]3]
R: [5] [9]0[3]6]8]

+ small circuit C’ computing R’, agreement §* = Q(63)
* Decoding step 2
— produce circuit C” from C’
« given x € emb(1,2,...,k) outputs pn(x)

« idea: restrict p,, to a random curve; apply efficient
R-S list-decoding; fix “good” random choices

May 4, 2023 CS151 Lecture 10 38

Restricting to a curve

—points x=a1, az, as,

degreercurve L: Fq — Fgt

* Wi, Wa,
elements of F,

..., W, are distinct

..., ar € F¢t specify a

« foreachi, L, :F, = F, N

is the degree r poly for which

Li(w) = (e} for all j

* Write p,,(L(z)) to mean
Pu(L4(2), Lo(2), ..., Li(2))

* Pan(L(W1)) = prm(X)

May 4, 2023

X=ai

A~

‘ degree r-h-t univariate poly

CS151 Lecture 10

39

38

39

