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Hardness vs. randomness

• BMY pseudo-random generator:
– one generator fooling all poly-size bounds
– one-way-permutation is hard function
– implies hard function in NP ∩ coNP

• New idea (Nisan-Wigderson): 
– for each poly-size bound, one generator
– hard function allowed to be in

E = ∪k DTIME(2kn)
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Comparison

BMY: ∀ δ > 0 PRG Gδ NW: PRG G

seed length t = mδ t = O(log m)
running time tcm mc

output length m m
error ε < 1/md (all d) ε < 1/m
fooling size s = me (all e) s = m

<< >
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NW PRG

• NW: for fixed constant δ, G = {Gn} with
seed length t = O(log n) t = O(log m)
running time nc mc

output length m = nδ m
error ε < 1/m
fooling size s = m

• Using this PRG we obtain BPP = P
– to fool size nk use Gnk/δ

– running time O(nk + nck/δ)2t = poly(n)
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NW PRG
• First attempt: build PRG assuming E 

contains unapproximable functions

Definition: The function family
f = {fn}, fn:{0,1}n → {0,1}

is s(n)-unapproximable if for every family 
of size s(n) circuits {Cn}:

Prx[Cn(x) = fn(x)] ≤ ½ + 1/s(n).

5CS151 Lecture 10

5

May 4, 2023

One bit

• Suppose f = {fn } is s(n)-unapproximable, 
for s(n) = 2Ω(n), and in E

• a “1-bit” generator family G = {Gn}:
Gn(y) = y◦flog n(y)

• Idea: if not a PRG then exists a predictor 
that computes flog n with better than ½ + 
1/s(log n) agreement; contradiction.
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One bit

• Suppose f = {fn } is s(n)-unapproximable, 
for s(n) = 2δn, and in E

• a “1-bit” generator family G = {Gn}:
Gn(y) = y◦flog n(y)

– seed length t = log n
– output length m = log n + 1  (want nδ )
– fooling size s ≈ s(log n) = nδ

– running time nc

– error ε ≈ 1/s(log n) = 1/nδ
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Many bits

• Try outputting many evaluations of f:
G(y) = f(b1(y))◦f(b2(y))◦…◦f(bm(y))

• Seems that a predictor must evaluate 
f(bi(y)) to predict i-th bit

• Does this work?
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Many bits

• Try outputting many evaluations of f:
G(y) = f(b1(y))◦f(b2(y))◦…◦f(bm(y))

• predictor might notice correlations without 
having to compute f

• but, more subtle argument works for a 
specific choice of b1…bm
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Nearly-Disjoint Subsets

Definition: S1,S2,…,Sm ⊆ {1…t} is an (h, a) 
design if
– for all i, |Si| = h
– for all i ≠ j, |Si ∩ Sj| ≤ a

{1..t}

S1

S2

S3
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Nearly-Disjoint Subsets

Lemma: for every ε > 0 and m < n can in 
poly(n) time construct an 

(h = log n, a = εlog n) design
S1,S2,…,Sm ⊆ {1…t} with t = O(log n).
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Nearly-Disjoint Subsets

• Proof sketch: 
– pick random (log n)-subset of {1…t}
– set t = O(log n) so that expected overlap with 

a fixed Si is εlog n/2
– probability overlap with Si is > εlog n is at 

most 1/n
– union bound: some subset has required small 

overlap with all Si picked so far…
– find it by exhaustive search; repeat n times.
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The NW generator

• f ∈ E s(n)-unapproximable, for s(n) = 2δn

• S1,…,Sm ⊆ {1…t} (log n, a = δlog n/3) 
design with t = O(log n)

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

010100101111101010111001010flog n:

seed y
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The NW generator

Theorem (Nisan-Wigderson): G={Gn} is a 
pseudo-random generator with:

– seed length t = O(log n)
– output length m = nδ/3

– running time nc

– fooling size s = m
– error ε = 1/m 
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The NW generator

• Proof:
– assume does not ε-pass statistical test C = 

{Cm} of size s:
|Prx[C(x) = 1] – Pry[C( Gn(y) ) = 1]| > ε

– can transform this distinguisher into a 
predictor P of size s’ = s + O(m):

Pry[P(Gn(y)1…i-1) = Gn(y)i]  > ½ + ε/m
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The NW generator

• Proof (continued):
Pry[P(Gn(y)1…i-1) = Gn(y)i]  > ½ + ε/m

– fix bits outside of Si to preserve advantage:
Pry’[P(Gn(𝛼y’𝛽)1…i-1) = Gn(𝛼y’𝛽)i]  > ½ + ε/m

𝛽𝛼

Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)

010100101111101010111001010flog n:

y ’ Si
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𝛼 𝛽

The NW generator

• Proof (continued):
– Gn(𝛼y’𝛽)i is exactly flog n(y’)
– for j ≠ i, as vary y’, Gn(𝛼y’𝛽)j varies over 2a values!

– hard-wire up to (m-1) tables of 2a values to provide 
Gn(𝛼y’𝛽)1…i-1

010100101111101010111001010flog n:

y ’ Si
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Gn(y)=flog n(y|S1)◦flog n(y|S2)◦…◦flog n(y|Sm)
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The NW generator

010100101111101010111001010flog n:

P

output     
flog n(y ’) 

y’

• size m + O(m) + (m-1)2a  

< s(log n) = nδ

• advantage ε/m=1/m2 > 
1/s(log n) = n-δ

• contradiction hardwired tables
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Worst-case vs. Average-case

Theorem (NW): if E contains 2Ω(n)-unapp-
roximable functions then BPP = P. 

• How reasonable is unapproximability 
assumption?

• Hope: obtain BPP = P from worst-case 
complexity assumption
– try to fit into existing framework without new 

notion of “unapproximability”
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Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan)

If E contains functions that require size 
2Ω(n) circuits, then E contains 2Ω(n) –unapp-
roximable functions.

• Proof: 
– main tool: error correcting code
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Error-correcting codes
• Error Correcting Code (ECC):

C:Σk → Σn

• message m ∈ Σk

• received word R
– C(m) with some positions corrupted

• if not too many errors, can decode: D(R) = m
• parameters of interest: 

– rate: k/n
– distance:

d = minm≠m ’Δ(C(m), C(m’))

C(m) R
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Distance and error correction

• C is an ECC with distance d
• can uniquely decode from up to 
⌊d/2⌋ errors 

Σn

d
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Distance and error correction

• can find short list of messages (one 
correct) after closer to d errors!

Theorem (Johnson): a binary code with 
distance (½ - δ2)n has at most O(1/δ2)
codewords in any ball of radius (½ - δ)n.
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Example: Reed-Solomon

• alphabet Σ = Fq : field with q elements
• message m ∈ Σk

• polynomial of degree at most k-1 
pm(x) = Σi=0…k-1 mixi

• codeword C(m) = (pm(x))x ∈ Fq

• rate = k/q
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Example: Reed-Solomon

• Claim: distance d = q – k + 1
– suppose Δ(C(m), C(m’)) < q – k + 1
– then there exist polynomials pm(x) and pm’(x) 

that agree on more than k-1 points in Fq

– polnomial p(x) = pm(x) - pm’(x) has more than 
k-1 zeros

– but degree at most k-1…
– contradiction.
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Example: Reed-Muller

• Parameters: t (dimension), h (degree)
• alphabet Σ = Fq : field with q elements

• message m ∈ Σk

• multivariate polynomial of total degree at 
most h: 

pm(x) = Σi=0…k-1 miMi

{Mi} are all monomials of degree ≤ h
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Example: Reed-Muller

• Mi is monomial of total degree h
– e.g. x12x2x43

– need # monomials (h+t choose t) > k
• codeword C(m) = (pm(x))x ∈ (Fq)t

• rate = k/qt

• Claim: distance d = (1 - h/q)qt

– proof: Schwartz-Zippel: polynomial of degree 
h can have at most h/q fraction of zeros
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Codes and hardness

• Reed-Solomon (RS) and Reed-Muller 
(RM) codes are efficiently encodable

• efficient unique decoding?
– yes (classic result)

• efficient list-decoding?
– yes (RS on problem set)
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Codes and Hardness

• Use for worst-case to average case:
truth table of f:{0,1}log k → {0,1}

(worst-case hard)

truth table of f’:{0,1}log n → {0,1}
(average-case hard)

0 1 0 01 0 1 0m:

0 1 0 01 0 1 0Enc(m): 0 00 1 0
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Codes and Hardness

• if n = poly(k) then
f ∈ E implies f’ ∈ E

• Want to be able to prove:
if f’ is s’-approximable, 

then f is computable by a 
size s = poly(s’) circuit

30CS151 Lecture 10

30



6

May 4, 2023

Codes and Hardness

• Key: circuit C that approximates f’ implicitly
gives received word R 

• Decoding procedure D “computes” f 
exactly

0 1 1 00 0 1 0R: 0 10 0 0

0 1 0 01 0 1 0Enc(m): 0 00 1 0

D C
• Requires special 
notion of efficient 
decoding
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Codes and Hardness

0 1 0 01 0 1 0m:

0 1 0 01 0 1 0Enc(m): 0 00 1 0

0 1 1 00 0 1 0R: 0 10 0 0

D
C

f:{0,1}log k → {0,1}

f ’:{0,1}log n → {0,1}

small circuit C 
approximating f’

decoding 
procedure

i ∈ {0,1}log k

small circuit 
that computes 
f exactly

f(i)
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Encoding

• use a (variant of) Reed-Muller code 
concatenated with the Hadamard code
– q (field size), t (dimension), h (degree) 

• encoding procedure:
– message m ∈ {0,1}k

– subset S ⊆ Fq of size h

– efficient 1-1 function Emb: [k] → St

– find coeffs of degree h polynomial pm:Fqt → Fq
for which pm(Emb(i)) = mi for all i (linear algebra)

so, need ht ≥ k 
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Encoding

• encoding procedure (continued):
– Hadamard code Had:{0,1}log q → {0,1}q

• = Reed-Muller with field size 2, dim. log q, deg. 1
• distance ½ by Schwartz-Zippel

– final codeword:  (Had(pm(x)))x ∈ Fqt

• evaluate pm at all points, and encode each 
evaluation with the Hadamard code
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Encoding
0 1 0 01 0 1 0m:

Emb: [k] → St

St

Fq
t

pm degree h 
polynomial with 
pm(Emb(i)) = mi

5 7 2 92 1 0 3 8 36

0 1 0 0 1 0 1 0 . . . . . . 

evaluate at 
all x ∈ Fq

t

encode each symbol 
with 
Had:{0,1}log q→{0,1}q
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Decoding

• small circuit C computing R, agreement ½ + 𝛿
• Decoding step 1

– produce circuit C’ from C
• given x ∈ Fq

t outputs “guess” for pm(x)
• C’ computes {z : Had(z) has agreement ½ + 𝛿/2

with x-th block}, outputs random z in this set

0 1 0 01 0 1 0Enc(m): 0 00 1

0 1 1 00 0 1 0R: 0 10 0
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Decoding

• Decoding step 1 (continued):
– for at least 𝛿/2 of blocks, agreement in block 

is at least ½ + 𝛿/2
– Johnson Bound: when this happens, list size 

is S = O(1/𝛿2), so probability C’ correct is 1/S
– altogether:

• Prx[C’(x) = pm(x)] ≥ Ω(𝛿3)
• C’makes q queries to C
• C’ runs in time poly(q)
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Decoding

• small circuit C’ computing R’, agreement 𝛿’ = Ω(𝛿3)
• Decoding step 2

– produce circuit C’’ from C’
• given x ∈ emb(1,2,…,k) outputs pm(x) 
• idea: restrict pm to a random curve; apply efficient 

R-S list-decoding; fix “good” random choices

5 7 2 92 1 0 3 8 36pm:

5 7 6 99 1 0 3R’: 8 16
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Restricting to a curve

– points x=𝛼1, 𝛼2, 𝛼3, …, 𝛼r ∈ Fqt specify a 
degree r curve L : Fq → Fqt

• w1, w2, …, wr are distinct 
elements of Fq

• for each i,  Li :Fq → Fq

is the degree r poly for which
Li(wj) = (𝛼j)i for all j

• Write pm(L(z)) to mean 
pm(L1(z), L2(z), …, Lt(z))

• pm(L(w1)) = pm(x)
degree r⋅h⋅t univariate poly

x=𝛼1

𝛼2

𝛼3

𝛼r
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