Distinguishers and predictors

• Distribution D on $\{0,1\}^n$
 • $D \epsilon$-passes \textit{statistical tests} of size s if for all circuits of size s:
 \[|\Pr_{y \sim U_n}[C(y) = 1] - \Pr_{y \sim D}[C(y) = 1]| \leq \epsilon \]
 – circuit violating this is sometimes called an efficient "distinguisher"

Theorem (Yao): if a distribution D on $\{0,1\}^n$ (ϵ/n)-passes all prediction tests of size s, then it ϵ-passes all statistical tests of size $s' = s - O(n)$.

Distinguishers and predictors

• D ϵ-passes \textit{prediction tests} of size s if for all circuits of size s:
 \[\Pr_{y \sim D}[C(y) = 1] \leq \frac{1}{2} + \epsilon \]
 – circuit violating this is sometimes called an efficient "predictor"
• Yao showed essentially the same!
 – important result and proof ("hybrid argument")

Distinguishers and predictors

• Proof:
 – idea: proof by contradiction
 – given a size s' distinguisher C:
 \[|\Pr_{y \sim U_n}[C(y) = 1] - \Pr_{y \sim D}[C(y) = 1]| > \epsilon \]
 – produce size s predictor P:
 \[\Pr_{y \sim D}[P(y_1,2,\ldots,s) = y_i] > \frac{1}{2} + \epsilon/n \]
 – work with distributions that are "hybrids" of the uniform distribution U_n and D
Distinguishers and predictors

• Hybrid distributions:

\[D_0 = U_n : \text{...} \]

\[D_{n-1} : \text{...} \]

\[D_n : \text{...} \]

\[D_k = D_i : \text{...} \]

April 29, 2021 CS151 Lecture 10

Distinguishers and predictors

– Define: \(p_i = \Pr_{y \leftarrow D_i}[C(y) = 1] \)

– Note: \(p_0 = \Pr_{y \leftarrow U_n}[C(y) = 1] \); \(p_n = \Pr_{y \leftarrow D_n}[C(y) = 1] \)

– by assumption: \(\epsilon < |p_n - p_0| \)

– triangle inequality: \(|p_n - p_0| \leq \sum_{1 \leq i \leq n} |p_i - p_{i-1}| \)

– there must be some \(i \) for which \(|p_i - p_{i-1}| > \epsilon/n \)

– WLOG assume \(p_i - p_{i-1} > \epsilon/n \)

• can invert output of \(C \) if necessary

April 29, 2021 CS151 Lecture 10

Distinguishers and predictors

– define distribution \(D'_i \) to be \(D_i \) with \(i \)-th bit flipped

\[p'_i = \Pr_{y \leftarrow D'_i}[C(y) = 1] \]

\[D_{i-1} : \text{...} \]

\[D_i : \text{...} \]

\[D'_i : \text{...} \]

– notice:

\(D_{i+1} = (D_i + D'_i)/2 \)

\(p_{i+1} = (p_i + p'_i)/2 \)

April 29, 2021 CS151 Lecture 10

Distinguishers and predictors

• \(P' \) is randomized procedure

• there must be some fixing of its random bits \(d, w \) that preserves the success prob.

• final predictor \(P \) has \(d' \) and \(w' \) hardwired:

\[u = y_1 y_2 \ldots y_i : \text{...} \]

\[\text{circuit for } P : \text{...} \]

\(d' \)

\(w' \)

may need to add \(\neg \) gate

\(s' + O(n) = s \)

as promised

April 29, 2021 CS151 Lecture 10

Distinguishers and predictors

– randomized predictor \(P' \) for \(i \)-th bit:

– input: \(u = y_1 y_2 \ldots y_{i-1} \) (which comes from \(D \))

– flip a coin: \(d \in \{0, 1\} \)

– \(w = w_{i+1} w_{i+2} \ldots w_n \leftarrow U_n \)

– evaluate \(C(udw) \)

– if 1, output \(d \); if 0, output \(\neg d \)

Claim:

\(\Pr_{y \leftarrow D, d, w \leftarrow U_n}[P'(y_1 \ldots y_i) = y_i] > \frac{1}{2} + \epsilon/n. \)

April 29, 2021 CS151 Lecture 10

Distinguishers and predictors

• Proof of claim:

\[\Pr_{y \leftarrow D, d, w \leftarrow U_n}[P'(y_1 \ldots y_i) = y_i] = \]

\[= \Pr[y_i = d \mid C(u,d,w) = 1] \Pr[C(u,d,w) = 1] \]

\[+ \Pr[y_i = \neg d \mid C(u,d,w) = 0] \Pr[C(u,d,w) = 0] \]

\[= \Pr[y_i = d \mid C(u,d,w) = 1][p_i] \]

\[+ \Pr[y_i = \neg d \mid C(u,d,w) = 0][1 - p_i] \]

April 29, 2021 CS151 Lecture 10
Distinguishers and predictors

\[u = y_1 y_2 \ldots y_{t-1} \]

- Observe:
 \[
 \Pr[y_i = d \mid C(u, d, w) = 1] = \Pr[C(u, d, w) = 1] \mid y_i = d \Pr[y_i = d] / \Pr[C(u, d, w) = 1] = p/(2p_1)
 \]

\[
\Pr[y_i = -d \mid C(u, d, w) = 0] = \Pr[C(u, d, w) = 0] \mid y_i = -d \Pr[y_i = -d] / \Pr[C(u, d, w) = 0] = (1 - p_1) / (2(1 - p_1))
\]

- Note: stronger than we needed

\[\Pr[\text{error} < 1/6; \text{seed length} t = m^5; \text{output length} m; \text{fooling size} s = m; \text{running time} m^c] \]

- Sufficient to have \(\varepsilon < 1/6; s = m \)

\[\text{Theorem (BMY): for every } \delta > 0, \text{ there is a constant } c \text{ s.t. for all } d, e, G^\delta \text{ is a PRG with} \]

\[\text{error } \varepsilon < 1/m^d \]

\[\text{fooling size } s = m^d \]

\[\text{running time } m^c \]

\[\text{Success probability:} \]

\[\Pr[y_i = d \mid C(u, d, w) = 1][p_1] + \Pr[y_i = -d \mid C(u, d, w) = 0][1 - p_1] \]

- We know:
 \[- \Pr[y_i = d \mid C(u, d, w) = 1] = p/(2p_1) \]

\[- \Pr[y_i = -d \mid C(u, d, w) = 0] = (1 - p_1)/2(1 - p_1) \]

\[- p_1 = (p + p_s)^2 \]

\[- p_1 > \varepsilon/n \]

\[\text{Conclude:} \]

\[\Pr[p^y \in \{0, 1\} \mid y] = \frac{1}{2} + p_1 - p_1 / 2 = \frac{1}{2} + p_1 - p_1 > \frac{1}{2} + \varepsilon/n. \]

\[\text{Distinguishers and predictors} \]

\[\text{The BMY Generator} \]

- Recall goal: for all \(1 > \delta > 0 \), family of PRGs \(\{G_m\} \) with
 \[\text{output length } m \]
 \[\text{fooling size } s = m \]
 \[\text{seed length } t = m^5 \]
 \[\text{running time } m^c \]
 \[\text{error } \varepsilon < 1/6 \]

- If one way permutations exist then WLOG there is OWP \(f = \{f_n\} \) with hard bit \(h = \{h_n\} \)

\[\text{The BMY Generator} \]

- Generator \(G^\delta = \{G^\delta_m\} \):
 \[- t = m^5 \]
 \[- y_0 \in \{0, 1\} \]
 \[- y_i = f_i(y_{i-1}) \]
 \[- b_i = h_i(y) \]
 \[- G^\delta(y_0) = b_{m-1}b_{m-2}b_{m-3} \ldots b_0 \]

- Prove:
 \[\text{compputeable in time at most } m^{c+1} \]
 \[\text{assume } G^\delta \text{ does not } (1/m^d) \text{-pass statistical test } C \]
 \[(C_m) \text{ of size } m^c; \]
 \[\Pr[y_i = y \mid C(y) = 1] - \Pr[z_i = d \mid C(z) = 1] > 1/m^d \]
The BMY Generator

Generator \(G^3 = \{G^3_m\} \):
\[t = m^5; \quad y_0 \in \{0,1\}; \quad y_i = f_i(y_i) \quad b_i = h_i(y_i) \]
\[-G^3_m(y_0) = b_{m_1}b_{m_2}b_{m_3} - b_0 \]

– transform this distinguisher into a predictor \(P \) of size \(m^5 + O(m) \):
\[\Pr_y[P(b_{m_1}b_{m_2}b_{m_3}) = b_{m+1}] > \frac{1}{2} + 1/m^{d+1} \]

– What is \(b_{m+1} \)?
\[b_{m+1} = h_{i+1}(y_{m+1}) = h_i(f_i^{-1}(y_{m+1})) \]

– We have described a family of polynomial-size circuits that computes \(h_i(f_i^{-1}(y)) \) from \(y \) with success greater than \(\frac{1}{2} + 1/\text{poly}(m) \)

– Contradiction.

Hardness vs. randomness

• We have shown:
 If one-way permutations exist then
 \(\text{BPP} \subseteq \bigcap_{k>0} \text{TIME}(2^{kn}) \subseteq \text{EXP} \)

• simulation is better than brute force, but just barely

• stronger assumptions on difficulty of inverting OWF lead to better simulations…
Hardness vs. randomness

- BMY: for every $\delta > 0$, G^δ is a PRG with
 - seed length $t = m^\delta$
 - output length m
 - error $\epsilon < 1/m^d$ (all d)
 - fooling size $s = m^e$ (all e)
 - running time m^c

- running time of simulation dominated by 2^t

Hardness vs. randomness

- To get $\text{BPP} = \text{P}$, would need $t = O(\log m)$
- BMY building block is one-way-permutation:
 $f : \{0,1\}^t \rightarrow \{0,1\}^t$
- required to fool circuits of size m^e (all e)
- with these settings a circuit has time to invert f by brute force!
 can’t get $\text{BPP} = \text{P}$ with this type of PRG

Comparison

- BMY: $\forall \delta > 0$ PRG G^δ
 - seed length $t = m^\delta$
 - output length m
 - error $\epsilon < 1/m^d$ (all d)
 - fooling size $s = m^e$ (all e)
 - running time m^c

- NW: PRG G
 - seed length $t = O(\log m)$
 - output length m
 - error $\epsilon < 1/m$
 - fooling size $s = m$

NW PRG

- NW: for fixed constant δ, $G = \{G_n\}$ with
 - seed length $t = O(\log n)$
 - running time n^c
 - output length $m = n^\delta$
 - error $\epsilon < 1/m$
 - fooling size $s = m$

- Using this PRG we obtain $\text{BPP} = \text{P}$
 - to fool size n^k use G_{n^k}
 - running time $O(n^k + n^{3k/5} 2^t) = \text{poly}(n)$

NW PRG

- First attempt: build PRG assuming E contains unapproximable functions

Definition: The function family

$f = \{f_n\}, f_n : \{0,1\}^n \rightarrow \{0,1\}$

is $s(n)$-unapproximable if for every family of size $s(n)$ circuits $\{C_n\}$:

$\Pr_{x}[C_n(x) = f_n(x)] \leq \frac{1}{2} + 1/s(n)$.
One bit

- Suppose \(f = \{ f_n \} \) is \(s(n) \)-unapproximable, for \(s(n) = 2^{\Omega(n)} \), and in \(\mathbb{E} \)
- a “1-bit” generator family \(G = \{ G_n \} \):
 \[G_n(y) = y \cdot f_{\log n}(y) \]
- Idea: if not a PRG then exists a predictor that computes \(f_{\log n} \) with better than \(\frac{1}{2} + \frac{1}{s(\log n)} \) agreement; contradiction.

Many bits

- Try outputting many evaluations of \(f \):
 \[G(y) = f(b_1(y)) \cdot f(b_2(y)) \cdots f(b_m(y)) \]
- Seems that a predictor must evaluate \(f(b_i(y)) \) to predict \(i \)-th bit
- Does this work?

Nearly-Disjoint Subsets

Definition: \(S_1, S_2, \ldots, S_m \subseteq \{1 \ldots t\} \) is an \((h, a)\) design if
- for all \(i \), \(|S_i| = h \)
- for all \(i \neq j \), \(|S_i \cap S_j| \leq a \)

Lemma: for every \(\varepsilon > 0 \) and \(m < n \) can in \(\text{poly}(n) \) time construct an
\((h = \log n, a = \varepsilon \log n)\) design
\(S_1, S_2, \ldots, S_m \subseteq \{1 \ldots t\} \) with \(t = O(\log n) \).
Nearly-Disjoint Subsets

- Proof sketch:
 - pick random (log n)-subset of \{1…t\}
 - set \(t = O(\log n) \) so that expected overlap with a fixed \(S_i \) is \(\epsilon \log n/2 \)
 - probability overlap with \(S_i \) is \(> \epsilon \log n \) is at most \(1/n \)
 - union bound: some subset has required small overlap with all \(S_i \) picked so far…
 - find it by exhaustive search; repeat \(n \) times.

The NW generator

Theorem (Nisan-Wigderson): \(G_n \) is a pseudo-random generator with:

- seed length \(t = O(\log n) \)
- output length \(m = n \delta/3 \)
- running time \(n^c \)
- fooling size \(s = m \)
- error \(\epsilon = 1/m \)

\[
G_n(y) = f_{\log n}(y_{|S_1}) \circ f_{\log n}(y_{|S_2}) \circ \cdots \circ f_{\log n}(y_{|S_m})
\]

\[010100101111101010111001010\]

\(f_{\log n} \): seed y
The NW generator

\[G_n(y) = f_{\log n}(y_{|S_1}) \circ f_{\log n}(y_{|S_2}) \circ \cdots \circ f_{\log n}(y_{|S_m}) \]

- size \(m + O(m) + (m-1)2^{s \log n} \)
- advantage \(\epsilon/m > 1/s(\log n) = n^{-\delta} \)
- contradiction

Theorem (NW): if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions then \(BPP = P \).

- How reasonable is unapproximability assumption?
- Hope: obtain \(BPP = P \) from worst-case complexity assumption
 - try to fit into existing framework without new notion of "unapproximability"

Worst-case vs. Average-case

\[P \]

Error-correcting codes

- Error Correcting Code (ECC):
 \[C: \Sigma^k \rightarrow \Sigma^n \]
 - message \(m \in \Sigma^k \)
 - received word \(R \)
 - \(C(m) \) with some positions corrupted
 - if not too many errors, can decode: \(D(R) = m \)
- parameters of interest:
 - rate: \(k/n \)
 - distance:
 \[d = \min_{m \neq m'} \Delta(C(m), C(m')) \]

Distance and error correction

- \(C \) is an ECC with distance \(d \)
- can uniquely decode from up to \(\lfloor d/2 \rfloor \) errors

Distance and error correction

- can find short list of messages (one correct) after closer to \(d \) errors!

Theorem (Johnson): a binary code with distance \((\frac{1}{2} - \delta^2)n\) has at most \(O(1/\delta^2) \) codewords in any ball of radius \((\frac{1}{2} - \delta)n\).
Example: Reed-Solomon

- alphabet $\Sigma = \mathbb{F}_q$: field with q elements
- message $m \in \Sigma^k$
- polynomial of degree at most $k-1$
 \[p_m(x) = \sum_{i=0}^{k-1} m_i x^i \]
- codeword $C(m) = (p_m(x))_{x \in \mathbb{F}_q}$
- rate $= k/q$

Claim: distance $d = q - k + 1$
- suppose $\Delta(C(m), C(m')) < q - k + 1$
- then there exist polynomials $p_m(x)$ and $p_{m'}(x)$
 that agree on more than $k-1$ points in \mathbb{F}_q
- polynomial $p(x) = p_m(x) - p_{m'}(x)$ has more than $k-1$ zeros
- but degree at most $k-1$
- contradiction.