
1

CS151
Complexity Theory

Lecture 1
April 4, 2023

1

2

Complexity Theory
Classify problems according to the
computational resources required
– running time
– storage space
– parallelism
– randomness
– rounds of interaction, communication, others…

Attempt to answer: what is computationally
feasible with limited resources?

CS151 Lecture 1

2

3

Complexity Theory
• Contrast with decidability: What is

computable?
– answer: some things are not

• We care about resources!
– leads to many more subtle questions
– fundamental open problems

CS151 Lecture 1

3

4

The central questions
• Is finding a solution as easy as recognizing one?

P = NP?
• Is every efficient sequential algorithm parallelizable?

P = NC?
• Can every efficient algorithm be converted into one that

uses a tiny amount of memory?
P = L?

• Are there small Boolean circuits for all problems that
require exponential running time?

EXP ⊆ P/poly?
• Can every efficient randomized algorithm be converted

into a deterministic algorithm one?
P = BPP?

CS151 Lecture 1

4

5

Central Questions
We think we know the answers to all of
these questions …

… but no one has been able to prove that
even a small part of this “world-view” is
correct.

If we’re wrong on any one of these then
computer science will change dramatically

CS151 Lecture 1

5

6

Introduction
• You already know about two complexity classes

– P = the set of problems decidable in polynomial time
– NP = the set of problems with witnesses that can be

checked in polynomial time
… and notion of NP-completeness

• Useful tool
• Deep mathematical problem: P = NP?

Course should be both useful
and mathematically interesting

CS151 Lecture 1

6

2

7

A question
• Given: polynomial f(x1, x2, …, xn) as

arithmetic formula (fan-out 1):

• Question: is f identically zero?
(variables take values in finite field of size > degree)

-

*

x1 x2

*

+ -

x3 … xn

*

• multiplication (fan-in 2)

• addition (fan-in 2)
• negation (fan-in 1)

CS151 Lecture 1

7

8

A question
• Given: multivariate polynomial

f(x1, x2, …, xn)
as an arithmetic formula.

• Question: is f identically zero?

• Challenge: devise a deterministic poly-
time algorithm for this problem.

CS151 Lecture 1

8

9

A randomized algorithm
• Given: multivariate degree r poly. f(x1, x2, …, xd)

note: r = deg(f) ≤ size of formula
• Algorithm:

– pick small number of random points
– if f is zero on all of these points, answer “yes”
– otherwise answer “no”

(low-degree non-zero polynomial evaluates to zero on only
a small fraction of its domain)

• No efficient deterministic algorithm known

CS151 Lecture 1

9

10

Derandomization
• Here is a deterministic algorithm that

works under the assumption that there
exist hard problems, say SAT.

• solve SAT on all instances of length log n

• encode using error-correcting code
(variant of a Reed-Muller code)

1 1 0 0 1 1 1 0 0 1

1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1

CS151 Lecture 1

10

11

Derandomization

• run randomized alg. using these strings in
place of random evaluation points
– if f is zero on all of these points, answer “yes”
– otherwise answer “no”

• This works. (proof in this course)

1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 1

CS151 Lecture 1

11

12

Derandomization

This technique works on any randomized
algorithm.

Gives generic “derandomization” of
randomized procedures.

CS151 Lecture 1

12

3

13

A surprising fact
• Is finding a solution as easy as recognizing one?

P = NP?
• Is every sequential algorithm parallelizable?

P = NC?
• Can every efficient algorithm be converted into one that

uses a tiny amount of memory?
P = L?

• Are there small Boolean circuits for all problems that
require exponential running time?

EXP ⊆P/poly?
• Can every randomized algorithm be converted into a

deterministic algorithm one?
P = BPP?

probably FALSE

probably FALSE

probably FALSE

probably FALSE

probably TRUE
CS151 Lecture 1

13

14

Outline
Should be mostly review…

1. Problems and Languages

2. Complexity Classes

3. Turing Machines

4. Reductions

5. Completeness

CS151 Lecture 1

14

15

Problems and Languages
• Need formal notion of “computational

problem”. Examples:
– Given graph G, vertices s, t, find the shortest

path from s to t
– Given matrices A and B, compute AB
– Given an integer, find its prime factors
– Given a Boolean formula, find a satisfying

assignment

CS151 Lecture 1

15

16

Problems and Languages
• One possibility: function from strings to

strings

f:∑* → ∑*

• function problem:
given x, compute f(x)

• decision problem: f:∑* → {yes, no}
given x, accept or reject

CS151 Lecture 1

16

17

Problems and Languages
• simplification doesn’t give up much:

– Given an integer n, find its prime factors
– Given an integer n and an integer k, is there a factor

of n that is < k?
– Given a Boolean formula, find a satisfying assignment
– Given a Boolean formula, is it satisfiable?

• can solve function problem efficiently using
related decision problem (how?)

• We will work mostly with decision problems

CS151 Lecture 1

17

18

Problems and Languages
• decision problems: f:∑* → {yes, no}
• equivalent notion: language L ⊆ ∑*

L = set of “yes” instances
• Examples:

– set of strings encoding satisfiable formulas
– set of strings that encode pairs (n,k) for which

n has factor < k
• decision problem associated with L:

– Given x, is x in L?
CS151 Lecture 1

18

4

19

Problems and Languages
An aside: two encoding issues
1. implicitly assume we’ve agreed on a way

to encode inputs (and outputs) as strings
– sometimes relevant in fine-grained analysis

(e.g. adj. matrix vs. adj. list for graphs)
– almost never an issue in this class
– avoid silly encodings: e.g. unary

CS151 Lecture 1

19

20

Problems and Languages
2. some strings not valid encodings of any

input -- treat as “no”

∑*
“yes” “no”L

invalid

∑*
“yes” “no”

officially:
co-L

invalid

CS151 Lecture 1

20

21

Problems and Languages
2. some strings not valid encodings of any

input -- treat as “no”

∑*
“yes” “no”L

invalid

∑*
“yes” “no”

What we usually
mean by co-L

invalid

CS151 Lecture 1

21

22

Complexity Classes
• complexity class = class of languages
• set-theoretic definition – no reference to

computation (!)
• example:

– TALLY = languages in which every yes
instance has form 0n

– e.g. L = { 0n : n prime }

CS151 Lecture 1

22

23

Complexity Classes
• complexity classes you know:

– P = the set of languages decidable in
polynomial time

– NP = the set of languages L where
L = { x : ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

and R is a language in P

• easy to define complexity classes…
CS151 Lecture 1

23

24

Complexity Classes
• …harder to define meaningful complexity

classes:
– capture genuine computational phenomenon (e.g.

parallelism)
– contain natural and relevant problems
– ideally characterized by natural problems

(completeness – more soon)
– robust under variations in model of computation
– possibly closed under operations such as AND, OR,

COMPLEMENT…

CS151 Lecture 1

24

5

25

Complexity Classes
• need a model of computation to define

classes that capture important aspects of
computation

• Our model of computation: Turing Machine

. . .

finite
control

a b a b

infinite
tape

read/write
head

CS151 Lecture 1

25

26

Turing Machines
• Q finite set of states
• ∑ alphabet including blank: “_”
• qstart, qaccept, qreject in Q
• δ : Q x ∑ → Q x ∑ x {L, R, -} transition fn.
• input written on tape, head on 1st square,

state qstart
• sequence of steps specified by δ
• if reach qaccept or qreject then halt

CS151 Lecture 1

26

27

Turing Machines
• three notions of computation with Turing

machines. In all, input x written on tape…
– function computation: output f(x) is left on

the tape when TM halts
– language decision: TM halts in state qaccept if

x ∈ L; TM halts in state qreject if x ∉ L.
– language recognition: TM halts in state

qaccept if x ∈ L; may loop forever otherwise.

CS151 Lecture 1

27

28

q σ δ(q,σ)
start 0 (start, 0, R)

start 1 (start, 1, R)

start _ (t, _, L)

start # (start, #, R)

0 1
0 1

0 1
0 1
0 1

0 0

start
start
start
start

t
t

1 0 accept

Example:

q σ δ(q,σ)
t 0 (accept, 1, -)

t 1 (t, 0, L)

t # (accept, #, R)

CS151 Lecture 1

28

29

Turing Machines
• multi-tape Turing Machine:

. . . finite
control

a b a b

a a

b b c d

. . .

. . .

k tapes

δ:Q x ∑k →Q x ∑k x {L,R,-}k

(input tape)

Usually:
• read-only “input tape”
• write-only “output tape”
• k-2 read/write “work
tapes”

CS151 Lecture 1

29

30

Multitape TMs
simulation of k-tape TM by single-tape TM:

. . . a b a b

a a

b b c d

. . .

. . .

(input tape)

a b a b # a a # b b c d # . . .

• add new symbol
x for each old x

• marks location of
“virtual heads”

CS151 Lecture 1

30

6

31

Multitape TMs
. . . a b a b

a a

b b c d

. . .

. . .

a b a b # a a # b b c d # . . .

Repeat: O(t(n)) times
• scan tape, remembering the symbols
under each virtual head in the state
O(k t(n)) = O(t(n))
• make changes to reflect 1 step of M;
if hit #, shift to right to make room.
O(k t(n)) = O(t(n))

when M halts, erase all but output string
O(k t(n)) = O(t(n))

CS151 Lecture 1

31

32

Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive

notion of an efficient algorithm is:

• quantum computers challenge this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be

computed on a Turing Machine in time
tO(1)(n) (polynomial slowdown)

CS151 Lecture 1

32

33

Extended Church-Turing Thesis
• consequence of extended Church-Turing

Thesis: all reasonable physically realizable
models of computation can be efficiently
simulated by a TM

• e.g. multi-tape vs. single tape TM
• e.g. RAM model

CS151 Lecture 1

33

34

Turing Machines
• Amazing fact: there exist (natural)

undecidable problems

HALT = { (M, x) : M halts on input x }

• Theorem: HALT is undecidable.

CS151 Lecture 1

34

35

Turing Machines
• Proof:

– Suppose TM H decides HALT
– Define new TM H’: on input <M>

• if H accepts (M, <M>) then loop
• if H rejects (M, <M>) then halt

– Consider H’ on input <H’>:
• if it halts, then H rejects (H’, <H’>), which implies

it cannot halt
• if it loops, then H accepts (H’, <H’>) which implies

it must halt
– contradiction.

CS151 Lecture 1

35

36

Diagonalization

Turing
Machines

inputs
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM H’
that cannot be in
the table.

CS151 Lecture 1

36

