1. Please remember that homework solutions should be:
 - Clear
 - Concise
 - Precise
 - Legible (if handwritten).

2. An example\(^1\):

 (Yes) "According to the ‘fundamental theorem of arithmetic’ (proved in ex. 1.2.4-21), each positive integer \(u\) can be expressed in the form
 \[
 u = 2^{u_2}3^{u_3}5^{u_5}7^{u_7}11^{u_{11}}\ldots = \prod_{p \text{ prime}} p^{u_p}
 \]
 where the exponents \(u_2, u_3, \ldots\) are uniquely determined nonnegative integers, and where all but a finite number of the exponents are zero."

 (No) "If \(L^+(P, N_0)\) is the set of functions \(f : P \rightarrow N_0\) with the property that
 \[
 \exists n_0 \in N_0 \quad \forall p \in P, \quad p \geq n_0 \Rightarrow f(p) = 0
 \]
 then there exists a bijection \(N_1 \rightarrow L^+(P, N_0)\) such that if \(n \rightarrow f\) then
 \[
 n = \prod_{p \in P} p^{f(p)}.
 \]
 Here \(P\) is the prime numbers and \(N_1 = N_0 \sim \{0\}\)."

3. Show that \(P = NP\).
 (a) If \(N = 1\) then \(P = P\).
 (b) If \(P = 0\) then \(0 = 0\).
 (c) Collect $1 million.

\(^1\)Taken from *Mathematical Writing* by Knuth, Larrabee, and Roberts.
4. This page intentionally left blank.