1. (a) The procedure that traverses a fan-in 2 depth $O(\log^i n)$ circuit and outputs a formula runs in L_i—this can be done by a recursive depth-first traversal, which only requires 1 bit of information (“left” or “right”) at each level of recursion. The procedure for FVAL (Lecture 2) runs in log-space, so on a formula of size $2^{O(\log^i n)}$, it runs in $O(\log^i n)$ space. Using space-efficient composition of the logspace procedure that generates the circuit together with these two procedures we obtain a procedure to evaluate an NC_i circuit on a given input in only $O(\log^i n)$ space, as required.

(b) The configuration graph for an NL_i machine on input x of length n has at most $2^{O(\log^i n)}$ nodes. The input x is accepted if and only if there is a path from the start node s to the accept node t in this graph. We can construct the incidence matrix A of this graph (with ones on the diagonal), and we observe that $A^* = A^{2^m}$, for $m = O(\log^i n)$ has a one in position s,t if and only if there is a path of length at most 2^m from s to t (here we are using Boolean matrix multiplication). We can square matrix A with a $O(\log |A|) = O(\log^i n)$ depth circuit. We repeat this squaring m times, to compute A^*. The repeated squaring entails m sequential copies of the squaring circuit, which has depth $O(\log^i n)$. The total depth is $O(\log^{2i} n)$.

(c) Suppose we show $NL_i \subseteq NC_{2i}$ for some $i > 1$. Then we have

$$L_i \subseteq NL_i \subseteq NC_{2i} \subseteq P.$$

However, we know by the Space Hierarchy Theorem that L is strictly contained in L_i for $i > 1$. Thus we would have proved $L \neq P$. In fact, we would have proved something stronger: that $NC_1 \neq NC_2$, since an equality would collapse all of the hierarchy to NC_1, including NC_{2i} (and then we would have $NC_1 = L = L_i = NL_i = NC_{2i}$, contradicting the Space Hierarchy Theorem).

2. (a) Fix an $x \in \{0,1\}^n$ and a $y \in \{0,1\}^k$. Imagine that we have already chosen M. In order to have $h_{M,b}(x) = y$, we must have $Mx + b = y$ or equivalently $y - Mx = b$. This happens with probability exactly 2^{-k} since b is chosen uniformly from $\{0,1\}^k$.

For the second part, we know that $x_1 \neq x_2$. Thus there must be a position i in which they differ. WLOG, assume $(x_1)_i = 1$ and $(x_2)_i = 0$. Imagine that we have already chosen all of M except for the i-th column, and denote by M' the matrix M with 0s in the i-th column. Let us denote by $a \in \{0,1\}^k$ our choice of the i-th column of M. Note that $h_{M,b}(x_1) = M'x_1 + a + b$ and $h_{M,b}(x_2) = M'x_2 + b$. Thus we are interested in the probability that $a + b = y_1 - M'x_1$ and $b = y_2 - M'x_2$. Since each of a and b are chosen uniformly and independently from $\{0,1\}^k$, this happens with probability 2^{-2k}. More precisely, there is a 2^{-k} chance of choosing b equal to the fixed vector $y_2 - M'x_2$, and then given the choice of b, there is a 2^{-k} chance of choosing a equal to $y_1 - M'x_1 - b$.

0-1
Here is a 2-round AM protocol for LARGESET. The common input is \((C,k)\).

- Arthur picks a random \(y\) and a random \(k \times n\) matrix \(M\) and \(b \in \{0,1\}^k\) as above and sends them to Merlin.
- Merlin replies with an \(x \in \{0,1\}^n\).
- Arthur accepts iff \(C(x) = 1\) and \(h_{M,b}(x) = y\).

We have to show completeness and soundness for this protocol. For completeness, set \(A = \{x : C(x) = 1\}\), and observe that if \(|A| \geq 3(2^k)\) then the inequality from the problem statement gives us:

\[
\Pr_{M,b,y} \left[\exists x \in A \ h_{M,b}(x) = y \right] \geq 1 - \frac{2^k}{|A|} \geq \frac{2}{3}.
\]

Thus given a YES instance, with probability at least 2/3, Merlin has a reply that will cause Arthur to accept.

For soundness, again set \(A = \{x : C(x) = 1\}\), and observe that if \(|A| \leq (2^k)/3\) then from part (a), we have that for each fixed \(x \in A\),

\[
\Pr_{M,b,y} [h_{M,b}(x) = y] = 2^{-k}.
\]

Taking a union bound over all \(x \in A\), we get

\[
\Pr_{M,b,y} \left[\exists x \in A \ h_{M,b}(x) = y \right] \leq 2^{-k} |A| \leq \frac{1}{3}.
\]

Thus given a NO instance, the probability that Merlin has a reply that will cause Arthur to accept is at most 1/3.

Finally, apply the transformation from Problem Set 6, Problem 3, to this protocol to achieve perfect completeness.

3. Let \(L\) be a language in \(PSPACE\), and let \(x\) be an input of length \(n\). Using the given fact, together with the assumption that \(PSPACE\) has polynomial-size circuits, there is a polynomial size circuit \(C\) that computes the (honest) prover’s messages as a function of \(x\) and the messages seen so far, in the IP protocol for \(L\).

We need to describe a MA protocol for \(L\). We have Merlin send the circuit \(C\) in the first round. Then Arthur simulates the IP protocol for \(L\) with input \(x\), evaluating \(C\) to determine the prover’s messages at each step. This entails flipping polynomially many coins, and evaluating the circuit \(C\) polynomially many times. In the end Arthur accepts if the Verifier he is simulating would have accepted.

Now, if \(x\) is in \(L\), then there exists a Merlin message that will cause Arthur to accept with probability at least 2/3 – namely, the circuit that correctly computes the Prover messages in the IP protocol for \(L\). On the other hand, if \(x \not\in L\), then no matter what \(C\) is sent in the first round, Arthur will reject with probability at least 2/3, because of the soundness guarantee for the IP protocol. I.e., the evaluations of any circuit \(C\) correspond to some (possibly dishonest) prover, and we know that when \(x \not\in L\), no prover can cause the Verifier to accept with more than 1/3 probability.

This shows that \(PSPACE \subseteq MA\). We know that \(MA \subseteq PSPACE\) unconditionally, so we conclude that under the assumption \(PSPACE \subseteq P/poly\), we have \(PSPACE = MA\).
4. (a) For a language \(L \in \Sigma_2^p \), we have

\[
\begin{align*}
 x \in L & \Rightarrow \exists y \forall z \ (x, y, z) \in R \\
 x \notin L & \Rightarrow \exists z \forall y \ (x, y, z) \notin R \Rightarrow \forall y \exists z \ (x, y, z) \notin R
\end{align*}
\]

Thus \(L \in \Sigma_2^p \). We also have:

\[
\begin{align*}
 x \in L & \Rightarrow \exists y \forall z \ (x, y, z) \in R \Rightarrow \forall z \exists y \ (x, y, z) \in R \\
 x \notin L & \Rightarrow \exists z \forall y \ (x, y, z) \notin R
\end{align*}
\]

and so \(L \in \Pi_2^p \). We conclude that \(\Sigma_2^p \subseteq (\Sigma_2^p \cap \Pi_2^p) \).

(b) Let \(L \) be an arbitrary language in \(\text{P}^{\text{NP}} \) and let \(M \) be an oracle Turing Machine that decides \(L \) in time \(n^c \) for some constant \(c \). Fix an input \(x \). Without loss of generality we standardize \(M \) so that its oracle is \(\text{SAT} \), and all of its oracle queries are 3-CNF formulas with \(m \) variables.

We describe the behavior of two machines \(M_1 \) and \(M_2 \) that run in polynomial time; these are then converted into the circuits \(C_1 \) and \(C_2 \) that the reduction produces from \(x \). Machine \(M_1 \) simulates machine \(M \) on input \(x \), until \(M \) makes an oracle query: \(\phi \in \text{SAT} \) or \(\neg \phi \in \text{SAT} \).

At this point \(M_1 \) consults its input \(y \), and reads \(m + 1 \) bits of \(y \). If the first bit is 0, it checks if the remaining \(m \) bits are a satisfying assignment to \(\phi \); if they are it continues simulating \(M \) as if \(M \) had received a “yes” answer to its query, otherwise it rejects. If the first bit is 1, it discards the remaining \(m \) bits, and continues simulating \(M \) as if \(M \) had received a “no” answer to its query. We continue in this fashion, reading successive \((m - 1)\)-bit segments of \(y \) as (our simulation of) \(M \) encounters successive oracle queries.

We stop when \(M_1 \) has simulated \(|x|^c \) steps of \(M \), at which point it accepts.

Machine \(M_2 \) does exactly the same thing as \(M_1 \), except that it accepts at the end iff \(M \) would have accepted at this point. Note that depending on \(y \), this may or may not agree with what \(M^{\text{SAT}} \) actually does on input \(x \). However, we claim that the lexicographically first \(y \) that \(M_1 \) accepts causes \(M_2 \) to correctly simulate \(M^{\text{SAT}} \) on input \(x \). This is true because at each query \(\phi \), the lexicographically first \(m + 1 \) bits that will cause \(M_1 \) to continue its simulation are either (1) 0 followed by the lexicographically first satisfying assignment to \(\phi \) if \(\phi \in \text{SAT} \), or (2) 1 followed by all zeros if \(\phi \notin \text{SAT} \). In case (1) our simulation proceeds as if it received a “yes” answer to the query and in case (2) our simulation proceeds as if it received a “no” answer; in both cases this correctly simulates \(M^{\text{SAT}} \).

We conclude that \(M_2 \) accepts the lexicographically first \(y \) accepted by \(M_1 \) iff \(M^{\text{SAT}} \) accepts \(x \), as required.

We also should argue that the problem is in \(\text{P}^{\text{NP}} \), but this is easy, because we can do a binary search (using the NP oracle) to identify the lexicographically first \(y \) accepted by \(C_1 \), and then plug it into \(C_2 \).

(c) We argue that \text{LEX-FIRST-ACCEPTANCE} is in \(\Sigma_2^p \). Let \((C_1, C_2)\) be an instance of \text{LEX-FIRST-ACCEPTANCE}. Define the function \(f(y, y') \) to be \(C_2(y_{\text{min}}) \) where \(y_{\text{min}} \) is the lexicographically first among \(y, y' \) that \(C_1 \) accepts; or 0 if \(C_1(y) = C_1(y') = 0 \). We claim that

\[
\begin{align*}
 (C_1, C_2) \in \text{LEX-FIRST-ACCEPTANCE} & \Rightarrow \exists y \forall y' \ f(y, y') = 1 \\
 (C_1, C_2) \notin \text{LEX-FIRST-ACCEPTANCE} & \Rightarrow \exists y' \forall y \ f(y, y') = 0
\end{align*}
\]
This is easily seen by taking \(y \) to be the lexicographically first string accepted by \(C_1 \) in the first case, and \(y' \) to be the lexicographically first string accepted by \(C_1 \) in the second case. Since \textsc{lex-first-acceptance} is \(\mathsf{P}^{\mathsf{NP}} \)-complete, we conclude that \(\mathsf{P}^{\mathsf{NP}} \subseteq \mathsf{S}_2^\mathsf{P} \).

(d) By error reduction, we may assume that for every language \(L \) in \(\mathsf{MA} \) there is a language \(R \) in \(\mathsf{P} \) for which

\[
\begin{align*}
x \in L & \implies \exists y \Pr_z[(x, y, z) \in R] = 1 \\
x \not\in L & \implies \forall y \Pr_z[(x, y, z) \in R] < 2^{-|y|}.
\end{align*}
\]

We claim that

\[
\begin{align*}
x \in L & \implies \exists y \forall z (x, y, z) \in R \\
x \not\in L & \implies \exists z \forall y (x, y, z) \not\in R,
\end{align*}
\]

which implies that \(L \in \mathsf{S}_2^\mathsf{P} \) as required. The first part is obvious from the definitions. For the second part, observe that

\[
\forall y \Pr_z[(x, y, z) \in R] < 2^{-|y|}
\]

implies (by the union bound)

\[
\Pr_z[\exists y (x, y, z) \in R] < 2^{|y|}2^{-|y|} = 1.
\] (0.1)

This implies \(\exists z \forall y (x, y, z) \not\in R \) as required.

(e) Given a language \(L \in \mathsf{BPP} \), we can use strong error reduction to produce a probabilistic polynomial time TM \(M \) for which:

\[
\begin{align*}
x \in L & \implies \Pr_y[M(x, y) = 1] \geq 1 - \frac{2^{|y|/3}}{2^{|y|}} \\
x \not\in L & \implies \Pr_y[M(x, y) = 0] \geq 1 - \frac{2^{|y|/3}}{2^{|y|}}.
\end{align*}
\]

We split \(y \) into two equal-length substrings \(y = u \circ v \). Our predicate \(R \) is simply \(R(x, u, v) = M(x, u \circ v) \).

Now, if \(x \in L \), then it must be that \(\exists u \forall v R(x, u, v) = 1 \), for if not, then \(\forall u \exists v R(x, u, v) = 0 \) which implies that \(M(x, y) = 0 \) for at least \(2^{|y|/2} \geq 2^{|y|/3} \) values of \(y \), a contradiction.

Similarly, if \(x \not\in L \), then it must be that \(\exists v \forall u R(x, u, v) = 0 \), for if not, then \(\forall v \exists u R(x, u, v) = 1 \) which implies that \(M(x, y) = 1 \) for at least \(2^{|y|/2} \geq 2^{|y|/3} \) values of \(y \), a contradiction.

We conclude that \(L \in \mathsf{S}_2^\mathsf{P} \) and therefore \(\mathsf{BPP} \subseteq \mathsf{S}_2^\mathsf{P} \) as required.

Another solution is to observe that \(\mathsf{BPP} \) is contained in \(\mathsf{2-sided error MA} \) and apply the previous part!

(f) The following notation will be useful: given a circuit \(C \) with a single Boolean output, let \(\tilde{C} \) be the circuit derived from \(C \) that uses \(C \) as if it were a circuit for \(\mathsf{SAT} \) to actually find
a satisfying assignment (via the self-reducibility of SAT). If at any point in the repeated applications of C, there is an inconsistent answer, \tilde{C} outputs some fixed string, say, the all-zeros string. So, \tilde{C} has as many outputs as inputs, and $|\tilde{C}| \leq \text{poly}(|C|)$, and if C is a circuit correctly computing SAT, then \tilde{C} will correctly output a satisfying assignment if there is one.

Let L be a language in Π^p_2, so we have

$$x \in L \implies \forall y \exists z (x, y, z) \in R$$
$$x \not\in L \implies \exists y \forall z (x, y, z) \not\in R$$

for some language $R \in \text{P}$. Observe that the language $L' = \{(x, y) : \exists z (x, y, z) \in R\}$ is in NP, and so given a pair (x, y) we can use a procedure that solves SAT and actually returns a satisfying assignment if there is one to find z for which $(x, y, z) \in R$ if such a z exists.

Define R' to be the language consisting of exactly the triples (x, C, y) for which using \tilde{C}, we obtain a z for which $(x, y, z) \in R$. Notice that R' can be evaluated in polynomial time.

We are assuming that SAT has polynomial-size circuits. If $x \in L$, then there exists a circuit C (the one that computes SAT) for which for all y, \tilde{C} will successfully find a z that causes R' to accept. Thus $x \in L \implies \exists C \forall y (x, C, y) \in R'$.

If $x \not\in L$, then there is some y^* for which $\forall z (x, y^*, z) \not\in R$. Thus for all C, $(x, C, y^*) \not\in R'$, because no matter what z we find using \tilde{C}, it will not be the case that $(x, y^*, z) \in R$. Therefore $x \not\in L \implies \exists y \forall C (x, C, y) \not\in R'$. We conclude that $L \subseteq S^p_2$.

We have shown that $\Pi^p_2 \subseteq S^p_2$. Since S^p_2 is closed under complement, we also have that $\Sigma^p_2 \subseteq S^p_2$. Using part (a), we have $\Pi^p_2 = \Sigma^p_2 = S^p_2$, and so the PH collapses to $\Sigma^p_2 = S^p_2$ as required.