Reminder: you are encouraged to work in groups of two or three; however you must turn in your own write-up and note with whom you worked. You may consult the course materials and text (Papadimitriou). Please attempt all problems.

1. The following problem comes from Learning Theory, where the VC-dimension gives important information about the difficulty of learning a given concept. Given a collection \(S = \{S_1, S_2, \ldots, S_m\} \) of subsets of a finite set \(U \), the VC dimension of \(S \) is the size of the largest set \(X \subseteq U \) such that for every \(X' \subseteq X \), there is an \(i \) for which \(S_i \cap X = X' \) (we say that \(X \) is shattered by \(S \)). A Boolean circuit \(C \) that computes a function \(f : \{0, 1\}^m \times \{0, 1\}^n \rightarrow \{0, 1\} \) succinctly represents a collection \(S \) of \(2^m \) subsets of \(U = \{0, 1\}^n \) as follows: the set \(S_i \) consists of exactly those elements \(x \) for which \(C(i, x) = 1 \). Finally, the language VC-DIMENSION is the set pairs \((C, k)\) for which \(C \) represents a collection of subsets \(S \) whose VC dimension is at least \(k \).

(a) Argue that VC-DIMENSION is in \(\Sigma^p_3 \). Hint: what is the size of the largest possible set \(X \) shattered by a collection of \(2^m \) subsets?

(b) Show that VC-DIMENSION is \(\Sigma^p_3 \)-complete by reducing from QSAT₃. Hint: the universe \(U \) should be the set \(\{0, 1\}^n \times \{1, 2, 3, \ldots, n\} \). For each \(n \)-bit string \(a \), define the subset \(U_a = \{a\} \times \{1, 2, 3, \ldots, n\} \). The sets in your instance of VC-DIMENSION should each be a subset of some \(U_a \); note that the problem definition does not require that sets \(S_i \) and \(S_j \) to be different for \(i \neq j \) — indeed your reduction will probably produce many copies of the same set with different “names.”

2. Here is a new class involving alternating quantifiers: \(\mathbf{S}^P_2 \) (the “S” stands for “symmetric alternation”). A language \(L \) is in \(\mathbf{S}^P_2 \) if and only if there is a language \(R \in \mathbf{P} \) for which

\[
\begin{align*}
x \in L & \Rightarrow \exists y \forall z \ (x, y, z) \in R \\
x \notin L & \Rightarrow \exists z \forall y \ (x, y, z) \notin R
\end{align*}
\]

where as usual \(|y| = \text{poly}(|x|) \) and \(|z| = \text{poly}(|x|) \). To make sense of this definition it is useful to think of \(R \) as defining for each \(x \) a 0/1 matrix \(M_x \) whose rows are indexed by \(y \) and whose columns are indexed by \(z \). Entry \((y, z) \) of matrix \(M_x \) is 1 if \((x, y, z) \in R \) and 0 otherwise. Now, the definition says that \(x \in L \) if there is an all-ones row in \(M_x \) and \(x \notin L \) if there is an all-zeros column in \(M_x \) (and it is clear that these configurations are mutually exclusive).

(a) Argue that \(\mathbf{S}^P_2 \subseteq (\Sigma^P_2 \cap \Pi^P_2) \).

(b) Prove that \(\mathbf{P}^{\mathbf{NP}} \subseteq \mathbf{S}^P_2 \). Hint (from Goldreich-Zuckerman): Let \(M \) be a deterministic OTM. Call a string \(T \) a valid transcript of \(M \) on input \(x \) if it contains a sequence of
pairs \((q_i, a_i)\) where \(q_i\) is an oracle query and \(a_i \in \{\text{yes, no}\}\), and it correctly describes the step-by-step computation of \(M\) on input \(x\) in which oracle query \(q_i\) is answered by \(a_i\). We say that a valid transcript is supported by a sequence \(S\) of pairs \((q_j, w_j)\) if for every \(a_i = \text{yes}\), there is some \(j\) for which \(q_i = q_j\) and \(w_j\) is an \(\text{NP}\) witness for query \(q_i\). We say that a valid transcript is consistent with a sequence \(S\) of pairs \((q_j, w_j)\) if for every \(a_i = \text{no}\), there is no \(j\) for which \(q_i = q_j\) and \(w_j\) is a \(\text{NP}\) witness for query \(q_i\). First argue that for every \(x \in L\), there exists a pair \((T, S)\) for which \(T\) is a valid transcript of \(M\) on input \(x\) that ends with \(M\) accepting, that is supported by \(S\) and consistent with every sequence \(S'\). Similarly, for every \(x \notin L\), there exists a pair \((T, S)\) for which \(T\) is a valid transcript of \(M\) on input \(x\) that ends with \(M\) rejecting, that is supported by \(S\) and consistent with every sequence \(S'\).

(c) Prove a stronger form of the Sipser-Lautemann Theorem: \(\text{BPP} \subseteq \mathbf{S}^p_2\).

(d) Prove a stronger form of the Karp-Lipton Theorem: if \(\text{SAT}\) has polynomial-size circuits then \(\text{PH} = \mathbf{S}^p_2\).