Outline

• The Nisan-Wigderson generator
• Error correcting codes from polynomials
• Turning worst-case hardness into average-case hardness

Hardness vs. randomness

• We have shown:
 If one-way permutations exist then
 \(\text{BPP} \subseteq \cap_{f:0,1^l\rightarrow 0,1^l} \text{TIME}(2^{n^\delta}) \subseteq \text{EXP} \)
• simulation is better than brute force, but just barely
• stronger assumptions on difficulty of inverting OWF lead to better simulations…

Hardness vs. randomness

• We will show:
 If \(\textbf{E} \) requires exponential size circuits then
 \(\text{BPP} = \text{P} \)
 by building a different generator from different assumptions.
 \[\text{E} = \cup_k \text{DTIME}(2^{kn}) \]

Hardness vs. randomness

• BMY: for every \(\delta > 0\), \(G^3\) is a PRG with
 seed length \(t = m^\delta\)
 output length \(m\)
 error \(\epsilon < 1/m^d\) (all \(d\))
 fooling size \(s = m^e\) (all \(e\))
 running time \(m^c\)
• running time of simulation dominated by \(2^t\)
Hardness vs. randomness

- **BMY pseudo-random generator:**
 - one generator fooling all poly-size bounds
 - one-way-permutation is hard function
 - implies hard function in $\text{NP} \cap \text{coNP}$
- **New idea (Nisan-Wigderson):**
 - for each poly-size bound, one generator
 - hard function allowed to be in $E = \cup \text{DTIME}(2^{\text{poly}(n)})$

Comparison

<table>
<thead>
<tr>
<th>BMY: $\forall \delta > 0$ PRG G^δ</th>
<th>NW: PRG G</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed length $t = m^\delta$</td>
<td>$t = O(\log m)$</td>
</tr>
<tr>
<td>running time t^*m</td>
<td>m^δ</td>
</tr>
<tr>
<td>output length m</td>
<td>m</td>
</tr>
<tr>
<td>error $\epsilon < 1/m^\delta$ (all d)</td>
<td>$\epsilon < 1/m$</td>
</tr>
<tr>
<td>fooling size $S = m^\delta$ (all e)</td>
<td>$S = m$</td>
</tr>
</tbody>
</table>

NW PRG

- NW: for fixed constant δ, $G = \{G_n\}$ with
 - seed length $t = O(\log n)$
 - running time m^δ
 - output length m
 - error $\epsilon < 1/m$
 - fooling size $S = m$
 - Using this PRG we obtain $\text{BPP} = \text{P}$
 - to fool size n^δ use $G_{\log n}$
 - running time $O(n^\delta + n^{\delta/2})^2 = \text{poly}(n)$

NW PRG

- First attempt: build PRG assuming E contains unapproximable functions

Definition: The function family

$f = \{f_n\}, f_n: \{0,1\}^n \to \{0,1\}$

is $s(n)$-unapproximable if for every family of size $s(n)$ circuits $\{C_n\}$:

$\Pr_x[C_n(x) = f_n(x)] \leq 1/2 + 1/s(n)$.

One bit

- Suppose $f = \{f_n\}$ is $s(n)$-unapproximable, for $s(n) = 2^{O(n)}$, and in E
- a “1-bit” generator family $G = \{G_n\}$:

 $G_n(y) = y^*_f \log n(y)$

- Idea: if not a PRG then exists a predictor that computes $f_{\log n}$, with better than $1/2 + 1/s(\log n)$ agreement; contradiction.

One bit

- Suppose $f = \{f_n\}$ is $s(n)$-unapproximable, for $s(n) = 2^n$, and in E
- a “1-bit” generator family $G = \{G_n\}$:

 $G_n(y) = y^*_f \log n(y)$

 - seed length $t = \log n$
 - output length $m = \log n + 1$ (want n^δ)
 - fooling size $S = s(\log n) = n^\delta$
 - running time n^δ
 - error $\epsilon = 1/s(\log n) = 1/n^\delta < 1/m$
Many bits

- Try outputting many evaluations of f:
 \[G(y) = f(b_1(y)) \cdot f(b_2(y)) \cdot \ldots \cdot f(b_m(y)) \]

- Seems that a predictor must evaluate $f(b_i(y))$ to predict i-th bit

- Does this work?

Nearly-Disjoint Subsets

Definition: $S_1, S_2, \ldots, S_m \subset \{1 \ldots t\}$ is an (h, a) design if
- for all i, $|S_i| = h$
- for all $i \neq j$, $|S_i \cap S_j| \leq a$

Lemma: for every $\epsilon > 0$ and $m < n$ can in poly(n) time construct an
$(h = \log n, a = \epsilon \log n)$ design $S_1, S_2, \ldots, S_m \subset \{1 \ldots t\}$ with $t = O(\log n)$.

The NW generator

- $f \in \mathbb{E}$ $s(n)$-unapproximable, for $s(n) = 2^{\Theta(n)}$
- $S_1, \ldots, S_m \subset \{1 \ldots t\}$ $(\log n, a = \delta \log n/3)$ design with $t = O(\log n)$
 \[G_n(y) = f_{\log n}(y_{S_1}) \cdot f_{\log n}(y_{S_2}) \cdot \ldots \cdot f_{\log n}(y_{S_m}) \]
- $f_{\log n}$ is a fixed function with $f_{\log n}(y) = 01010010111010101110010010$
The NW generator

Theorem (Nisan-Wigderson): $G = \{G_n\}$ is a pseudo-random generator with:
- seed length $t = O(\log n)$
- output length $m = n^{\beta/3}$
- running time n^c
- fooling size $S = m$
- error $\epsilon = 1/m$

Proof (continued):
- fix bits outside of S_i to preserve advantage:
 $Pr_y[P(G_n(y), \ldots, y_{i-1}) = G_n(y)_i] > \frac{1}{2} + \epsilon/m$

Worst-case vs. Average-case

Theorem (NW): if E contains $2^{O(n)}$-unapproximable functions then $BPP = P$.

• How reasonable is unapproximability assumption?
• Hope: obtain $BPP = P$ from worst-case complexity assumption
 - try to fit into existing framework without new notion of “unapproximability”
Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan)
If \(E \) contains functions that require size \(2^{\Omega(n)} \) circuits, then \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions.

- **Proof:**
 - main tool: error correcting code

Distance and error correction

- \(C \) is an ECC with distance \(d \)
- can uniquely decode from up to \(\lfloor d/2 \rfloor \) errors

Example: Reed-Solomon

- alphabet \(\Sigma = F_q \): field with \(q \) elements
- message \(m \in \Sigma^k \)
- polynomial of degree at most \(k-1 \)
 \[p_m(x) = \sum_{i=0}^{k-1} m_i x^i \]
- codeword \(C(m) = (p_m(x))_x \in F_q \)
- rate \(k/q \)

Error-correcting codes

- **Error Correcting Code (ECC):**
 \[C : \Sigma^n \rightarrow \Sigma^k \]
 - message \(m \in \Sigma^k \)
 - received word \(R \)
 - \(C(m) \) with some positions corrupted
 - if not too many errors, can decode: \(D(R) = m \)
 - parameters of interest:
 - rate: \(k/n \)
 - distance:
 \[d = \min_{m,m'} \Delta(C(m), C(m')) \]

Distance and error correction

- can find short list of messages (one correct) after closer to \(d \) errors!

Theorem (Johnson): a binary code with distance \((\frac{1}{2} - \delta)n \) has at most \(O(1/\delta^3) \) codewords in any ball of radius \((\frac{1}{2} - \delta)n \).

Example: Reed-Solomon

- **Claim:** distance \(d = q - k + 1 \)
 - suppose \(\Delta(C(m), C(m')) < q - k + 1 \)
 - then there exist polynomials \(p_m(x) \) and \(p_{m'}(x) \) that agree on more than \(k-1 \) points in \(F_q \)
 - polynomials \(p(x) = p_m(x) \cdot p_{m'}(x) \) has more than \(k-1 \) zeros
 - but degree at most \(k-1 \)...
 - contradiction.
Example: Reed-Muller

- **Parameters:** \(t \) (dimension), \(h \) (degree)
- alphabet \(\Sigma = F_q \): field with \(q \) elements
- message \(m \in \Sigma^t \)
- multivariate polynomial of total degree at most \(h \):
 \[
p_m(x) = \sum_{i=0}^{h-1} m_i M_i
\]
 \(\{M_i\} \) are all monomials of degree \(\leq h \)

Codes and hardness

- Reed-Solomon (RS) and Reed-Muller (RM) codes are efficiently encodable
- **efficient unique decoding?**
 - yes (classic result)
- **efficient list-decoding?**
 - yes (recent result: Sudan. On problem set.)

Codes and Hardness

- Use for worst-case to average case:
 - truth table of \(f : \{0,1\}^{\log k} \rightarrow \{0,1\} \)
 - (worst-case hard)
 - \(m : 01100010 \)
 - truth table of \(f' : \{0,1\}^{\log n} \rightarrow \{0,1\} \)
 - (average-case hard)
 - \(C(m) : 01100010000010 \)

Codes and Hardness

- if \(n = \text{poly}(k) \) then
 \(f \in E \) implies \(f' \in E \)
- Want to be able to prove:
 - if \(f' \) is \(s'\)-approximable,
 then \(f \) is computable by a size \(s = \text{poly}(s') \) circuit

Codes and Hardness

- Key: circuit \(C \) that approximates \(f \) implicitly gives received word \(R \)
 \[
 R : 01101000100010
 \]
 \[
 C(m) : 01100010000010
 \]
- Decoding procedure \(D \) “computes” \(f \) exactly
 - Requires special notion of efficient decoding