Outline

- CLIQUE
- monotone circuits and problems
- Razborov's lower bound for monotone circuits computing CLIQUE

Clique

Recall...
- \(IS = \{ (G, k) \mid G \text{ is a graph with an ind. set } V' \subseteq V \text{ of size } \geq k \} \)
 (independent set = set of vertices no 2 of which are connected by an edge)
- \(IS \) is \(\text{NP} \)-complete.
- \(CLIQUE = \{ (G, k) \mid G \text{ is a graph with a clique of size } \geq k \} \)
 (clique = set of vertices every pair of which are connected by an edge)
- \(CLIQUE \) is \(\text{NP} \)-complete.
 - reduction?

Circuit lower bounds

- We think that \(\text{NP} \) requires exponential-size circuits.
- Where should we look for a problem to attempt to prove this?
- Intuition: "hardest problems" - i.e., \(\text{NP} \)-complete problems
- Formally:
 - if any problem in \(\text{NP} \) requires super-polynomial size circuits
 - then every \(\text{NP} \)-complete problem requires super-polynomial size
 - poly-time reductions can be performed by poly-size circuits using a variant of \text{CVAL} construction

Monotone problems

- monotone language: language \(L \subseteq \{0,1\}^* \) such that \(x \in L \) implies \(x' \in L \) for all \(x \preceq x' \)
 - flipping a bit of the input from 0 to 1 can only change the output from "no" to "yes" (or not at all)
- some \(\text{NP} \)-complete languages are monotone
 - e.g. \text{CLIQUE} (given as adj. matrix):
 - others: \text{HAM. CYCLE, SET COVER...}
 - but not \text{SAT, KNAPSACK...}
Monotone circuits

A restricted class of circuits:

- **monotone circuit**: circuit whose gates are ANDs (\land), ORs (\lor), but no NOTs
- can only compute monotone functions
 - monotone functions closed under AND, OR
- An interesting question: do all poly-time computable monotone functions have poly-size monotone circuits?
 - recall: true in non-monotone case

Monotone circuits

A monotone circuit for $\text{CLIQUE}_{n,k}$

- Input: graph $G = (V, E)$ as adjacency matrix, $|V| = n$
- variable $x_{i,j}$ for each possible edge (i,j)
- $\text{ISCLIQUE}(S) = \text{monotone circuit}$ that = 1 iff $S \subseteq V$ is a clique:
 $$\land_{i,j \in S} x_{i,j}$$
- $\text{CLIQUE}_{n,k}$ computed by monotone circuit:
 $$\lor_{S \subseteq V, |S| = k} \text{ISCLIQUE}(S)$$

Monotone circuits

- Size of this monotone circuit for $\text{CLIQUE}_{n,k}$:
 $$\begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} k \\ 2 \end{pmatrix}$$
- when $k = n^{1/4}$, size is approx.:
 $$\left(\frac{n}{n^{1/4}} \right)^{n^{1/4}} \left(\frac{n^{1/4}}{2} \right)^2 \approx n^{\Omega(n^{1/4})}$$
- Theorem (Razborov): monotone circuits for $\text{CLIQUE}_{n,k}$ with $k = n^{1/4}$ must have size at least $2^{\Omega(n^{1/8})}$.
- Proof: rest of lecture.

Proof idea

- "method of approximation"
- suppose C is a monotone circuit for $\text{CLIQUE}_{n,k}$
- build another monotone circuit CC that "approximates" C
- on test collection of pos/neg instances of $\text{CLIQUE}_{n,k}$
 - local property: few errors at each gate
 - global property: many errors on test collection
- Conclude: C has many gates
Notation

- input: graph $G = (V, E)$
- variable $x_{j,k}$ for each potential edge (j, k)
- $CC(X_1, X_2, \ldots X_m)$, where $X_i \subseteq V$, means:
 \[
 \text{OR}_i \text{ AND } \bigwedge_{j,k \in X_i} x_{j,k}
 \]
- e.g., $CC(X_1, X_2, \ldots X_m)$ where the X_i range over all k-subsets of V:
 - the obvious monotone circuit for $\text{CLIQUE}_{n,k}$ from a previous slide.

Building CC

- CC ("crude circuit") for circuit C defined inductively as follows:
 - CC for single variable x is just $CC((x))$
 - no errors yet!
 - CC for circuit C of form:
 \[
 \begin{array}{c}
 C \cap C
 \end{array}
 \]
 - "approximate OR" of CC for C', CC for C
 - CC for circuit C of form:
 \[
 \begin{array}{c}
 C \cup C
 \end{array}
 \]
 - "approximate AND" of CC for C', CC for C
 - last 2 steps introduce errors

Approximate OR

- $CC(X_1, X_2, \ldots X_m)$:
 - exact OR:
 \[
 CC(X_1, X_2, \ldots X_m, Y_1, Y_2, \ldots Y_m)
 \]
 - set sizes still $\leq h$
 - may be up to 2M sets, need to reduce to M
 - throw away sets? bad - many errors
 - throw away overlapping sets - better
 - throw away special configuration of overlapping sets - best

Preview

- approx. circuit $CC(X_1, X_2, \ldots X_m)$
- $n = \#$ nodes
- $k = n^{1/4} = $ size of clique
- $h = n^{1/8} = $ max size of subsets X_i
 - this is "global property" that ensures lots of errors
 - many graphs G with no k-cliques, but clique on X_i of size h
- $p = n^{1/8} \log n$
- $M = (p - 1)!h! = $ max $\#$ of subsets (so $m \leq M$)
 - critical for "local property" that ensures few errors at each gate
Sunflowers

- Definition: \((h, p)\)-sunflower is a family of \(p\) sets ("petals") each of size at most \(h\), such that intersection of every pair is a subset \(S\) (the "core").

- Lemma (Erdős-Rado): Every family of more than \(M = (p-1)^h h!\) sets, each of size at most \(h\), contains an \((h, p)\)-sunflower.

- Proof: not hard, in Papadimitriou.

Approximate OR

\[
CC(X_1, X_2, \ldots, X_m) \quad CC(Y_1, Y_2, \ldots, Y_{m'})
\]

- exact OR:
 \[
 CC(X_1, X_2, \ldots, X_m, Y_1, Y_2, \ldots, Y_{m'})
 \]
 - while \(M\) sets, find \((h, p)\)-sunflower; replace with its core ("pluck")

- approximate OR:
 \[
 CC(\text{pluck}(X_1, X_2, \ldots, X_m, Y_1, Y_2, \ldots, Y_{m'}))
 \]

Approximate AND

\[
CC(X_1, X_2, \ldots, X_m) \quad CC(Y_1, Y_2, \ldots, Y_{m'})
\]

- exact AND:
 \[
 CC(\{(X_i \cup Y_j) : 1 \leq i \leq m', 1 \leq j \leq m''\})
 \]
 - some sets may be larger than \(h\)
 - discard sets larger than \(h\)
 - may be more than \(M\) sets (up to \(M^2\))
 - while \(M\) sets, find \((h, p)\)-sunflower; replace with its core ("pluck")

- approximate AND:
 \[
 CC(\text{pluck}(\{(X_i \cup Y_j) : |X_i \cup Y_j| \leq h\}))
 \]

Test collection

- Positive instances: all graphs \(G\) on \(n\) nodes with a \(k\)-clique and no other edges.

- Negative instances:
 - \(k-1\) colors
 - color each node uniformly at random with one of the colors
 - edge \((x, y)\) iff \(x, y\) different colors
 - no \(k\)-clique
 - include graphs in their multiplicities (makes analysis easier)
Analysis

• “false positive”: negative example; gate is supposed to output 0, but our CC outputs 1
• Lemma: each approximation step introduces at most $M^2(k-1)^n/2^n$ false positives.
• Proof:
 - case 1: OR
 \[CC(X_1, X_2, \ldots, X_m) \leq CC(Y_1, Y_2, \ldots, Y_m) \]
 \[CC(\text{pluck}(X_1, X_2, \ldots, X_m, Y_1, Y_2, \ldots, Y_m)) \]
 - given "plucking": replace $Z_1 \ldots Z_p$ w/ Z
 - bad case: clique on Z, each petal missing at least one edge

Analysis

- given "plucking": replace $Z_1 \ldots Z_p$ w/ Z
- probability repeated color in each Z_i; no repeated colors in Z
- event $R(S)$ = repeated colors in S
\[Pr[R(Z_1) \land R(Z_2) \land \ldots \land R(Z_p) \land \neg R(Z)] \]
\[\leq Pr[R(Z_1) \land R(Z_2) \land \ldots \land R(Z_p) \land \neg R(Z)] \]
\[\leq \prod_i Pr[R(Z_i) \mid \neg R(Z)] \] (defn of conditional probability)
\[= \prod_i Pr[R(Z_i)] \] (independent events given no repeats in Z)
\[\leq \prod_i Pr[R(Z_i)] \] (obviously larger)

Analysis

- given "plucking": replace $Z_1 \ldots Z_p$ w/ Z
- trying to bound $\prod_i Pr[R(Z_i)]$
- for every pair of vertices in Z_i, probability of same color = $1/(k-1)$
- $R(Z_i) \leq (h \choose 2)/(k-1) \leq 1/2$
- therefore $\prod_i Pr[R(Z_i)] \leq (1/2)^n$
- # neg. examples = $(k-1)^n$
- # false positives in given plucking step $\leq (1/2)^n(k-1)^n$
- at most M plucking steps
- # false positives at OR $\leq M(1/2)^n(k-1)^n$

Analysis

• case 2: AND
\[CC(X_1, X_2, \ldots, X_m) \leq CC(Y_1, Y_2, \ldots, Y_m) \]
\[CC(\text{pluck}(\{X \cup Y \mid |X \cup Y| \leq h\})) \]
- discarding sets $(X \cup Y)$ larger than h
can only make circuit accept fewer examples - no false positives here
- up to M^2 pluckings
- each introduce at most $(1/2)^n(k-1)^n$ false positives (previous slides)
- # false pos.'s at AND $\leq M^2(1/2)^n(k-1)^n$
Analysis

- “false negative”: positive example; gate is supposed to output 1, but our CC outputs 0.
- Lemma: each approximation step introduces at most
 \[M^2 \left(\frac{n-h-1}{k-h-1} \right) \]
 false negatives.
- Proof:
 - Case 1: OR
 - plucking can only make circuit accept more examples, no false negatives here.

Analysis

- case 2: AND
 \[CC(X_1, X_2, \ldots, X_n) \quad CC(Y_1, Y_2, \ldots, Y_m) \]
 \[CC(\text{pluck}(\{ X_i \cup Y_j : |X_i \cup Y_j| \leq h \})) \]
 - discarding set \(Z = (X_i \cup Y_j) \) larger than \(h \) may introduce false negatives
 - any clique that includes \(Z \) is a problem: there are at most
 \[\binom{n-|Z|}{k-|Z|} = \binom{n-h-1}{k-h-1} \]
 such positive examples, since \(|Z| > h \)
 - at most \(M^2 \) such deletions; we’ve seen plucking doesn’t matter.

Analysis

- Lemma: every non-trivial CC outputs 1 on at least \(\frac{1}{3} \) of the negative examples.
- Proof:
 - CC contains some set \(X \) of size at most \(h \)
 - accepts all negative examples with different colors in \(X \)
 - from before: probability of two nodes in \(X \) same color = \(1/(k-1) \)
 - probability \(X \) has repeated colors = \(R(X) \leq \binom{h}{2}/(k-1) \leq \frac{1}{2} \)
 - probability over negative examples that CC accepts is at least \(\frac{1}{2} \).

Analysis

- First possibility: trivial CC, rejects all positive examples
 - every positive example must have been false negative at some gate
 - number of gates must be at least:
 \[\binom{n}{k}/M^2 \binom{n-h-1}{k-h-1} \]
- Second possibility: CC accepts at least \(\frac{1}{3} \) of negative examples
 - every negative example must have been false positive at some gate
 - number of gates must be at least:
 \[\frac{1}{2}(k-1)^n/M^2 2^{-p}(k-1)^n \]
 - Both quantities at least \(2^{O(n^{1/3})} \).
Conclusions

- An interesting question: do all poly-time computable monotone functions have poly-size monotone circuits?
 - recall: true in non-monotone case

- if yes, then we would have just proved $P \neq NP$ (why?)

- unfortunately, answer is no.
- Razborov later showed similar (super-polynomial) lower bound for MATCHING, which is in P...