Introduction

Power from an unexpected source?

- we know $\mathbf{P} \neq \mathbf{EXP}$, which implies no poly-time \textit{algorithm for Succinct CVAL}
- poly-size Boolean \textit{circuits for Succinct CVAL} ??

...and the depths of our ignorance:

- Does \mathbf{NP} have linear-size, log-depth Boolean circuits ??

Outline

- Boolean circuits and formulae
- uniformity and advice
- the \mathbf{NC} hierarchy and parallel computation
- the quest for circuit lower bounds
- a lower bound for formulae

Boolean circuits

- \textbf{circuit C}
 - directed acyclic graph
 - nodes: AND (\land); OR (\lor); NOT (\neg); variables $x_1, x_2, x_3, \ldots, x_n$

- C computes function $f: \{0,1\}^n \rightarrow \{0,1\}$ in natural way
 - identify C with fn. f it computes
- \textbf{size} = # gates
- \textbf{depth} = longest path from input to output
- \textbf{formula (or expression)}: graph is a tree

Circuit families

- \textbf{every function} $f: \{0,1\}^n \rightarrow \{0,1\}$ computable by a circuit of size at most $O(n2^n)$
 - AND of n literals for each x such that $f(x) = 1$
 - OR of up to 2^n such terms
- \textbf{circuit works for specific input length} \textbf{we're using} $f: \Sigma^* \rightarrow \{0,1\}$
- \textbf{circuit family}: a circuit for each input length $C_1, C_2, C_3, \ldots = \{C_n\}$
 - $\{C_n\}$ computes f iff for all x
 - $C_{|x|}(x) = f(x)$
 - $\{C_n\}$ decides L associated with f
Connection to TMs

- TM M running in time \(t(n) \) decides language \(L \)
- can build circuit family \(\{C_n\} \) that decides \(L \)
 - size of \(C_n = O(t(n)^2) \)
 - Proof: CVAL construction.
- \(L \in P \) implies family of polynomial size circuits that decide \(L \)
- other direction?
- poly-size circuit family:
 - \(C_n = (x_1 \lor \neg x_2) \) if \(M_n \) halts
 - \(C_n = (x_1 \land \neg x_3) \) if \(M_n \) loops
- decides (unary version of) HALT!
- oops...

Uniformity

- Strange aspect of circuit family:
 - can “encode” (uncomputable) information in family specification
- solution: uniformity - require specification is simple to compute
 - circuit family \(\{C_n\} \) is logspace uniform iff TM \(M \) outputs \(C_n \) on input \(1^n \) and runs in \(O(\log n) \) space
- Theorem: \(P = \) languages decidable by logspace uniform, polynomial-size circuit families \(\{C_n\} \)
- Proof:
 - already saw \((\Rightarrow)\)
 - \((\Leftarrow)\) on input \(x \), generate \(C_{|x|} \), evaluate it and accept iff output = 1

TM’s that take advice

- family \(\{C_n\} \) without uniformity constraint is non-uniform
- regard “non-uniformity” as a limited resource just like time, space, as follows:
 - add read-only “advice” tape to TM \(M \)
 - \(M \) decides \(L \) with advice \(A(n) \) iff \(M(x, A(|x|)) \) accepts \(\iff x \in L \)
 - note: \(A(n) \) depends only on \(|x| \)
 - \(L \) in \(\text{TIME}(t(n))/f(n) \) iff
 - exists \(A(n) \) s.t. \(|A(n)| \leq f(n) \)
 - TM \(M \) decides \(L \) with advice \(A(n) \)
- most important such class:
 \(P/\text{poly} = \bigcup_k \text{TIME}(n^k)/n^k \)

TM’s that take advice

- Theorem: \(L \in P/\text{poly} \) iff \(L \) decided by family of polynomial size circuits.
- Proof:
 - \((\Leftarrow)\) \(C_n \) from CVAL construction; hardwire advice \(A(n) \)
 - \((\Rightarrow)\) define \(A(n) = \) description of \(C_n \); on input \(x \), TM simulates \(C_n(x) \)
- Believe \(\text{NP} \not\subset P \)
 - equivalent: “\(\text{NP} \) does not have uniform, polynomial-size circuits”
- Even believe \(\text{NP} \not\subset P/\text{poly} \)
 - equivalent: “\(\text{NP} \) does not have polynomial-size circuits”
 - implies \(P \neq \text{NP} \)
 - many believe: best hope for \(P \neq \text{NP} \)
Parallelism

- uniform circuits allow refinement of polynomial time:

\[\text{circuit} \quad \text{depth} = \text{parallel time} \]

\[\text{size} = \text{parallel work} \]

- the NC ("Nick's Class") hierarchy (of logspace uniform circuits):
 \[\text{NC}_k = O(\log^k n) \text{ depth, } \text{poly}(n) \text{ size} \]

\[\text{NC} = \bigcup_k \text{NC}_k \]

- captures "efficiently parallelizable problems"
- not realistic? overly generous
- OK for proving non-parallelizable

Matrix multiplication

\[n \times n \quad \text{matrix} A \quad n \times n \quad \text{matrix} B = n \times n \quad \text{matrix} AB \]

- what is the parallel complexity of this problem?
 - work = poly(n)
 - time = log^k(n)?
 - which k?

Matrix multiplication

- two details
 - arithmetic matrix multiplication...
 \[A = (a_{i,j}) \quad B = (b_{i,j}) \]
 \[(AB)_{i,j} = \sum_k (a_{i,k} \times b_{k,j}) \]
 - vs. Boolean matrix multiplication:
 \[A = (a_{i,j}) \quad B = (b_{i,j}) \]
 \[(AB)_{i,j} = \vee_k (a_{i,k} \land b_{k,j}) \]
- single output bit: on input \(A, B, (i, j) \) output \((AB)_{i,j} \)

- Boolean Matrix Mult. is in NC^1
 - level 1: compute \(n \) ANDS: \(a_{i,k} \land b_{k,j} \)
 - next \(\log n \) levels: tree of ORS
 - \(n^2 \) subtrees for all pairs \((i, j) \)
 - select correct one and output

Boolean formulas and NC^1

- Previous circuit is actually a formula. This is no accident:
 \[\text{Theorem: } L \in \text{NC}^1 \text{ iff decidable by uniform family of Boolean formulas.} \]
 \[\text{Proof:} \]
 - \((\Rightarrow) \) convert NC^1 into formula
 \[^{\leftarrow} \]
 - recursively:
 \[^{\Rightarrow} \]
 - note: logspace transformation (stack depth \(\log n \), stack record 1 bit - "left" or "right")
Boolean formulas and NC\(_1\)

- \((\Leftarrow)\) convert formula of size \(n\) into formula of size \(O(\log n)\)
 - note: size \(\leq 2^{\text{depth}}\), so new formula has \(\text{poly}(n)\) size
 - key transformation:

```
C

D
```

- \(D\) any minimal subtree with size at least \(n/3\) (so size \(D\) \(\leq 2n/3\))
- \(T(n) = \max\) depth of size \(n\) formula
- \(C_2, D\) all size \(\leq 2n/3\)
- \(T(n) \leq T(2n/3) + 3 \Rightarrow T(n) \leq O(\log n)\)

Relation to other classes

- Clearly \(\text{NC} \subset \text{P}\)
 - recall \(\text{P} = \text{uniform poly-size circuits}\)
- \(\text{NC}_1 \subset \text{L}\)
 - on input \(x\), compose logspace algorithms for: generating \(C_{|x|}\); converting to formula; \(\text{FVAL}\)
- \(\text{NL} \subset \text{NC}_2\): \(\text{S-T-CONN} \in \text{NC}_2\)
 - given \(G = (V, E), s, t\)
 - \(A\) = adjacency matrix w/ self-loops
 - \((A^2)_{ij} = 1\) iff path of length \(\leq 2\) from node \(i\) to node \(j\)
 - \((A^n)_{ij} = 1\) iff path of length \(\leq n\) from node \(i\) to node \(j\)
 - compute with depth \(\log n\) tree of Boolean matrix multiplications, output entry \(s, t\)
 - \(\log^2 n\) depth total

NC vs P

- can every efficient algorithm be efficiently parallelized?
 \(\text{NC} \not\subset \text{P}\)
- \(\text{P}\)-complete problems least-likely to be parallelizable
 - if \(\text{P}\)-complete problem is in \(\text{NC}\), then \(\text{P} \subseteq \text{NC}\)
 - Why? we use logspace reductions to show problem \(\text{P}\)-complete; \(\text{L} \in \text{NC}\)

- can every uniform, poly size Boolean circuit family be converted into a uniform, poly size Boolean formula family?
 \(\text{NC}_1 \not\subset \text{P}\)

Lower bounds

- Recall: "\(\text{NP}\) does not have polynomial-size circuits" (\(\text{NP} \not\subset \text{P/poly}\) implies \(\text{P} \neq \text{NP}\)
- major goal: prove lower bounds on (non-uniform) circuit size for problems in \(\text{NP}\)
 - believe exponential
 - super-polynomial enough for \(\text{P} \neq \text{NP}\)
 - best bound known: \(4.5n\)
 - don't even have super-polynomial bounds for problems in \(\text{NEXP}\)
- lots of work on lower bounds for restricted classes of circuits
 - we'll see two such lower bounds: for formulas + monotone circuits
Shannon's counting argument

- amazing/frustrating fact: almost all functions require huge circuits
- \(B(n) = 2^e \approx \# \text{fns. } f: \{0,1\}^n \to \{0,1\} \)
- \# functions computable by circuits with \(n \) inputs + size \(s \):
 - at most \(s \) circuits with \(n \) inputs + size \(s \), which is at most \(s^s \) gates
 \[C(n, s) = ((n+3)s^2)^s \]
 \(n+3 \) gate types, 2 inputs per gate
- if \(s < 2^n/cn \), \(C(n, s) \ll B(n) \)
- most functions require circuits of size \(\Omega(2^n/n) \)
- same argument: most fns. require formulas of size \(\Omega(2^n/n) \)

Andreev function

- best lower bound for formulas:
- Theorem (Andreev, Hastad 93): the function described below requires \((\land, \lor, \neg)\) formulas of size at least \(\Omega(n^{3-o(1)}) \).

\[\Omega(n^{3-o(1)}) \]

\[y \]

\[\text{selector} \]

\[\text{XOR} \]

\[\text{XOR} \]

n-bit string \(y \)

log \(n \) copies; \(n/\log n \) bits each

the Andreev function \(A \)

Random restrictions

- key idea: given function \(f: \{0,1\}^n \to \{0,1\} \), restrict by \(\rho \) to get \(f_\rho \)
- \(\rho \) sets some variables to 0/1, others remain free
- \(R(n, e_n) = \text{set of restrictions that leave } e_n \text{ variables free} \)
- \(L(f) = \text{smallest } (\land, \lor, \neg) \text{ formula computing } f \) (leaf-size)
- observation:
 \[E_{\rho \in R(n, e_n)} [L(f_\rho)] \leq \epsilon L(f) \]
 - each leaf survives with probability \(\epsilon \)
- may shrink more...
- propagates constants

Hastad's shrinkage result

- Lemma (Hastad 93): for all \(f \)
 \[E_{\rho \in R(n, e_n)} [L(f_\rho)] \leq O(\epsilon^{2-o(1)} L(f)) \]

- Proof of theorem:
 - Recall: there exists a function \(h: \{0,1\}^{n \log n} \to \{0,1\} \) s.t. \(L(h) = n/\log n \)
 - hardwire truth table of that function into \(y \) to get \(A^*(x) \)
 - apply random restriction from \(R(n, m = 2\log n \log \log n) \) to \(A^*(x) \)
 - probability given XOR is killed by restriction:
 \[(1 - 1/\log n)^m \leq 1/\log^2 n \]
 - probability even one of XORs is killed by restriction:
 \[\log n (1/\log n) = 1/\log n < \frac{1}{2} \]
The lower bound

- Proof of theorem (continued):
 - probability even one of XORs is killed by restriction:
 \[\log n(1/\log^2 n) = 1/\log n \cdot 1/2. \]
 - with probability at least \(\frac{1}{2} \),
 \[L(A^*_p) \leq 2 E_{p \leftarrow R(n, m_0)}[L(A^*_p)] \]
 - for some restriction \(p \) all XORs survive and above inequality holds
 - if all XORs survive, can restrict formula further to compute hard function \(h \) (may need to add \(\neg \)'s)
 \[
 L(h) = \frac{n}{\log \log n} L(A^*_p)
 \leq 2E_{p \leftarrow R(n, m_0)}[L(A^*_p)] \leq O((m/n)^{2-o(1)} L(A^*))
 \leq O((\log \log n/n)^{2-o(1)} L(A^*))

 - implies \(\Omega(n^{3-o(1)}) \leq L(A^*) \leq L(A) \).