Outline

- Decoding Reed-Muller codes
- Turning worst-case hardness into average-case hardness
- Extractors
- Trevisan's extractor
- RL and undirected STCONN

Decoding RM

One key property:

If \(p \) has total degree at most \(h \), then \(p_{\parallel} \) has degree at most \(h \)

advantage: \(p_{\parallel} \) is a univariate polynomial (not multivariate)

Example:
- \(p(x_1, x_2) = x_1^2x_2 + x_2^2 \)
- \(L_1(z) = z + 1 \)
- \(L_2(z) = z \)
- \(p_{\parallel}(z) = (z+1)^2z + z^2 = 2z^3 + 2z^2 + z \)

Decoding RM

Second key property:

If pick \(a, b \) randomly in \((F_q) \) then points in the vector

\((az + b) \) \(z \in F_q \)

are pairwise independent

Meaning of pairwise independent:

for all \(w, z \in F_q, u, v \in (F_q) \)

\(\Pr_{a,b}[L(w) = u \mid L(z) = v] = 1/q^t \)

every pair of points on \(L \) behaves just as if it was picked independently
Decoding RM

- Use random lines
- Given received word $R:(F_q)^t \rightarrow F_q$

- $\frac{\text{fraction of errors } \Delta(C(m), R)}{\text{total deg. } h} < \delta$
- $C(m) = p(x)$ is poly w/ total deg. h
- decode one symbol $b \in (F_q)^t$:
 - pick a randomly in $(F_q)^t$
 - q pairs $(z, R(az + b))$ for $z \in F_q$
 - each point $az + b$ random in $(F_q)^t$
 - $E[\text{# errors hit}] < \delta q$
 - $\Pr[\text{# errors hit } > 4\delta q] < \frac{1}{t}$
 - try: find degree h univariate poly r
 # z for which $r(z) = R(az + b) \leq 4\delta q$

5/8/2003 CS 151 Lecture 10 5

Local decodability

- Amazing property of decoding method:
 $R: \begin{array}{cccccccc}
 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
 \end{array}$
 $C(m): \begin{array}{cccccccc}
 \end{array}$

- Local decodability: each symbol of $C(m)$ decoded by looking at small number of symbols in R
 - small decoding circuit D
 - small circuit computing R
 - implies small circuit computing $C(m)$

5/8/2003 CS 151 Lecture 10 7

Concatenation

- Problem: symbols of F_q rather than bits
- Solution: encode each symbol with binary code
 - our choice: RM with degree $h \leq 1$, # variables $t = \log q$
 - Schwartz-Zippel: distance = $\frac{1}{h}$
 $C(m): \begin{array}{cccccccc}
 5 & 2 & 7 & 1 & 2 & 9 & 0 & 3 \\
 \end{array}$
 $R: \begin{array}{cccccccc}
 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
 \end{array}$

- decoding:
 - whenever would have accessed symbol i of received word, decode binary code first, then proceed

5/8/2003 CS 151 Lecture 10 8
Setting parameters

- Recall we want: if f' is s'-approximable, then
 \[f: (0,1)^{\log k} \rightarrow \{0,1\} \]
 is computable by a size $s = \text{poly}(s')$ circuit
 - view (truth table of) f' as encoding of (truth table of) f
 - polynomial blow-up: $f \in E \Rightarrow f' \in E$

- outer code: RM with parameters
 - field size $q = \log^2 k$
 - degree $h = \log^2 k$
 - dimension $t = \log k/(\log \log k)$

- inner code: RM with parameters
 - field size $q' = 2$
 - degree $h' = 1$
 - dimension $t' = \log q$

- Verify:
 - # outer coefficients $(h+t \text{ choose } t) > k$
 - block length $n = q'q = \text{poly}(k)$

- Conclude: $f \in E \Rightarrow f' \in E$

Decoding

- suppose f' is s'-approximable
 - circuit of size s' computes received word with agreement $\frac{1}{2} + 1/s'$
 - at least $s'/2$ "inner" recvd' words have agreement $\frac{1}{2} + 1/(2s')$
 - Johnson Bound: at most $O(s^2)$ inner codewords with this agreement
 - find by brute force: time $= q$
 - pick random one from list for each symbol
 - result is "outer" recvd word with agreement $1/s'^3$

- $f: (0,1)^{\log k} \rightarrow \{0,1\}$
 \[
 \begin{bmatrix}
 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
 \end{bmatrix}
 \]
 \[
 f': (0,1)^{\log n} \rightarrow \{0,1\}
 \]
 \[
 \begin{bmatrix}
 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
 \end{bmatrix}
 \]

- "outer" recvd word with agreement $1/s'^3$
 - can only uniquely decode from $< \frac{1}{2}$
 agreement (since rel. distance < 1)
 - our agreement $< \frac{1}{2}$
 - analog of Johnson Bound for q-ary codes: small number of codewords with agreement $1/s'^3$
 - can efficiently find this list!
 - same decoding strategy: reduce to RS list-decoding
 - list-decoding of RS: homework prob.
Decoding

- Final result: short list of circuits

\[D_1 \xrightarrow{i} R \xrightarrow{(w_1)} \]

\[D_2 \xrightarrow{i} R \xrightarrow{(w_2)} \]

\[D_3 \xrightarrow{i} R \xrightarrow{(w_3)} \]

- Size: \(\text{poly}(q) \cdot \text{poly}(s') = \text{poly}(\log k, s') \)
- One computes \(f \) exactly!
- Conclude: if \(f' \) is \(s' \)-approximable, then \(f \) is computable by a size \(s = \text{poly}(s') \) circuit

Putting it all together

- Theorem (IW, STV): If \(E \) contains functions that require size \(2^{\Omega(n)} \) circuits, then \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions.
 - Proof: let \(f = (f_i) \) be such a function that requires size \(s = 2^{2n} \) circuits
 - Define \(f' = (f_i^*) \) be just-described encoding of (truth table of) \(f \)
 - Just showed: if \(f' \) is \(s' = 2^{3n} \)-approximable, then \(f \) is computable by size \(s = \text{poly}(s') = 2^{kn} \) circuit, contradiction.
- Theorem (NW): if \(E \) contains \(2^{\Omega(n)} \)-unapproximable functions then \(\text{BPP} = \text{P} \).
- Theorem (IW): \(E \) requires exponential circuits \(\Rightarrow \text{BPP} = \text{P} \).

Extractors

- PRGs: can remove randomness from algorithms
 - Based on unproven assumption
 - Polynomial slow-down
 - Not applicable in other settings
- Question: can we use "real" randomness?
 - Physical source
 - Imperfect - biased, correlated
- "Hardware" side
 - What physical source? (ask physicists...)
- "Software" side
 - What is the minimum we need from the physical source?

Extractors

- Imperfect sources:
 - "Stuck bits": \(\begin{array}{cccc} 1 & 1 & 1 & 1 \end{array} \)
 - "Correlation": \(\begin{array}{cccc} * & * & * & * \end{array} \)
 - "More insidious correlation": \(\begin{array}{cccc} \text{perfect squares} \end{array} \)
- Specific ways to get independent unbiased random bits
- Assume don't know details of physical source
- General model capturing all of these? (yes: min-entropy)
- Universal procedure for all imperfect sources? (yes: extractors)
Min-entropy

- General model of physical source with \(k < n \) bits of hidden randomness

- Definition: random variable \(X \) on \(\{0,1\}^n \) has **min-entropy**
 \[
 \min_x -\log(\Pr[X = x])
 \]
- min-entropy \(k \) implies no string has weight more than \(2^{-k} \)
- convex combination of sources in picture

Extractor

- Extractor: universal procedure for “purifying” imperfect source

- \(E \) is efficiently computable
- truly random seed as catalyst
- output fools all circuits \(C \):
 \[
 |\Pr_Z[C(z) = 1] - \Pr_{x,y}(C(E(x, y)) = 1)| \leq \epsilon
 \]
- \(E(X, U_1), U_m \) \(\epsilon \)-close \((L_1 \text{ dist} \leq 2\epsilon) \)

Extractors

- Notice similarity to PRGs
 - output of PRG fools all efficient tests
 - Output of extractor fools all tests

- Using extractors
 - use output in place of randomness in any application
 - alters probability of any outcome by at most \(\epsilon \)

- Main motivation:
 - use output in place of randomness in algorithm
 - how to get truly random seed?
 - enumerate all seeds, take majority

- Goals: good: best:
 - short seed \(O(\log n) \) \(\log n + O(1) \)
 - long output \(m = k^{(1)} \) \(m = k + O(1) \)
 - many \(k \)’s \(k = n^{(1)} \) any \(k = k(n) \)
- random function for \(E \) achieves best!
 - but we need explicit constructions
 - usually complex + technical
 - optimal extractors still open
Trevisan extractor

- Insight: use NW generator with source string in place of hard fn.
 - this works (!)
 - proof slightly different, easier

- Ingredients:
 - error-correcting code
 \[C: \{0,1\}^n \rightarrow \{0,1\}^t \]
 - distance \(d = \frac{1}{2}m \cdot n'\), \(n' = \text{poly}(n)\)
 - \((\log n, \alpha = \delta \log n/3) \) design:
 \[S_1, S_2, \ldots, S_m \subseteq \{1, \ldots, t = O(\log n)\} \]

\[E(x, y) = C(x)[y_{|S_1}] \cdot C(x)[y_{|S_2}] \cdot \ldots \cdot C(x)[y_{|S_m}] \]

\[C(x) = \begin{bmatrix} 01010010111101011011001010 \end{bmatrix} \]

\[\text{seed y} \]

- Theorem (T): \(E \) is an extractor for min-entropy \(k = n^3 \), with
 - output length \(m = k^{1/3} \)
 - seed length \(t = O(\log n) \)
 - error \(\epsilon \leq 1/m \)

- Proof (assumed \(X \subseteq \{0,1\}^n \))
 - assume fails to \(\epsilon \)-pass statistic test \(C \)
 - \(|Pr_{z}[C(z) = 1]; \text{Pr}_{x,y}[C(E(x, y))] = 1]| > \epsilon \)
 - distinguisher \(C \Rightarrow \text{predictor} P \):
 \[\text{Pr}_{x,y}[P(E(x, y)) = E(x, y)] > \frac{1}{3} + \epsilon/(2m) \]

Trevisan Extractor

\[E(x, y) = C(x)[y_{|S_1}] \cdot C(x)[y_{|S_2}] \cdot \ldots \cdot C(x)[y_{|S_m}] \]

\[C(x) = \begin{bmatrix} 01010010111101011011001010 \end{bmatrix} \]

\[\text{seed y} \]

- Proof (continued):
 - for at least \(\epsilon/2 \) of \(x \in X \) we have:
 \[Pr_{y}[P(E(x, y)_{1 \ldots t}) = E(x, y)] > \frac{1}{3} + \epsilon/(2m) \]
 - fix bits outside of \(S_i \), to preserve advantage
 \[Pr_{y}[P(E(x; w, y_{1 \ldots t}) = C(x)[y_{1 \ldots t}] > \frac{1}{3} + \epsilon/m \]
 - as vary \(y' \), for \(j \neq i \) \(j \)-th bit varies over only \(2^t \) values
 - build up to (m-1) tables of \(2^t \) values to supply \(E(x; w, y')_{1 \ldots t-1} \)

Trevisan Extractor

\[E(x, y) = C(x)[y_{|S_1}] \cdot C(x)[y_{|S_2}] \cdot \ldots \cdot C(x)[y_{|S_m}] \]

\[C(x) = \begin{bmatrix} 01010010111101011011001010 \end{bmatrix} \]

\[\text{seed y} \]

- Proof (continued):
 - (m-1) tables of size \(2^t \) constitute a description of a string that has
 \[\frac{1}{3} + \epsilon/(2m) \] agreement with \(C(x) \)
 - \(\# x \) with such a description?
 - \[\exp((m-1)2^n) = \exp(k^{2/3}) \] strings
 - Johnson Bound: each string accounts for at most \(O(m^3) x \)'s
 - total \(\# : O(m^3) \exp(k^{2/3}) \ll 2^k(\epsilon/2) \)
 - contradiction.
Strong error reduction

- **L ∈ BPP if there is a p.p.t. TM M:**
 - \(x \in L \Rightarrow \Pr[M(x,y) \text{ accepts}] \geq 2/3 \)
 - \(x \notin L \Rightarrow \Pr[M(x,y) \text{ rejects}] \geq 2/3 \)

- **Want:**
 \(x \in L \Rightarrow \Pr[M(x,y) \text{ accepts}] \geq 1 - 2^{-k} \)
 \(x \notin L \Rightarrow \Pr[M(x,y) \text{ rejects}] \geq 1 - 2^{-k} \)

- **We saw:** repeat \(O(k) \) times
 - \(n = O(k) \cdot |y| \) random bits; \(2^{-k} \) bad

- **Better:**
 - \(E \text{ ext. for } k = |y|^3 \cdot n^2, \varepsilon < 1/6 \)
 - \(\text{pick } w \in \{0,1\}^n \), run \(M(x, E(w, z)) \) for all \(z \in \{0,1\}^n \), take majority
 - \(w \) "bad" if \(\text{maj}_M(x, E(w, z)) \) wrong
 \(|\Pr[M(x,E(w,z)=b)-\Pr[M(x,y)=b]| \geq 1/6 \)
 - extractor property: \(\leq 2^{-k} \) bad \(w \)
 - \(n \) random bits; \(2^{-k} \) bad

RL

- **Recall: probabilistic Turing Machine**
 - deterministic TM with additional tape for "coin flips"

- **RL (Random Logspace)**
 - \(L \in RL \) if there is a probabilistic logspace TM \(M \):
 - \(x \in L \Rightarrow \Pr[M(x,y) \text{ accepts}] \geq 1/2 \)
 - \(x \notin L \Rightarrow \Pr[M(x,y) \text{ rejects}] \geq 1 \)
 - important detail #1: only allow one-way access to coin-flip tape
 - important detail #2: explicitly require to run in polynomial time

- \(L \subseteq RL \subseteq NL \subseteq \text{TIME}(\log^2 n) \)
- **Theorem (SZ):** \(RL \subseteq \text{TIME}(\log^{3/2} n) \)

Undirected STCONN

- **Recall:** STCONN is NL-complete.
- **Undirected STCONN:** given an **undirected** graph \(G = (V, E) \), nodes \(s, t \), is there a path \(s \rightarrow t \)
- **Theorem:** \(\text{USTCONN} \in RL \)

- **Proof sketch:** (in Papadimitriou)
 - add self-loop to each vertex (technical reasons)
 - start at \(s \), take a random walk for \(2|V||E| \) steps, accept if see \(t \)
 - Lemma: expected return time for any node \(i \) is \(2|E|/d_i \)
 - suppose \(s = v_1, v_2, ..., v_n = t \) is a path
 - expected time from \(v_i \) to \(v_{i+1} \)
 \((d/2)(2|E|/d) = |E| \)
 - expected time to reach \(v_n \) is \(|V||E| \)
 - \(\Pr[\text{fail reach } t \text{ in } 2|V||E| \text{ steps}] \leq 1/2 \)