CS 151: Complexity Theory (Spring 2023)
Instructor: Chris Umans
Office: Annenberg 311
Times: Tu/Th 1:00-2:25 in Annenberg 213
TAs:
Emile Anand and Joe Slote
Office hours:
- Tuesdays 8-9pm in Annenberg 213 (Emile)
- Wednesdays 1:30-2:30 pm in Annenberg 311 (Chris)
- Wednesdays 7:30-8:30pm in Annenberg 213 (Joe)
Announcements:
- The solutions to the final exam have been posted.
- Have a wonderful summer, everyone!
Handouts:
Lecture slides:
- Lecture 1: intro; languages, complexity classes, Turing Machines
(pptx, pdf)
- Lecture 2: reductions and completeness, time and space classes, hierarchy theorems,
relationships between classes (pptx, pdf)
- Lecture 3: a P-complete problem, padding and succinctness, nondeterminism, NP- and
NEXP- complete problems, NTIME hierarchy theorem (pptx, pdf)
- Lecture 4: NTIME hierarchy theorem, Ladner's Theorem, unary
languages and NP, nondeterministic space classes, STCONN
(pptx, pdf)
- Lecture 5: Savitch's Theorem, I-S Theorem, nonuniformity and
advice, NC hierarchy (pptx, pdf)
- Lecture 6: NC hierarchy, formula lower bound on Andreev function,
Razborov's lower
bound on monotone circuits for clique (pptx, pdf)
- Lecture 7: Razborov's lower
bound on monotone circuits for clique, Schwartz-Zippel (pptx, pdf)
- Lecture 8: Valiant-Vazirani Theorem, randomized complexity
classes, error reduction, BPP in P/poly (pptx, pdf)
- Lecture 9: Goldreich-Levin hard bit, Yao's Lemma, BMY generator (pptx, pdf)
- Lecture 10: Nisan-Wigderson generator, error-correcting codes, transforming worst-case hardness into average-case
hardness (pptx, pdf)
- Lecture 11: finishing up worst-case-to-average-case reduction, extractors (pptx, pdf)
- Lecture 12: RL, oracles, the PH and alternating
quantifiers, complete problems
for levels of the PH and PSPACE (pptx, pdf)
- Lecture 13: Karp-Lipton Theorem, BPP in PH, the class #P,
complete problems for #P, #Matching is #P-completes, interactive proof systems (pptx, pdf)
- Lecture 14: graph non-isomorphism, IP = PSPACE, Arthur-Merlin games, the classes MA and
AM (pptx, pdf)
- Lecture 15: derandomization of MA and AM, optimization, approximation, and PCPs (pptx, pdf)
- Lecture 16: elements of the proof of the PCP Theorem (pptx, pdf)
- Lecture 17: finishing up PCPs, relativization (pptx, pdf)
- Lecture 18: natural proofs; course summary (pptx, pdf)
Problem sets:
Resources:
- Here is a LaTeX template (tex, pdf)
that you can use for your writeups if you wish.
- Videos of 2019 lectures (Caltech only) here.