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Abstract

Two sets of points in d-dimensional space are given: a
dataset D consisting of N points, and a pattern set or probe
P consisting of £ points. e address the problem of deter-
mining whether thereisa transformation, among a specified
group of transformations of the space, carrying P into or
near (meaning at a small directed Hausdorff distance of) D.
The groups we consider are translations and rigid motions.
Runtimes of approximately O(n logn) and O(n?logn) re-
spectively are obtained (letting n = max{N, k} and omit-
ting the effects of several secondary parameters). For trans-
lations, a runtime of approximately O(n(ak + 1) log? n) is
obtained for the case that a constant fraction ¢ < 1 of the
points of the probe is allowed to fail to match.

1 Introduction

Two sets of points in d-dimensional space are given: a
data set D consisting of N points, and a pattern set or
probe P consisting of £ points. One wishes to determine
whether there is a transformation, among a specified group
of tranformations of the space, carrying P into or near D.

B. Chazelle has called this the “constellation” problem.
You are given a diagram of a constellation of & stars, and
you wish to locate the constellation in the night sky or in a
star chart. How would you do this?

The problem has been considered in the literature in a
plethora of variations. Thefirst parameter to consider isthe

*Thisisan updated version of: Copyright 1998 |EEE. Published in the
Proceedings of FOCS 98, 8-11 November 1998 in Palo Alto, CA. Personal
use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new
collectiveworksfor resaleor redistribution to serversor lists, or toreuseany
copyrighted component of thiswork in other works, must be obtained from
the IEEE. Contact: Manager, Copyrights and Permissions/ |IEEE Service
Center / 445 Hoes Lane / PO. Box 1331 / Piscataway, NJ 08855-1331,
USA. Telephone: + Intl. 732-562-3966.

dimension of the space. Second is the group of transforma-
tions: the groups considered have been either Tranglations,
or Rigid Motions (trand ations and rotations), or Rigid Mo-
tions with Scaling. Third is whether, in case there are any
satisfactory matches, the algorithm is required to provide
just one, or list all of them. Fourth iswhat qualifies as asat-
isfactory match: only Exact Matches, carrying P into D; or
all matches for which the directed Hausdorff distance from
P to D is below a specified Threshold §; or Nearly Exact
Matches, in which the threshold is small enough compared
to interpoint distances that every point of P matches to a
unique and distinct point of D; or Best Matches, achiev-
ing the minimum possible directed Hausdorff distance from
P to D; or Approximate Best Matches, approximating the
true minimum. Fifth is whether all probe points are re-
quired to match, or whether Point Failures are allowed, i.e.
the suitability of the match is judged after dropping the r
worst-matching points of the probe.

A sixth distinction which is less important but will be
useful in our work iswhether the problem is real-valued or
integer, i.e. whether the underlying spaceisR ¢ or Z<. Inthe
former case there is generally some limit on the precision
with which the points are known (in case they represent
measured data); and even if in principle they can be known
exactly, thereisgenerally alimit on the precision withwhich
the points are represented, if, asis usual, the data has been
stored in floating point. Thusthe most natural formulations
of the rea case are the Nearly Exact, Approximate Best
Match, and Threshold formulations. The use of athreshold
¢ alsoalowsfor flexibility in useof thealgorithm. By setting
¢ appropriately, the algorithm can identify matchings up to
any specified tolerance for distortion, and if § is chosen
small, the only mappings of the probeinto the data that are
allowedare1— 1, and distortion-freeto within the precision
with which the data are known or represented.

For Trangdlations, in the Integer case, our method works
for Exact, Threshold, Nearly Exact and Approximate Best
Match. In the Real case, the method works for Threshold,



Nearly Exact and Approximate Best Match. In all cases,
any specified number of point failures can be tolerated.

For Rigid Motions, in the Real case (Integer considered
as a special case), our method works for Threshold, Nearly
Exact and Approximate Best Match.

For each of these versions of the problem, the algorithm
worksfor any dimension, and outputsthefull list of matches.

In al cases, the method improves upon the best known
algorithms by a factor of about % (up to log terms) in the
runtime.

In order to do thiswe will allow ourselvesafew kinds of
leaway. (a) We will use randomization. (b) We will allow
rare“false positives’: matches may be announced which do
not in fact satisfy the stated criteria. Any error probability
p can be guaranteed, however, with only alog(1/p) multi-
plicative effect on the runtime. Importantly, the algorithms
have no false negatives. no satisfactory match is ever over-
looked. Note also that atypical probe and data pair islikely
to have rather few matches announced by the algorithm, so
that a simple explicit verification of the output of the algo-
rithm will usually quickly produce a guaranteed complete
answer to the given task. However, there are (probe,data)
pairs having so many matchesthat simply verifying exhaus-
tively the outputs of a correct run of our algorithm, would
take far longer than the algorithm did. It is curiousthat the
computational bottleneck of this problem appearsto be ver-
ification. (c) Except for the Integer Exact Trandations case,
we will settle for Nearly Exact, rather than Exact Matches.
But the precision can be as high as is desired, with modest
computational cost.

Our runtimes depend on a “ space size” parameter of the
problem, s (essentially the diameter of the point sets), and
on the desired quality of the solution as determined by the
precision parameter £ and the accuracy (or threshold) pa-
rameter 6. Both s and § have negligible impacts on the
runtime of the algorithm.

We do not formally address the Real Exact formulation
but, since our runtimes are faster than existing runtimes for
that formulation, it is likely that the best heuristic way to
solve it is a “generate and test” method, using the Nearly
Exact version of our algorithm to generate matchesin which
thedestinationsof probepointsinthedataareuniquely iden-
tified, then testing whether these matches can be perturbed
into exact matches.

Applications:  The problems presented here, and some
of their variants, have applicationsin such diverse fields as
machine vision, document processing, computational biol-
ogy and computational chemistry. In these disciplines they
have been used in pharmacophore identification [11], pro-
tein structure alignment [1], image registration [24] and
model-based object recognition [14, 26].

Our results and prior work: The problem is interesting
already in one dimension. Up to now nothing better than
O(Nk) time algorithms were known. (For Exact Match
one can simply test each possibility exhaustively; for Best
Match one can “dide” the probe past the data, using an
event list keyed on probe points crossing data points and
Voronoi nodes.) Throughout this paper we use n to denote
the maximum of N and k, the sizes of the probe and data
sets; normally n = N. The first result of our paper is a
randomized algorithm for Exact Match in the integer case
running in time O(n logn + log®Y s), where s is the di-
ameter of the data set. We apply this result to obtain an
algorithm for Threshold for the real case running in time
O(ne~tlog(ne=1) + log?™M (%)), where § is the distance
threshold and ¢ the precision parameter. (Nearly Exact and
Approximate Best Match algorithms with similar runtimes
are consequences.) As noted earlier, we allow asmall prob-
ability (polynomial in n for these runtimes) of false-positive
errors. In general for an error probability of n~° the inte-
ger and real case runtimes are O (bn logn + log® s) and
O(bne~tlog(ne=1) 4 log?™ (%)) respectively.

The method extends to solve the Translation problem
in higher dimensions. We solve the Integer Exact prob-
lem in time O(bnlogn + log® (sn)), alowing an error
probability of n~°. The best previous result for Approx-
imate Best Match was a runtime of O(NklogN) in two
dimensions, achieving approximation factor 2; and the same
runtimein higher dimensions, achieving approximation fac-
tor of 2 + ¢ for any fixed ¢ > 0, both due to Goodrich,
Mitchell, and Orletsky[13]. For Real inputs we improve
thisto aruntime of O(bne~ 9@ log(ne=1) +log®M (%)),
for Threshold Matches, with approximation factor 1 + «;
the same runtime follows for Nearly Exact match with an
appropriate value of 4, and a runtime slower by a factor
of loglog(sé—1) + loge~? follows for Approximate Best
Match. (Our precision parameter becomes the approxima-
tion factor for the case of Approximate Best Match.)

(Throughout this paper b,4d,¢,k, N, n,r, s are regarded
asvariablein the O notation, and d as a constant.)

In all of the above cases our method extends to enable
us to detect all matches that have up to a specified number
of point failures, . In all cases the runtime (excluding the
log®® s term which remains unaffected) is multiplied by a
factor of (r + 1) logn, provided r is bounded by a constant
fraction of the probe size.

We address therigid motion problem in arbitrary dimen-
siond, providing an O(bnte=9(® log(ne=1) + log® =)
time algorithm which, with error probability »~?, identifies
all rigid motion matches achieving Threshold § to within
precisione. Asbefore, the same runtime followsfor Nearly
Exact Match (with appropriate §); Approximate Best Match
follows with a further factor of loglog(sé—1) + loge~1.
This improves (in the runtime and in addressing arbitrary



¢) on the Approximate Best Match result provided in [13],
which achieves approximation factor 4 in the plane in time
O(N2klog N), and approximation factor 8 + ¢ (for any
fixede > 0) inR3intime O(N3klog V). De Rezende and
Lee described an O(N k) time solution to the Exact Rigid
Motion problem.

Recently and independently of our work, Indyk, Mot-
wani and Venkatasubramanian [19] studied the rigid mo-
tions problem in its Threshold (hence also Nearly Ex-
act or Approximate Best Match) formulation in two
and three dimensions, with and without point failures.
Their runtimes (omitting log terms as well as the de-
pendence on a precision parameter and on the value
of the threshold) are: in two dimensions, without
point failures, O(min{k(N4s)Y/3, N (s + N)}), and with
point failures, O(sNk); in three dimensions, without
point failures, O(min{k max{N?%s%2 N25} Ns(s? +
N), N3(N + s)}), and with point failures, O(s*Nk).

Irani and Raghavan [20] provided a randomized algo-
rithm for Nearly Exact Rigid Motions with Scaling in the
plane, with point failures. Their runtimeis O(N2klog ),
which is slower than our O(n?logn) Nearly Exact Rigid
M otions method for the plane, and solves a harder problem.
They alow rare “false negatives’ and no false positives, the
opposite of our failure mode.

Other Work: Best Match for Rigid Motion is a more
difficult problem than Exact Match. An O(N?2k%log? N)
time algorithm for the Best Match problem in the plane was
given by Chew, Goodrich, Huttenlocher, Kedem, Kleinberg
and Kravets[9].

The spatial pattern matching problem changes character
considerably when the two sets play symmetric roles. For
Exact Trandationson thereal line, Rotegave an O(n logn)
time algorithm. For Exact Rigid Motions, with £ = N,
Atallah [3] provided an O(N log V) time agorithm in di-
mension 2 for planar figures. Atkinson [4] obtained the
same runtimein dimension 3. Alt, Mehlhorn, Wagener and
Welzl [2] obtained runtime O(N%~2log N) in dimensions
d > 3. Theundirected Hausdorff distance between two sets
is the maximum of each of the directed distances. Com-
putation of the least such distance obtainable under a given
group of transformations, is quite a different problem from
computation of the least possible directed distance. Some
of the known results are those of [15, 17] for trandations,
and [16] for rigid motions.

There is an obvious similarity between the one dimen-
sional problem, and string matching problems. There are
a variety of well-known and exceptionally efficient string
matching methods [23, 22, 21, 8, 12]. The most important
distinction between the problems is the sparsity of the data
in the spatial point set problem. The spatial problem can be
reduced by discretization to a string search problem, but the

result is an instance of size s, which istypically far greater
than n. Indeed, consider the constellations: the night sky is
dark — thevisible stars are sparse.

2 Algorithm: OneDimension

The one-dimensional problem has four variants, depend-
ing upon whether the pointsarereal sor integers, and whether
they lieonthelineor onthecircle. “Integers’, in the case of
the line, means that there is a length dividing all distances
|z — yl, for (z,y) € D? U P2 Inthe case of thecircle, this
length must also divide the circumference of the circle.

Thereal caseishandled by reduction to the integer case.
We defer discussion of it to section 2.4.

To formalize the integer problem it is convenient to rep-
resent the probe and data by their characteristic functions
P and D from Z or Z /s (s being the size of the circle) to
{0, 1}.

The space size of a problem P, D is, for inputs on a
circle, its size s; for inputs P, D on the line, the space size
iss(P,D) = max{|z —y| 1 z,y € PPUD?} + 1.

For integer t welet P + ¢ denote the set which contains
if and only if P containsz — ¢ (i.e. P +t isthe Minkowski
sumof P and {t¢}); D+t isdefined similarly. Formally, our
task is now:

Problem: Identify the set of “valid displacements,” defined
for thelineby Mp p = {t € Z : Yz, P(z — t) < D(z)}
and for the circleby Mp p = {t € Z/s : Vz,P(z —t) <
D(z)}.

Our main result for the integer caseis:

Theorem 1 Let integer pattern P and integer data D be
given. Let s = s(P, D). Chooseany b > 0. Our algorithm
runsintime O (bn logn + 1og®) s) and with probability at
least 1 — n~° produces the correct list Mp p.

Note: Asiscustomary in computational geometry [27, 25],
we adopt the real Random-A ccessMachine as our computa-
tional model. More concretely, our runtimes count FLOPs
on amachinewhoseword length islarge enough to hold the
inputs (i.e. proportional tolog s.)

Proof: First we note mutual reductions between the line
and circle cases. Given probe P and data D on the circle,
reduce these to a line instance with space size 2s(P, D)
as follows. Let Rep, : Z/s — Z be the function that
assignsto every « € Z /s theinteger 0 < y < s such that
z=ymods. Map P to L(P) = Uzep{Rep,(z)}. Map
D to L(D) = Ugep{Rep,(z),Rep,(z) + s}. Note that
t is avalid displacement for (D, P) iff Rep,(¢) is avalid
displacement for (L (D), L(P)). Thuswe can “pull back”
the valid translationsfor D and P from those for L (D) and



L(P). Thecost of thereduction isadoubling of the data set
and of the space size.

Thelineproblemisessentially aspecial case of thecircle
problem: given probe P and data D ontheline, reducethese
toacircleinstancewith spacesizeu > 2s( P, D) asfollows.
Map P to C(P) = {# € Z/u : 3p € P suchthatz =
pmodu}. Similalymap Dto C(D) = {z € Z/u:3d €
D suchthat z = d mod u}. Notethat ¢ isavalid displace-
ment for (D, P) iff ¢t mod u is a valid displacement for
(C(D),C(P)), and dpmin — pmax < t < dmax — Pmin- Thus
we can pull back the valid trandations for D and P from
those for C'(D) and C(P). The cost of the reduction is a
doubling of the space size. For future reference note that
both line-circle reductions hold in higher dimension (read
now unbounded-torus); costsincrease by 2¢ rather than dou-
bling.

Outline of the method: The original, sparse problem is
subjected to several different randomizations. Each of these
is transformed by a space reduction procedure to a dense
problem, which is then solved using a Fast Fourier Trans-
form. In each of the randomizations, false positive matches
may appear due to the space reduction and, depending on
how it is performed, the Fourier Transform. However, due
to statistical independence of the trials, when the different
randomized solutions are combined there is only a small
probability of any false positive remaining.

We begin with pseudocode for the main procedure calls
of the algorithm, and then explain each of the procedures.
Thanks to the above reduction we can assume that the input
to the algorithmis a line problem.

Trandlations( P, D)

1. If n isless than some threshold run the naive algo-
rithm, otherwise continue.

2. u = SelectPrime(2s)
3. (P]_, D]_) = C(P, D, u)
4. Repeatfori € {1,..., (b+ 1)logs n}

i -= FindTrandations( Py, Dy, 2[19(200)1),
5. Return the pullbacks p of N, p; to (P, D).

FindTranslations(P, D, h)
1. (P1, D) := RandomMultiply(P, D).
2. (P2, Dy) := L(Py, Dy).
3. (Ps, D3) := ReduceSpace( Pz, Do, h).
4. v := FindMatches( P3, D3)

5. Return the pullback of v to (P, D).

We now describe each of the underlying procedures.
2.1 SelectPrime

The procedure SelectPrime(n) returns a prime between
n and 2n. This can be done in time log®®) n by choosing
integers at random within the given range and testing for

primality (see[5]).
2.2 FindTrandations

The procedure FindTranslations( P, D, h) takes three ar-
guments. aprobeset P, adataset D, bothin Z /u for some
prime u; and an integer h. FindTrand ationsreturnsasuper-
set of Mp, p whichisnot likely to be too much larger than
MD P

2.21 RandomMultiply

The arguments to RandomMultiply(P, D) are a probe set
P and data set D, both in Z/u for some prime u. The
procedure first chooses an integer ¢ uniformly at random
from {1,2,...,u — 1}. The circle Z/u is then carried
bijectively to itself under R, 4(z) = 2¢ mod u, yielding a
new probe R, ¢(P) = Ugep{Ru q(2)} and anew data set
Ry 4(D) = Ugep{Ruq(2)}; the vaid displacements are
transformed bijectively, ¢ to R, 4(t).

2.2.2 Space Reduction

The arguments to ReduceSpace(P, D, h) are a probe P,
adata set D in Z, and a target space size h. A map
Hy : Z — 7Z/h is defined by Hy(z) = = mod h,
and new probe and data sets are defined on the circle by
Hy(P) = Ugep{Hn(2)} and Hy(D) = Uzep{Hn(2)}-
We explicitly store the preimages H ;- 1, of every new probe
point, and I, }) of every new data point.

Let po be an arbitrarily chosen element of P. The pull-
backs of any valid displacement  that is identified for the
problem (Hp(P), Hy(D)) are defined to be the displace-
ments H, 7, (Hx(po) + 7) — po.> We denote the set of all
pulled-back displacements by 1, (M, (p),#,(p))-

Every match of P into D is carried to amatch of Hj,(P)
into Hy, (D). Theconverse, however, may fail: new matches
can be created by thisprocess. (I.e. a pullback may not be a
valid displacement.)

Proposition 1 Mp p C Hh_l(xMHh(D),Hh(P))'

There may be several such, if |H; 1, (Hn(po) + 7)| > 1.



Proof: The point is Hj is a homomorphism. Specifically,
lett € Mp p. Thenforany p € P, p+ t equals some
d € D; and Hh(p) + Hh(t) = Hh(p—{—t) = Hh(d) S
Hy(D). Therefore Hp(t) € MH;,(D),H,,(P)- Letdp € D
best.dp = po+t: thendp € H;})(Hh(po) —|—Hh(t)), and

t € Hy, 3 (Ha(po) + Ha(t)) — po. m

2.2.3 Finding Matches

The procedure FindMatches( P, D) takes two arguments: a
probe P and adataset D onacircle of size h (apower of 2).
Following an idea introduced by Fischer and Paterson [12],
the procedure works as follows. Let D be the complement
of D. Notethat P +¢ C Difandonlyif P+¢-D =0
(boolean dot product). The list of al these dot productsis
the convolution of D with the function whose value at =
is P(—z); this convolution can be computed in O(h log h)
time using an FFT. Better yet, a randomized approximation
to this convolution can be obtained in time O (k) using the
following result:

Theorem (Indyk)? [18]: Let u,v € {0, 1}%/*. There exists
a randomized algorithm which in O(h) time computes an
approximation of the boolean convolution of « and v in the
sense that it outputs a vector w € {0, 1}%/* such that for
any i

1 If (u#v)[:] = O0thenw[i] =0,
2. If (uxv)[i] = Lthen Prlw[i] = 1] = .

After computing either the exact or randomized-
approximate convolution, FindMatches returns all transa-
tions¢ for which the coefficient in w is 0.

2.3 Overall Analysis

We begin with an upper bound on the probability that
FindTrand ations outputs a fixed invalid trandation ¢ for D
and P, theinputsto FindTrandations. Let Np p bethe set
of invalid trandations for D and P, that is Np p = {t €
Zju: P+t ¢ D}. Foreacht € Np p fix an element of
P,cal it A(t), suchthat A(t) +t ¢ D.

Lemmal Let P,D C Z/u be the inputs to
FindTrandations. Let p € P and d € D. Ift issuch
that p + ¢ # d then the probability that either

(i) Rep, (Ruq(d)) = Rep,(Ruq(p)) + REp, (Ru q(1))
(mod h), or

(i) Rep, (Ryq(d)) + u
Rep, (Ru,q(p)) + Rep, (Ru q(t))

2Indyk’ sresult isstated for convolution on Z butthetrangationto 7/ h
isimmediate.

(mod h)

after step 2 of FindTrandations, is at most %ﬁ.

Proof: Consider case (i). It impliesthat there is a nonzero
r satisfying —2¢ < r < 2% such that

and therefore

gd—qt—qp = rh (modu)
g = (d—t—p)~trh (mod u)

For any fixed r, the probability that g = rh-(d—t—p)~1
(mod u) is L. Thustheprobability of case (i) occurring

is at most gﬁ. A similar argument applies to case (ii).
o

Lemma2 Lett € Np p, where D and P are the inputs
to FindTranslations. The probability that Rep, (R. 4(t)) €
HyY ( My, (D), Ha(P,)) after step 2 of FindTrandationsisat

8 u
most nﬁu_l.

Proof: Suppose Rep, (Ru,¢(1)) € H; (M, (p,), m,(p2)
after step 2 of FindTrandations. Then there existsd € D
such that either:

(i) Rep,(Ryq(d)) =
Rep, (Ru,q(A(t))) + Rep, (R 4(t))  (mod h), or

(i) Rep,(Ruq(d)) + u = Rep,(Ruq(Alt))) +
Rep, (Ruq(t)) (mod h)

From the previouslemmacthe probability of thisoccuring
isat most £ 4. Thusthe probability that Rep, (1. ,4(t)) €

H,_L_l(MHh(DZ)7Hh(p2))isatmostn%ﬁ. O

Corollary 1 Lett € Np p, where (P, D) are theinputs to
FindTranslations. Then Pr(t € p;) < 3.

Proof: Lett € N. Let I be the event [t € 1;], and C
the event [Rep,, (Ru,¢(t)) € Hy Y(Mu, (p,) 1, ()] Note
that Pr(C) <  sinceh > 20n. Therefore

Pr{F}

IN

Pr{C}+ Pr{~C} - Pr{F|-~C}
101 3
— 4= -l < =
5+ PLFIRCY< G

IN

O

We construct thelist of matchesv by identifying all theshifts
t for which the convolution in FindMatches obtains a value
of 0. Each such match ¢ € v is pulled back, as explained
insections2.2.1 and 2.2.2, to a candidate displacement for
(P, D) and included in g;.

We now bound the probability of failure of the
Tranglations algorithm.



Lemma3 Let D and P be the inputs to the Translations
algorithm, and p itsoutput. The probability that 4+ = Mp p
isat most n=°.

Proof: Recall that Mp, p, C Nip;. Now lett € Np, p,.
Weknow that the probability that ¢ € y; fori € {1,..., (b+
1)logs n} is at most 3. Thus the probability that ¢ € N;pu;
isat most —4+. If t ¢ D1 — po, it cannot appear in any ;.
Therefore by aunion bound, Pr(Mp, p, # Nips) < n-b.
The map from Mp p to Mp, p, isbijective and the lemma
follows. ]

Finally consider the runtime of the algorithm. Each step
in FindTranslations takes time O(n). Therefore the total
time spent on all calls to FindTranslations is O(bn logn).
SelectPrimetakestime O(log®!) s), thereforethetotal run-
ning time of the algorithmis O (bn logn + log®¥ s). This
completes the proof of theorem 1. |

24 Real-Valued Inputs

Recal| that thedirected Hausdorff distanceh (X, Y') from
aset X toasetY issup, .y infyey p(z,y) (where p is
the underlying metric, in this case simply distance in one
dimension). This “distance” is not symmetric but satisfies
the triangle inequality.

Wefocus onthe Threshold version of the problem. Given
aparameter 6, we wish to identify all shiftswhich carry the
probeto apositionin which h(P, D) < §. Let

M}, p={t €R:h(P+t,D) <}
ontheling and let
M}, p={teR/s:h(P+1t,D)< 6}

on acircle of circumference s.

When not empty, ngp is an infinite set, so the task of
our algorithm is to find suitable representatives from this
set. We use a secondary parameter ¢, indicating the pre-
cision with which this task is performed. Specifically, we
require that the Threshold algorithm solve the following:

Problem: Identify a set of “valid displacements,’ H%fp,
satisfying the “(d, €) conditions’:

1 h(ME p, uyp) < €.

2. /lébg,P < Mg(,lljg)-
A solution to this problem identifies, for every shift achiev-
ing probe-dataHasudorff distanced, anearby shift of almost
the same quality.

Theorem 2 Given real input (P, D) and a parameter 4,
we can identify a set of displacements p%fp, satisfying the
(6, ) conditions with probability at least 1 — n=?, in time
O(bne~tlog(ne=1) + log®™ =), where s = s(P, D) =
max{p(z,y) : (z,y) € P2UD?} + 1.

Proof: We begin by discretizing the probe and the data
asfollows. Seta = 536152- (In the case of the circle, slight
adjustment isnecessary sothat « dividesthe circumference.)
For apoint ¢ let ¢ be the point satisfying § = ma,m € Z
where ¢ € [§ — 5,4 — %), i.e. a nearest multiple of a.
Discretize the probe by rounding each point p to p. Let the
discretized probe P’ be the union of the discretizations of
all the probe points. Let thediscretized data D’ betheunion
of the discretizations of all the data points, together with
all integer multiples of « that, for some d € D, are within
distanced + %= of d.

The set of all valid displacements of this discretized ver-
sion satisfy the (4, ¢) conditions. Thedatasize hasincreased
by afactor of O(e~1), and the theorem followsby reduction
to theorem 1. O

Nearly Exact Matches: If §,¢ are chosen so that (2 +
8¢/5)6 < min{|z — y| : (z,y) € P2U D?} then amatch
satisfying the (4, ¢) conditions will have the properties (a)
every probe point has exactly one data point within distance
4, and (b) this mapping from probe points to data points is
injective.

3 Trandationsin Dimension Two and Above

We now address the following problem. A probe P and
data set D are given, both finite point sets in the space
V = Z4 (for the integer, unbounded case) or V = R4 (redl,
unbounded case) or V' = Hf(Z /si) (integer torus) or V' =
Hf(ﬂ%/si) (real torus). The problemisto identify all “valid
tranglations’, i.e.elementst € V suchthat P+t (Minkowski
sum) is (or isnear) asubset of D. Inthethreshold case, just
as for one dimension, the (d,¢) conditions are required,
with Euclidean distance as the underlying metric. Thanks
to the reduction noted earlier we may assume the problem
is unbounded, at a possible cost of afactor of 2¢ in the size
of the data set.

For the Threshold version of the problem, with parame-
tersd and ¢, discretize following the same description as for
the one dimensional case: now each coordinate is rounded
to the nearest multiple of «, and discretized data points are
replicated throughout a metric ball. Proceed as for Integer
Exact Match. For the Nearly Exact version of the problem,
set § = minp(z,y) for (z,y) € D?U P2 (& can be com-
puted in time O(nlogn), see [6, 7, 25].) Continue as for
Threshold. Inall casescall the new probe and data P, D;.



It remains only to describe the procedure for Integer Exact
Match.

Choose a random vector u € R¢ from the spherically
symmetric Gaussian distribution with total variance 1 (each
coordinate has variance d=%/2). Form a new probe P, in
one dimension by mapping each point z of P; tothe number
u - z (dot product in R%); form a one dimensional data set
D, similarly.

Asbefore, fix apoint pp € P; and define N to be the set
of vectorst € R4 suchthat po+t € Dy but Pi+t ¢ D;. For
eacht € N fixapoint A(t) € Ppsuchthat A(t) +¢ ¢ Ds.

The probability that thereexistt € N and y € D1 such
that |(u - (A(t) + 1)) = (u - )| < gz is @ most
n~". If this happens, this run of the algorithm is considered
to fail.

Discretizetheline at ascale of Wl/znbw Formanew
probe P53 by rounding each probe point in P, to the nearest
“integer”; form a new data set D3 by repeating each data
point in D, at the four nearest “integers’. Now solve the
Exact Match problem for P; and Ds.

Any Exact Match of P; and D; is carried to an Exact
Match of P3; and D3. On the other hand if the failure event
described above has not occurred, then every such match of
(Ps, D3) will pull back to a match (of the desired type) of
(P, D). Thuswe have:

Theorem 3 Let pattern P and data D be given in Z¢ or
RY Lets = s(P,D) = max{p(z,y) : (z,y) € P?>U
D?} + 1. In the Threshold case let é be the threshold;
in the Nearly Exact case let § = min{p(z,y) : (z,y) €
P2y D?}. Choose any b > 0. Our algorithm runs in
time O(bn logn + log® s) in the Integer Exact case, or
O(be=@Dnlog(ne=1) + log?™ =) in the Threshold or
Nearly Exact cases. With probability at least 1 — n=? it
produces, in the Integer Exact case, the correct list of valid
trans ations; and in the remaining cases, a set of translations
satisfying the (4, ¢) conditions. O

4 Point Failures

Giventwo sets D and P of integers, andanumbert € Z,
let the number of point failures of a translation by ¢ be
ft) =|{z € P: 2+t ¢ D}|. Wewant to find the set
Mp pr ={t € Z: f(t) < r} of trandations that match all
but at most » elementsof P toelementsin D, or “r-matches’.
Our method extends also to solve this problem for a given
directed Hausdorff distance §, and for translationsin higher
dimensions. We first address the case of integer P and D in
onedimension. Let a € (0, 1) be any constant.

Theorem 4 Let integer pattern P and integer data D be
given. For anyr < ak our algorithmrunsintime O (bn(r+

1) log?n + 1og®® s) and with probability at least 1 — n®
produces the correct list Mp p .

Proof: The basic form of the algorithm will be the same
as for O-matches. First note that the mutual line-circle re-
ductions preserve r-matches; hence we assume a line input.
Constants ¢, v and I" will be specified bel ow.

Partial Trandations( P, D, r)

1. If n isless than some threshold run the naive algo-
rithm, otherwise continue.

2. u = SelectPrime(2s).
3. (P, D1) :=C(P,D,u).
4. Repeatfori e {1,...,vlogn}
w; := FindPartia Trans( Py, D1, ¢(r + 1)n, 7).
5 Sete,:={ie {1,...,vlogn} :t € u;}|.

6. Returnthe pullbacks p of {t € U;u; @ ¢i > T}

FindPartial Trans( P, D, h, r)
1. (P1, D) := RandomMultiply(P, D).
2. (Py, Do) := L(Py, Dy).
3. (Ps, D3) := ReduceSpace( P2, Dy, h).
4. v := FindPartialMatches( Ps, D3, r).

5. Pick po uniformly at random from P, and return the
pullback of v to (P, D) with respect to pg. (Transla-
tions for which pg is not matched are omitted.)

The only new procedure is FindPartialMatches( P, D, r),
which we describe below.

First we observe how r-matches are transformed under
ReduceSpace. For any p € P, the pullback with respect to
p of an r-match 7 for (H, (D), Hy(P)) isdefined to be the
set of displacements [, 7, (H(p) + 7) — p. Further define
H;Y(Mpy, (0,1, p),r)(p) tobetheunionof H; J, (Hx(p)+
7) — p over al r-matches 7 in My, () u,(p),r- We now
have:

Proposition 2 Ift € Mp p,andp € Pissuchthatp+t €
D thent € Hh_l(MHh(D),Hh(P),r)(p)-



4.1 Find Partial Matches

FindPartialMatches( P, D, r) takes three arguments: a
probe P and a data set D (on a circle of size h), and an
integer . Notethat ¢ isan »-matchif andonly if P +¢-D >
|P| — r (dot product over Z). The list of al these dot
products is the convolution of D with the function whose
value at z is P(—z); using the fast Fourier transform (over
Z [ h), FindPartial M atchescomputesthisintime O (h log k).
(Recall that we have assumed aword length proportional to
logs > logn. This precision in the computation of the
transform suffices so that rounding errors do not affect the
computation of any value P + ¢ - D by morethan 1/4, hence
after a final rounding to the nearest integer, the list of dot
productsis correct.)

4.2 Overall Analysis

We begin with an upper bound on the probability that
FindPartial Transoutputs afixed invalid r-match ¢ for D and
P (theinputsto FindPartial Trans). For theremainder of this
sectionletv = (b+3)(3log3—3)~1:%, letT = Z(1-a)v,
andletc = %.

Lemma4 Iftisaninvalid r-match for D and P, the prob-
abilitythat ¢ € p; isat most &,

Proof: LetS; = {pe P:p+t ¢ D} then|S;| =r+!
for some! > 0. Now let S; be asubset of |S¢| of sizer + 1.
FindPartial Transwill output ¢ if there is an element p of 5}
and an element d € D such that

(i) Rep, (Ru,q(d)) = Rep,(Ru,q(p)) + RED,(Ru,q(1))
(mod h), or

(i) Rep, (Ruq(d)) + u

Rep, (Ru,q(p)) + Rep, (Ku,q4(1))

The probability of thisevent isat most (r + 1)n8 —%-. Since
h>c(r+ 1)n,

(mod h).

LemmaSIf ¢t € Mpp, the probability that

FindPartial Transoutputs ¢ is at least "*;’” =1-a.

Proof: If t isnot output by FindPartial Transthen pg issuch
that po + ¢t ¢ D. Since there are a most » < ak such
elementsthe claim follows. O

Applying a Chernoff bound we obtain that Pr{c; >

Tlogn} < e(3-3l0a$) 3% vlogn if ¢ isan invalid r-match,

and Pr{c; <Tlogn} <e~ Cvlogn jf ¢ € Mp p,. Thus
the probability of ¢ € Mp p, not being reported is at most
# and the probability of ¢t ¢ Mp p,, being reported is at
most # Since the size of Mp p, isat most n? and the

set of invalid r-matches that can potentially be reported is

also at most n?, we obtain that the probability of failure is
at most .

Computing u can bedoneintime O (1og®® s) ashefore.
FindPartial Transtakes O ((r + 1)n log((r + 1)n)) time, and
is called O(blogn) times. The ¢;’s can be computed in
O(bnlogn) time. Therefore (and since r < n) the total
running timeis O (b(r + 1)n log? n + log®® s).

Note: If we let » = 0, then we obtain an O(bn log?n +
log®M) 5) algorithm for the case of no point failures.
Whether it is preferable to use the asymptotically dlightly
faster result stated earlier, will depend on the efficiency with
which Indyk’ s procedure can be implemented.

5 ApproximateBest Match

We have focussed on the Threshold formulation of the
Real problem. Much of the previous literature is stated in
terms of the optimization version of the problem: given P
and D, find the smallest § such that P can becarriedto within
adirected Hausdorff distanceé of D. Depending onwhether
the answer is required to be exact, thisis either the Best
Match or Approximate Best Match formulation. For reasons
givenearlier, havingtodowithfinite precisionin real-valued
data, we believe that the approximate formulation is more
natural (at least, if the approximation factor can be made
14+ ¢Ve>D0).

Our agorithm can be used to solve this version. First
perform a “doubling search” on Igd: run the Threshold
matching algorithm starting with & = s/22°, thend = /22,
andingeneral 6 = 5/22’ until an ig is reached for which no
matches are found. Then perform a regular binary search
on Ig(s/d) between 2o~ and 2'o. Then run the algorithm
another few times, decreasing the “precision parameter” ¢,
until the best match value § has been identified to within
the desired approximation factor 1 + . The runtime of this
procedure depends on the actual value of the best match
§, and is (loglog(s/d) + loge~1) times the runtime of the
Threshold algorithm with precision e.

6 Rigid Motions

We sketch how our method appliesto solving the Rigid
Motions problem in any dimension d. (Aswill be apparent
from the method, in dimension d > 2 Scaling can also be
allowed without substantial adverse effect on the analysis.)
We solve the Threshold, Nearly Exact and Approximate
Best Match formulations; the latter two are reduced to the
first, just as before, by either judicious choice of, or binary
search for, an appropriate threshold.

Notation: Given a point 2 and an affine subspace A, let
[ — A] denote the shortest vector from z to a point in A.



Given a set of points {p1, ..., p;}, let Ag,, .3 denotethe
affine subspace they span (by which we mean the lowest
dimension affine subspace containing all the points).

Let f : N — R* and let ||r|| be the Euclidean norm
of vector r. Define a“frame” for the probe, relative to the
function f,tobeaset F' = {¢1, ..., ¢a} C P which provides
a numerically stable way of “gripping” the probe, in the
following sense: if the positionsof each of {g1, ..., ¢;} (1 <
J < d) are perturbed by a small amount «, forming a new
set of points {p1, ..., p;} St. p(pi, ¢:) < @ V1< i< j, then
for any point of the probe =, ||[z — A, 3] — [ —
Afgr a3l < af(5). Thefirstd — 1 pointsof F will be
referred to asits (d — 1)-subframe F".

We will shortly outline an argument showing that for
f(j) = (3 — 1)/2, frames do exist; and a frame can be
quickly found.

First however we show how aframe /' allows usto solve
the rigid motions problem in IR 9. Discretize the data by in-
troducing ascalar grid of length scale O(e/(f(d)d*/?)), and
duplicating each data point at all points of the grid within
distance §(1 + O(g)). Then range over all n?=! ways in
which the points of the (d — 1)-subframe F can be assigned
to data points. If, for such an assigment, there is a rigid
motion carrying the subframe to within directed Hausdorff
distance ¢/ f(d) of the chosen data points, then, for any
such rigid motion, any remaining point of the probe is re-
gtrictedtolieina® solid ring” in space (annulus, inthe plane)
whose cross-section has radius O(¢). Upon finding that a
satisfactory rigid motion exists for a particular assignment,
choose one such rigid motion; then each remaining point
of the probe is constrained to lie on a circle. Form a one-
dimensional Integer problem on that circle by discretizing
it at ascale of O(¢), and placing a data point at each “in-
teger” lying within distance O(e) of any of the duplicated
datapointsinR?. Solveall thecircle problemsand intersect
their solutions (allowing for rounding because of the slightly
differing discretizations on each circle).

The total number of probe pointsin all the one dimen-
sional Integer Exact problems is the same as the original
probe (minus the frame points); the total number of data
points in all these problems has increased by a factor that
depends only on the dimension. Since the runtime of the
one-dimensional integer exact problem (as given in theo-
rem 1, and noting that the parameters b and s are fixed in
this discussion) is convex, the total time required to solve
all instances at hand is no more than it would be solve one
problem containing all the probe and data points, hence
O(nlogn). Combining the solutions requires only inter-
secting all candidatetrandlations (allowing for rounding due
to the differing discretizations of the various circles), and
can bedoneintime O(nlogn). Hencethetotal runtime for
the algorithmis O(n“ logn).

Quality of thesolution: Wephrasethe (4, ) conditionsfor
therigid motion problem by over-representing any particular
rigid motion as a point in (R4)*, the i'th “R¢-coordinate”
being the image of the i'th probe point. The set of rigid
motions satisfying the d threshold conditionis

Mpp = {Xe(@®Y*:h(X,D)<dandXisthe

image of P under arigid motion }.

We require that the threshold algorithm solve:

Problem: Obtain a set /l p Of “valid rigid motions” of the
probe, satisfying thefollowmg “(d, ) conditions’:

1. Every pointin ,uD p Istheimage of P under arigid
motion.

2. h(M} p, 1 p) < €d.
3. uDP C My (l+€).

To summarize these results (and including the effect of
the secondary parameters on the runtime), we have:

Theorem 5 Let pattern P and data D begiveninR¢, along
with athreshold §, a precision parameter ¢, and areliability
parameter b. Let s be the space size of the problem. Then
intime O (bn?e= 2@ log(ne=1) +log®™™ =) the aboveal-
gorithmidentifies a set of matches ,u%y P Whlch with proba-
bility at least 1 — n~" satisfiesthe (4, ¢) conditions above.

Frame Selection: In any fixed dimension d a frame can
be selected in time O(k) as follows: begin by selecting
any point. Next, choose the point furthest from thefirst; in
general, choose the point furthest from the affine subspace
spanned by the existing points. (Thisis facilitated by ap-
plying a Gram-Schmidt process each time a new point is
adjoined, thus obtaining an orthogonal basis for the sub-
space. The sguare of the distance of each point from the
subspace can be updated by subtracting the square of the
projection on the newest dimension.)

Lemma6 This process yields a frame with f(j) = (3’ —

1)/2.

Proof: By induction on j. The case j = 1 isimmediate.
Letj > 1;let{q1, ..., q;} bethefirst j pointsselected by the
process; and let {p1, ..., p;} be pointsst. p(p;, ¢;) < o Vi.
Let z be any probe point. Let w = [z — Agq . q,_01],
letw = [z — A{p1,~~~,pj—1}]' letv = [qj — A{ql,...,qj_l}]
andletv' = [p; — Agp,,.. p,_1}]- By construction, ||wl|| <
o]

Given two vectors y, z
on z, namely z, = £=z.

, let z, denote the projection of y



Now [z — Agpy, py] = [8 = Agg, g3l = (0 —
vl)) — (w—vy) = (W' — w) + (vy — v!,,). Theinductive
hypothesisimpliesthat ||w’ —w|| < af(j—1), while, aswe
next show, theinductive hypothesis and the fact that ||w]|| <
[|v]| together imply that | v, — vl || < a(2f (7 —1)+1); the
bound||[z — A{ply.ij}]—[.z‘ — A{qumyq]}]H < a(3f(j—
1) + 1) followsand implies the lemma.

Lemma7 ||z, — zy4r ]| < 7]l

Lemmas ||zy — (z + r)y|| < lrll-lyll

Lemma7 isimmediate.

Proof of lemma 8: Fixing y and letting w vary, the vectors
wy lie on the sphere for which the segment Oy is a diameter.
With this in mind, the case ||r|| > ||z]|| is immediate. If
[I7]] < ||z]|, set 3 to bethe angle between z and z + 7; § <
arcsin(||r||/]|z]]). The central angle in the above sphere
between the points z, and (z + ), i.e. the angle between
thevectorsz, — y/2and (z +r), —y/2,is2(3. Thedistance
between z, and (z + ), istherefore bounded by ||y|| sin 3

and hence by [[y|| - |[7|[/][=]]- 5

To continue with the proof of lemma6, writev,, — v/, =
(v — V) + (v, —v!,)). By lemma7 ||v), — v’,|| <
lw = || < [laf(j = DI By lemmad ||, —vj[| <
[[v" = ol - [lwll/[lol] < [[o" = v]|. Write v/ —v =
(i = Agprpyot] = (45 = Agpap,on]) + (g =
A{pl,...,pj_l}] _ [qj — A{ql,...,qj_l}])' The fact that

llp; — ¢;]] < a immediately implies the same of the first
term; the inductive hypothesisimplies that the second term
is of norm a most af(j — 1). In combination, then,
llvw — v}l < @(2£(G — 1) + 1) o

7 Parallelizability

It is easy to check that the algorithms can, for any fixed
dimension, be parallelized to run in polylogarithmic time
with a polylogarithmic work overhead.
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