
Pattern Matching for Spatial Point Sets
�

David E. Cardoze
Leonard J. Schulman
College of Computing

Georgia Institute of Technology
Atlanta GA 30332-0280�

cardoze, schulman � @cc.gatech.edu

Abstract

Two sets of points in � -dimensional space are given: a
data set � consisting of � points, and a pattern set or probe�

consisting of � points. We address the problem of deter-
mining whether there is a transformation, among a specified
group of transformations of the space, carrying

�
into or

near (meaning at a small directed Hausdorff distance of) � .
The groups we consider are translations and rigid motions.
Runtimes of approximately �
	�� log ��
 and �
	���� log ��
 re-
spectively are obtained (letting ��� max ��������� and omit-
ting the effects of several secondary parameters). For trans-
lations, a runtime of approximately �
	���	������ 1
 log2 ��
 is
obtained for the case that a constant fraction ��� 1 of the
points of the probe is allowed to fail to match.

1 Introduction

Two sets of points in � -dimensional space are given: a
data set � consisting of � points, and a pattern set or
probe

�
consisting of � points. One wishes to determine

whether there is a transformation, among a specified group
of tranformations of the space, carrying

�
into or near � .

B. Chazelle has called this the “constellation” problem.
You are given a diagram of a constellation of � stars, and
you wish to locate the constellation in the night sky or in a
star chart. How would you do this?

The problem has been considered in the literature in a
plethora of variations. The first parameter to consider is the

This is an updated version of: Copyright 1998 IEEE. Published in the
Proceedings of FOCS’98, 8-11 November 1998 in Palo Alto, CA. Personal
use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be obtained from
the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service
Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331,
USA. Telephone: + Intl. 732-562-3966.

dimension of the space. Second is the group of transforma-
tions: the groups considered have been either Translations,
or Rigid Motions (translations and rotations), or Rigid Mo-
tions with Scaling. Third is whether, in case there are any
satisfactory matches, the algorithm is required to provide
just one, or list all of them. Fourth is what qualifies as a sat-
isfactory match: only Exact Matches, carrying

�
into � ; or

all matches for which the directed Hausdorff distance from�
to � is below a specified Threshold ! ; or Nearly Exact

Matches, in which the threshold is small enough compared
to interpoint distances that every point of

�
matches to a

unique and distinct point of � ; or Best Matches, achiev-
ing the minimum possible directed Hausdorff distance from�

to � ; or Approximate Best Matches, approximating the
true minimum. Fifth is whether all probe points are re-
quired to match, or whether Point Failures are allowed, i.e.
the suitability of the match is judged after dropping the "
worst-matching points of the probe.

A sixth distinction which is less important but will be
useful in our work is whether the problem is real-valued or
integer, i.e. whether the underlying space is #
� or $%� . In the
former case there is generally some limit on the precision
with which the points are known (in case they represent
measured data); and even if in principle they can be known
exactly, there is generally a limit on the precision with which
the points are represented, if, as is usual, the data has been
stored in floating point. Thus the most natural formulations
of the real case are the Nearly Exact, Approximate Best
Match, and Threshold formulations. The use of a threshold! also allows for flexibility in use of the algorithm. By setting! appropriately, the algorithm can identify matchings up to
any specified tolerance for distortion, and if ! is chosen
small, the only mappings of the probe into the data that are
allowed are 1 & 1, and distortion-free to within the precision
with which the data are known or represented.

For Translations, in the Integer case, our method works
for Exact, Threshold, Nearly Exact and Approximate Best
Match. In the Real case, the method works for Threshold,

1

Nearly Exact and Approximate Best Match. In all cases,
any specified number of point failures can be tolerated.

For Rigid Motions, in the Real case (Integer considered
as a special case), our method works for Threshold, Nearly
Exact and Approximate Best Match.

For each of these versions of the problem, the algorithm
works for any dimension, and outputs the full list of matches.

In all cases, the method improves upon the best known
algorithms by a factor of about � (up to log terms) in the
runtime.

In order to do this we will allow ourselves a few kinds of
leeway. (a) We will use randomization. (b) We will allow
rare “false positives”: matches may be announced which do
not in fact satisfy the stated criteria. Any error probability' can be guaranteed, however, with only a log 	 1 ('
 multi-
plicative effect on the runtime. Importantly, the algorithms
have no false negatives: no satisfactory match is ever over-
looked. Note also that a typical probe and data pair is likely
to have rather few matches announced by the algorithm, so
that a simple explicit verification of the output of the algo-
rithm will usually quickly produce a guaranteed complete
answer to the given task. However, there are (probe,data)
pairs having so many matches that simply verifying exhaus-
tively the outputs of a correct run of our algorithm, would
take far longer than the algorithm did. It is curious that the
computational bottleneck of this problem appears to be ver-
ification. (c) Except for the Integer Exact Translations case,
we will settle for Nearly Exact, rather than Exact Matches.
But the precision can be as high as is desired, with modest
computational cost.

Our runtimes depend on a “space size” parameter of the
problem,) (essentially the diameter of the point sets), and
on the desired quality of the solution as determined by the
precision parameter * and the accuracy (or threshold) pa-
rameter ! . Both) and ! have negligible impacts on the
runtime of the algorithm.

We do not formally address the Real Exact formulation
but, since our runtimes are faster than existing runtimes for
that formulation, it is likely that the best heuristic way to
solve it is a “generate and test” method, using the Nearly
Exact version of our algorithm to generate matches in which
the destinations of probe points in the data are uniquely iden-
tified, then testing whether these matches can be perturbed
into exact matches.

Applications: The problems presented here, and some
of their variants, have applications in such diverse fields as
machine vision, document processing, computational biol-
ogy and computational chemistry. In these disciplines they
have been used in pharmacophore identification [11], pro-
tein structure alignment [1], image registration [24] and
model-based object recognition [14, 26].

Our results and prior work: The problem is interesting
already in one dimension. Up to now nothing better than�
	��+�,
 time algorithms were known. (For Exact Match
one can simply test each possibility exhaustively; for Best
Match one can “slide” the probe past the data, using an
event list keyed on probe points crossing data points and
Voronoi nodes.) Throughout this paper we use � to denote
the maximum of � and � , the sizes of the probe and data
sets; normally �-�.� . The first result of our paper is a
randomized algorithm for Exact Match in the integer case
running in time �
	�� log �
� log /10 1 2)3
 , where) is the di-
ameter of the data set. We apply this result to obtain an
algorithm for Threshold for the real case running in time�
	���*54 1 log 	���*64 1
7� log /�0 1 2 	�89;:
;
 , where ! is the distance
threshold and * the precision parameter. (Nearly Exact and
Approximate Best Match algorithms with similar runtimes
are consequences.) As noted earlier, we allow a small prob-
ability (polynomial in � for these runtimes) of false-positive
errors. In general for an error probability of �74�< the inte-
ger and real case runtimes are �
	�=>� log �
� log /10 1 2)?
 and
�
	�=@��*64 1 log 	���*54 1
7� log /10 1 2 	A89B:
;
 respectively.

The method extends to solve the Translation problem
in higher dimensions. We solve the Integer Exact prob-
lem in time �
	�=>� log ��� log /10 1 2 	�)3��
;
 , allowing an error
probability of �74C< . The best previous result for Approx-
imate Best Match was a runtime of �
	��D� log �D
 in two
dimensions, achieving approximation factor 2; and the same
runtime in higher dimensions, achieving approximation fac-
tor of 2 �E* for any fixed *GF 0, both due to Goodrich,
Mitchell, and Orletsky[13]. For Real inputs we improve
this to a runtime of �
	�=@��*64 /�0 � 2 log 	���*54 1
�� log /�0 1 2 	 89;:
;
 ,
for Threshold Matches, with approximation factor 1 �E* ;
the same runtime follows for Nearly Exact match with an
appropriate value of ! , and a runtime slower by a factor
of log log 	�)@!�4 1
H� log *54 1 follows for Approximate Best
Match. (Our precision parameter becomes the approxima-
tion factor for the case of Approximate Best Match.)

(Throughout this paper =I�B!I�;*������J��������"I�J) are regarded
as variable in the � notation, and � as a constant.)

In all of the above cases our method extends to enable
us to detect all matches that have up to a specified number
of point failures, " . In all cases the runtime (excluding the
log /�0 1 2) term which remains unaffected) is multiplied by a
factor of 	�"K� 1
 log � , provided " is bounded by a constant
fraction of the probe size.

We address the rigid motion problem in arbitrary dimen-
sion � , providing an �
	�=>���3*54 /�0 � 2 log 	���*64 1
�� log /10 1 2 89B:

time algorithm which, with error probability �74�< , identifies
all rigid motion matches achieving Threshold ! to within
precision * . As before, the same runtime follows for Nearly
Exact Match (with appropriate !); Approximate Best Match
follows with a further factor of log log 	�)>!�4 1
L� log M@4 1.
This improves (in the runtime and in addressing arbitrary

*) on the Approximate Best Match result provided in N 13O ,
which achieves approximation factor 4 in the plane in time�
	�� 2 � log �D
 , and approximation factor 8 �P* (for any
fixed *QF 0) in # 3 in time �
	�� 3 � log �+
 . De Rezende and
Lee described an �
	��D�3�,
 time solution to the Exact Rigid
Motion problem.

Recently and independently of our work, Indyk, Mot-
wani and Venkatasubramanian [19] studied the rigid mo-
tions problem in its Threshold (hence also Nearly Ex-
act or Approximate Best Match) formulation in two
and three dimensions, with and without point failures.
Their runtimes (omitting log terms as well as the de-
pendence on a precision parameter and on the value
of the threshold) are: in two dimensions, without
point failures, �
	 min �I��	�� 4)3
 1 R 3 �J�S	�)%�T�D
��I
 , and with
point failures, �
	�)?�+�,
 ; in three dimensions, without
point failures, �U	 min ��� max �I� 2 V 25) 1 R 2 ��� 2 V 5 �W���D)5	�) 2 ��D
>��� 2 	��X�Y)3
��I
 , and with point failures, �
	�) 3 �D�,
 .

Irani and Raghavan [20] provided a randomized algo-
rithm for Nearly Exact Rigid Motions with Scaling in the
plane, with point failures. Their runtime is �U	�� 2 � log �D
 ,
which is slower than our �
	�� 2 log ��
 Nearly Exact Rigid
Motions method for the plane, and solves a harder problem.
They allow rare “false negatives” and no false positives, the
opposite of our failure mode.

Other Work: Best Match for Rigid Motion is a more
difficult problem than Exact Match. An �
	�� 2 � 3 log2 �D

time algorithm for the Best Match problem in the plane was
given by Chew, Goodrich, Huttenlocher, Kedem, Kleinberg
and Kravets [9].

The spatial pattern matching problem changes character
considerably when the two sets play symmetric roles. For
Exact Translations on the real line, Rote gave an �U	�� log ��

time algorithm. For Exact Rigid Motions, with �Z�[� ,
Atallah [3] provided an �
	�� log �D
 time algorithm in di-
mension 2 for planar figures. Atkinson [4] obtained the
same runtime in dimension 3. Alt, Mehlhorn, Wagener and
Welzl [2] obtained runtime �
	��D�@4 2 log �+
 in dimensions�\F 3. The undirected Hausdorff distance between two sets
is the maximum of each of the directed distances. Com-
putation of the least such distance obtainable under a given
group of transformations, is quite a different problem from
computation of the least possible directed distance. Some
of the known results are those of [15, 17] for translations,
and [16] for rigid motions.

There is an obvious similarity between the one dimen-
sional problem, and string matching problems. There are
a variety of well-known and exceptionally efficient string
matching methods [23, 22, 21, 8, 12]. The most important
distinction between the problems is the sparsity of the data
in the spatial point set problem. The spatial problem can be
reduced by discretization to a string search problem, but the

result is an instance of size) , which is typically far greater
than � . Indeed, consider the constellations: the night sky is
dark — the visible stars are sparse.

2 Algorithm: One Dimension

The one-dimensional problem has four variants, depend-
ing upon whether the points are reals or integers, and whether
they lie on the line or on the circle. “Integers”, in the case of
the line, means that there is a length dividing all distances] ^ &`_] , for 	 ^ ��_6
baD� 2 c � 2. In the case of the circle, this
length must also divide the circumference of the circle.

The real case is handled by reduction to the integer case.
We defer discussion of it to section 2.4.

To formalize the integer problem it is convenient to rep-
resent the probe and data by their characteristic functions�

and � from $ or $�(5) () being the size of the circle) to� 0 � 1 � .
The space size of a problem

� ��� is, for inputs on a
circle, its size) ; for inputs

� �J� on the line, the space size
is)5	 � ���

H� max �] ^ &S_] : ^ �J_\a � 2 c � 2 �K� 1.

For integer d we let
� �ed denote the set which contains

^
if and only if

�
contains

^ &Dd (i.e.
� �+d is the Minkowski

sum of
�

and �@d>�); �`�Ud is defined similarly. Formally, our
task is now:

Problem: Identify the set of “valid displacements,” defined
for the line by fhgLi jk�l�>dQaG$: m ^ � � 	 ^ &SdJ
on �D	 ^
��
and for the circle by fhgLi j-�X�@dpaS$p(6) : m ^ � � 	 ^ &hdJ
qn��	 ^
�� .

Our main result for the integer case is:

Theorem 1 Let integer pattern
�

and integer data � be
given. Let)p�T)5	 � ���

 . Choose any =LF 0. Our algorithm
runs in time �
	�=@� log �%� log /�0 1 2)3
 and with probability at
least 1 &S�74C< produces the correct list fhgLi j .

Note: As is customary in computational geometry [27, 25],
we adopt the real Random-Access Machine as our computa-
tional model. More concretely, our runtimes count FLOPs
on a machine whose word length is large enough to hold the
inputs (i.e. proportional to log) .)
Proof: First we note mutual reductions between the line
and circle cases. Given probe

�
and data � on the circle,

reduce these to a line instance with space size 2)5	 � ���

as follows. Let Rep 8 : $%(6)hrs$ be the function that
assigns to every

^ aS$�(6) the integer 0 nt_D�t) such that^�u _ mod) . Map
�

to vw	 �
%� c�x5y j � Rep 8 	
^
�� . Map� to vL	��

e� c�x6y g � Rep 8 	

^
@� Rep 8 	
^
H�T)z� . Note thatd is a valid displacement for 	���� �
 iff Rep 8 	{dJ
 is a valid

displacement for 	�vw	��

>��vL	 �
;
 . Thus we can “pull back”
the valid translations for � and

�
from those for vL	��

 and

vL	 �
 . The cost of the reduction is a doubling of the data set
and of the space size.

The line problem is essentially a special case of the circle
problem: given probe

�
and data � on the line, reduce these

to a circle instance with space size |e} 2)5	 � ���

 as follows.
Map

�
to ~
	 �

��� ^ aT$�(5| : � ' a � such that

^ �' mod |�� . Similarly map � to ~
	��

L��� ^ a�$p(5| : �,�ea� such that
^ �T� mod |�� . Note that d is a valid displace-

ment for 	���� �
 iff d mod u is a valid displacement for	�~
	��

>��~
	 �
B
 , and � min & ' max n-dQnT� max & ' min. Thus
we can pull back the valid translations for � and

�
from

those for ~
	��

 and ~
	 �
 . The cost of the reduction is a
doubling of the space size. For future reference note that
both line-circle reductions hold in higher dimension (read
now unbounded-torus); costs increase by 2 � rather than dou-
bling.

Outline of the method: The original, sparse problem is
subjected to several different randomizations. Each of these
is transformed by a space reduction procedure to a dense
problem, which is then solved using a Fast Fourier Trans-
form. In each of the randomizations, false positive matches
may appear due to the space reduction and, depending on
how it is performed, the Fourier Transform. However, due
to statistical independence of the trials, when the different
randomized solutions are combined there is only a small
probability of any false positive remaining.

We begin with pseudocode for the main procedure calls
of the algorithm, and then explain each of the procedures.
Thanks to the above reduction we can assume that the input
to the algorithm is a line problem.

Translations 	 � ���

1. If � is less than some threshold run the naive algo-

rithm, otherwise continue.

2. | : � SelectPrime 	 2)3

3. 	 � 1 �J� 1
 : �E~
	 � ������|C

4. Repeat for ��ah� 1 �?�������?	�=C� 1
 log 4

3
�7�

��� : � FindTranslations 	 � 1 �J� 1 � 2 � lg 0 20 �W2��
 .
5. Return the pullbacks � of � ����� to 	 � �J�

 .

FindTranslations 	 � �J������

1. 	 � 1 �J� 1
 : � RandomMultiply 	 � �J�

 .
2. 	 � 2 �J� 2
 : �EvL	 � 1 �J� 1
 .
3. 	 � 3 �J� 3
 : � ReduceSpace 	 � 2 �J� 2 �J��
 .
4. � : � FindMatches 	 � 3 �J� 3

5. Return the pullback of � to 	 � �J�

 .
We now describe each of the underlying procedures.

2.1 SelectPrime

The procedure SelectPrime 	���
 returns a prime between
� and 2 � . This can be done in time log /�0 1 2 � by choosing
integers at random within the given range and testing for
primality (see [5]).

2.2 FindTranslations

The procedure FindTranslations 	 � �����J��
 takes three ar-
guments: a probe set

�
, a data set � , both in $%(I| for some

prime | ; and an integer � . FindTranslations returns a super-
set of fhgLi j which is not likely to be too much larger thanfhgLi j .

2.2.1 RandomMultiply

The arguments to RandomMultiply 	 � ���

 are a probe set�
and data set � , both in $%(I| for some prime | . The

procedure first chooses an integer � uniformly at random
from � 1 � 2 �3�?�3�;��|+& 1 � . The circle $p(6| is then carried
bijectively to itself under �p� i � 	 ^
L� ^ � mod u, yielding a
new probe �q� i � 	 �
K� c�x5y j �I�p� i � 	 ^
�� and a new data set�q� i � 	��

� c�x5y g ���q� i � 	 ^
�� ; the valid displacements are
transformed bijectively, d to �q� i � 	�dJ
 .
2.2.2 Space Reduction

The arguments to ReduceSpace 	 � �J�����C
 are a probe
�

,
a data set � in $, and a target space size � . A map�
�

: $�r $�(I� is defined by
�
� 	 ^
�� ^

mod h,
and new probe and data sets are defined on the circle by�
� 	 �
�� c x6y jL� �
� 	 ^
�� and

�
� 	��

� c x5y g%� �
� 	 ^
�� .
We explicitly store the preimages

� 4 1� i j of every new probe

point, and
� 4 1� i g of every new data point.

Let ' 0 be an arbitrarily chosen element of
�

. The pull-
backs of any valid displacement � that is identified for the
problem 	 � � 	 �
>� � � 	��

B
 are defined to be the displace-
ments

� 4 1� i g 	 � � 	 ' 0
A�E�,
�& ' 0.1 We denote the set of all

pulled-back displacements by
� 4 1� 	�fh�H� 0 g 2 i �H� 0 j 2
 .

Every match of
�

into � is carried to a match of
�
� 	 �

into
�
� 	��

 . The converse, however, may fail: new matches

can be created by this process. (I.e. a pullback may not be a
valid displacement.)

Proposition 1 f gLi jZ� � 4 1� 	�fh� � 0 g 2 i � � 0 j 2
 .
1There may be several such, if � �\ 1¡3¢ £¥¤ � ¡ ¤§¦ 0 ¨5©\ª6¨ �@« 1.

Proof: The point is
�
�

is a homomorphism. Specifically,
let deaPf gwi j . Then for any ' a � , ' �Ed equals some�Za¬� ; and

� � 	 '
b� � � 	{dJ
­� � � 	 ' �EdJ
e� � � 	���
�a� � 	��

 . Therefore
� � 	�dJ
oa-fh� � 0 g 2 i � � 0 j 2 . Let � 0 a®�

be s.t. � 0 � ' 0 �¯d : then � 0 a � 4 1� i g 	 �
� 	 ' 0
�� �
� 	�dJ
;
 , and

dKa � 4 1� i g 	 �
� 	 ' 0
°� �
� 	�dJ
B
�& ' 0. ±
2.2.3 Finding Matches

The procedure FindMatches 	 � ���

 takes two arguments: a
probe

�
and a data set � on a circle of size � (a power of 2).

Following an idea introduced by Fischer and Paterson [12],
the procedure works as follows. Let ˜� be the complement
of � . Note that

� �Gd � � if and only if
� �hdL² ˜�³� 0

(boolean dot product). The list of all these dot products is
the convolution of ˜� with the function whose value at

^
is
� 	´& ^
 ; this convolution can be computed in �
	�� log ��

time using an FFT. Better yet, a randomized approximation
to this convolution can be obtained in time �
	���
 using the
following result:

Theorem (Indyk)2 [18]: Let |7��µea`� 0 � 1 �?¶ R � . There exists
a randomized algorithm which in �U	���
 time computes an
approximation of the boolean convolution of | and µ in the
sense that it outputs a vector ·¸a�� 0 � 1 �?¶ R � such that for
any � :

1. If 	�| � µ6
@N �{O°� 0 then ·oN¹��Oº� 0,

2. If 	�| � µ6
@N �{O°� 1 then
� "�N ·oN¹��O,� 1 Oº� 1

2 .

After computing either the exact or randomized-
approximate convolution, FindMatches returns all transla-
tions d for which the coefficient in · is 0.

2.3 Overall Analysis

We begin with an upper bound on the probability that
FindTranslations outputs a fixed invalid translation d for �
and

�
, the inputs to FindTranslations. Let � gLi j be the set

of invalid translations for � and
�

, that is � gLi j �»�@d¼a$p(6| :
� �Gd
½� �e� . For each d%a¯� gLi j fix an element of�

, call it ¾\	�dJ
 , such that ¾�	�dJ
7�hdQ(aD� .

Lemma 1 Let
� ��� � $p(5| be the inputs to

FindTranslations. Let ' a � and �Ea¿� . If d is such
that ' �hdQ½�k� then the probability that either

(i) Rep � 	��q� i � 	���
;
 u Rep� 	��q� i � 	 '
;
L� Rep � 	��q� i � 	�dJ
B
	 mod ��
 , or

(ii) Rep � 	��q� i � 	���
;
 � | u
Rep � 	��q� i � 	 '
B
°� Rep � 	��q� i � 	{dJ
;
À	 mod ��

2Indyk’s result is stated for convolution on $ but the translation to $pÁ>Â
is immediate.

after step 2 of FindTranslations, is at most 8� �� 4 1 .

Proof: Consider case (i). It implies that there is a nonzero" satisfying & 2 �� n®"Ãn 2 �� such that

Rep � 	��I��
7& Rep � 	��@dJ
7& Rep� 	�� '
H�k"I�
and therefore

�I�q&`�@d�&`� ' � "I� 	 mod |C

�Ä� 	��Ã&DdH& '
 4 1 "I� 	 mod |�

For any fixed " , the probability that � u "I�L²;	���&Qd�& '
�4 1

	 mod |C
 is 1� 4 1 . Thus the probability of case (i) occurring
is at most 4� �� 4 1 . A similar argument applies to case (ii).±
Lemma 2 Let d
aÅ�ÃgLi j , where � and

�
are the inputs

to FindTranslations. The probability that Rep � 	�� � i �I	�dJ
B
qa� 4 1� 	�f � � 0 g 2 2 i � � 0 j 2 2
 after step 2 of FindTranslations is at
most � 8� �� 4 1 �
Proof: Suppose Rep � 	��q� i � 	�dJ
B

a � 4 1� 	�fh� � 0 g 2 2 i � � 0 j 2 2

after step 2 of FindTranslations. Then there exists �+a®�
such that either:

(i) Rep � 	�� � i �6	���
B
 u
Rep � 	�� � i �6	�¾\	�dJ
B
;
°� Rep � 	�� � i ��	{dJ
;
À	 mod ��
 , or

(ii) Rep � 	�� � i �6	���
B
-�À| u
Rep � 	�� � i �6	�¾\	�dJ
B
;
��

Rep � 	�� � i �6	�dJ
B
À	 mod ��

From the previous lemma the probability of this occuring

is at most 8� �� 4 1 . Thus the probability that Rep� 	��p� i � 	�dJ
;
Æa� 4 1� 	�fh�H� 0 g 2 2 i �H� 0 j 2 2
 is at most � 8� �� 4 1 . ±
Corollary 1 Let dpa��%gwi j , where 	 � �J�

 are the inputs to
FindTranslations. Then

� "�	�dba ���
bn 3
4 .

Proof: Let dDat� . Let Ç be the event [dKa ���], and ~
the event È Rep � 	��q� i � 	�dJ
;
Æa � 4 1� 	�fh� � 0 g 2 2 i � � 0 j 2 2
ÊÉ . Note
that

� "�	�~Q
�n 1
2 since �e} 20 � . Therefore

� "5��Ç\�Àn � "5�I~\�1� � "5��Ë¥~\�Æ² � "5��Ç] ËH~\�
n 1

2
� 1

2
� ��Ç] Ë¥~\�Ln 3

4

±
We construct the list of matches � by identifying all the shiftsd for which the convolution in FindMatches obtains a value
of 0. Each such match dQa-� is pulled back, as explained
in sections 2 � 2 � 1 and 2 � 2 � 2, to a candidate displacement for	 � ���

 and included in � � .

We now bound the probability of failure of the
Translations algorithm.

Lemma 3 Let � and
�

be the inputs to the Translations
algorithm, and � its output. The probability that � ½�-f gLi j
is at most �74�< .
Proof: Recall that f g 1 i j 1 � � � � � . Now let d�aZ� g 1 i j 1 .
We know that the probability that dLa � � for ��ah� 1 �?�3�3�J�3	�=5�
1
 log 4

3
�7� is at most 3

4 . Thus the probability that dpa¯� � � �
is at most 1�WÌÎÍ 1 . If do(a�� 1 & ' 0, it cannot appear in any ��� .
Therefore by a union bound,

� "�	�f g 1 i j 1 ½�X� � � �
ÃnÅ�74C< .
The map from f gLi j to f g 1 i j 1 is bijective and the lemma
follows. ±

Finally consider the runtime of the algorithm. Each step
in FindTranslations takes time �
	���
 . Therefore the total
time spent on all calls to FindTranslations is �
	�=>� log ��
 .
SelectPrime takes time �
	 log /�0 1 2)3
 , therefore the total run-
ning time of the algorithm is �
	�=>� log �\� log /�0 1 2)3
 . This
completes the proof of theorem 1. ±
2.4 Real-Valued Inputs

Recall that the directed Hausdorff distance �7	�ÏD�BÐ

 from
a set Ï to a set Ð is sup x5yIÑ inf Ò y�ÓeÔ 	 ^ ��_6
 (where Ô is
the underlying metric, in this case simply distance in one
dimension). This “distance” is not symmetric but satisfies
the triangle inequality.

We focus on the Threshold version of the problem. Given
a parameter ! , we wish to identify all shifts which carry the
probe to a position in which �°	 � �J�

¥�Z! . Let

f :gLi j �P�>dKae# : �7	 � �hd?���

b�Z!��
on the line; and let

f :gLi j �P�>dKae#¼(5) : �7	 � �hd?���

b�Z!��
on a circle of circumference) .

When not empty, f :gLi j is an infinite set, so the task of
our algorithm is to find suitable representatives from this
set. We use a secondary parameter * , indicating the pre-
cision with which this task is performed. Specifically, we
require that the Threshold algorithm solve the following:

Problem: Identify a set of “valid displacements,” � : i 9gLi j ,
satisfying the “ 	�!I�B*�
 conditions”:

1. �7	�f :gLi j � � : i 9gLi j
¥�Z*?! .
2. � : i 9gLi j � f : 0 1 Õ 9 2gLi j .

A solution to this problem identifies, for every shift achiev-
ing probe-data Hasudorff distance ! , a nearby shift of almost
the same quality.

Theorem 2 Given real input 	 � ���

 and a parameter ! ,
we can identify a set of displacements � : i 9gwi j , satisfying the
	�!I�B*�
 conditions with probability at least 1 &`�74�< , in time
�
	�=@��*64 1 log 	���*54 1
H� log /10 1 2 89;:
 , where)��Ö)5	 � ���

\�
max � Ô 	 ^ ��_6
 : 	 ^ �J_5
¥a � 2 c � 2 �K� 1.

Proof: We begin by discretizing the probe and the data
as follows. Set �e� 2 :B9

5 � 1 × 2 . (In the case of the circle, slight
adjustment is necessary so that � divides the circumference.)
For a point � let ˆ� be the point satisfying ˆ�
�tØe�C��Ø[aG$
where �ÅaÙN ˆ�\&.Ú2 � ˆ�¼&ÙÚ2
 , i.e. a nearest multiple of � .
Discretize the probe by rounding each point ' to ˆ' . Let the
discretized probe

�%Û
be the union of the discretizations of

all the probe points. Let the discretized data � Û be the union
of the discretizations of all the data points, together with
all integer multiples of � that, for some �Da`� , are within
distance !p� 3 :;9

5 of ˆ� .
The set of all valid displacements of this discretized ver-

sion satisfy the 	Î!��B*I
 conditions. The data size has increased
by a factor of �
	Î*64 1
 , and the theorem follows by reduction
to theorem 1. ±
Nearly Exact Matches: If !��B* are chosen so that 	 2 �
8 *I(5
Ê!�� min �] ^ &Y_] : 	 ^ ��_6
oa � 2 c � 2 � then a match
satisfying the 	Î!I�;*I
 conditions will have the properties (a)
every probe point has exactly one data point within distance! , and (b) this mapping from probe points to data points is
injective.

3 Translations in Dimension Two and Above

We now address the following problem. A probe
�

and
data set � are given, both finite point sets in the spaceÜ �-$p� (for the integer, unbounded case) or

Ü �®#¼� (real,
unbounded case) or

Ü �TÝ �1 	�$�(5) �
 (integer torus) or
Ü �

Ý �1 	�#­(I) �
 (real torus). The problem is to identify all “valid
translations”, i.e. elements d%a Ü such that

� �qd (Minkowski
sum) is (or is near) a subset of � . In the threshold case, just
as for one dimension, the 	�!I�B*�
 conditions are required,
with Euclidean distance as the underlying metric. Thanks
to the reduction noted earlier we may assume the problem
is unbounded, at a possible cost of a factor of 2 � in the size
of the data set.

For the Threshold version of the problem, with parame-
ters ! and * , discretize following the same description as for
the one dimensional case: now each coordinate is rounded
to the nearest multiple of � , and discretized data points are
replicated throughout a metric ball. Proceed as for Integer
Exact Match. For the Nearly Exact version of the problem,
set !
� min Ô 	 ^ ��_6
 for 	 ^ �J_5
%aS� 2 c � 2. (! can be com-
puted in time �
	�� log ��
 , see [6, 7, 25].) Continue as for
Threshold. In all cases call the new probe and data

�
1 �J� 1.

It remains only to describe the procedure for Integer Exact
Match.

Choose a random vector |�a-#¼� from the spherically
symmetric Gaussian distribution with total variance 1 (each
coordinate has variance �,4 1 R 2). Form a new probe

�
2 in

one dimension by mapping each point
^

of
�

1 to the number|­² ^ (dot product in # �); form a one dimensional data set� 2 similarly.
As before, fix a point ' 0 a � 1 and define � to be the set

of vectors dLa­#¼� such that ' 0 �%dLa�� 1 but
�

1 �ÃdQ½� � 1. For
each dLaÞ� fix a point ¾\	�dJ
ba � 1 such that ¾�	{dJ
��ßdÃ(aD� 1.

The probability that there exist d�aS� and _eaS� 1 such
that

] 	�|�²,	�¾\	�dJ
H�®dJ
;
b&T	�|+²6_6
] � 10 2 à � 2 1 × 2 � Ì�Í 2 is at most

�74C< . If this happens, this run of the algorithm is considered
to fail.

Discretize the line at a scale of 1
5 0 2 à � 2 1 × 2 ��Ì�Í 2 . Form a new

probe
�

3 by rounding each probe point in
�

2 to the nearest
“integer”; form a new data set � 3 by repeating each data
point in � 2 at the four nearest “integers”. Now solve the
Exact Match problem for

�
3 and � 3.

Any Exact Match of
�

1 and � 1 is carried to an Exact
Match of

�
3 and � 3. On the other hand if the failure event

described above has not occurred, then every such match of	 � 3 ��� 3
 will pull back to a match (of the desired type) of	 � ���

 . Thus we have:

Theorem 3 Let pattern
�

and data � be given in $�� or#¼� . Let)S�á)6	 � ���

D� max � Ô 	 ^ ��_6
 : 	 ^ ��_6
+a � 2 c
� 2 �Q� 1. In the Threshold case let ! be the threshold;
in the Nearly Exact case let !S� min � Ô 	 ^ ��_6
 : 	 ^ ��_6
�a� 2 c � 2 � . Choose any =hF 0. Our algorithm runs in
time �
	�=>� log �­� log /�0 1 2)3
 in the Integer Exact case, or
�
	�=�*54 /10 � 2 � log 	���*54 1
b� log /�0 1 2 89;:
 in the Threshold or
Nearly Exact cases. With probability at least 1 &-�74C< it
produces, in the Integer Exact case, the correct list of valid
translations; and in the remaining cases,a set of translations
satisfying the 	�!I�;*I
 conditions. ±
4 Point Failures

Given two sets � and
�

of integers, and a number dÆa�$,
let the number of point failures of a translation by d beâ 	{dJ
Q�] � ^ a � :

^ �GdÞ(a-�e�] . We want to find the setfhgLi j�i ãp�T�@dKa�$:
â 	{dJ
bn-"5� of translations that match all

but at most " elementsof
�

to elements in � , or “ " -matches”.
Our method extends also to solve this problem for a given
directed Hausdorff distance ! , and for translations in higher
dimensions. We first address the case of integer

�
and � in

one dimension. Let �Ua¯	 0 � 1
 be any constant.

Theorem 4 Let integer pattern
�

and integer data � be
given. For any "onY��� our algorithm runs in time �
	�=>��	�"��

1
 log2 �­� log /�0 1 2)3
 and with probability at least 1 &Y� <
produces the correct list f gLi j�i ã .
Proof: The basic form of the algorithm will be the same
as for 0-matches. First note that the mutual line-circle re-
ductions preserve " -matches; hence we assume a line input.
Constants äz�Jµ and å will be specified below.

PartialTranslations 	 � �����J"I

1. If � is less than some threshold run the naive algo-

rithm, otherwise continue.

2. | : � SelectPrime 	 2)?
 .
3. 	 � 1 ��� 1
 : �k~
	 � �����J|�
 .
4. Repeat for ��ah� 1 �?�3�3�;��µ log �7�

� � : � FindPartialTrans 	 � 1 �J� 1 �JäI	�"H� 1
B���J"I
 .
5. Set ä�æ : �] �I�7a�� 1 �3�?�3�;��µ log �7� : dLa ��� �] .
6. Return the pullbacks � of �>dba c � � � : ä æ }Gå%� .

FindPartialTrans 	 � �J�����°��"I

1. 	 � 1 ��� 1
 : � RandomMultiply 	 � ���

 .
2. 	 � 2 ��� 2
 : �kvL	 � 1 ��� 1
 .
3. 	 � 3 ��� 3
 : � ReduceSpace 	 � 2 ��� 2 ���C
 .
4. � : � FindPartialMatches 	 � 3 ��� 3 �J"I
 .
5. Pick ' 0 uniformly at random from

�
, and return the

pullback of � to 	 � �J�

 with respect to ' 0. (Transla-
tions for which ' 0 is not matched are omitted.)

The only new procedure is FindPartialMatches 	 � �����J"I
 ,
which we describe below.

First we observe how " -matches are transformed under
ReduceSpace. For any ' a � , the pullback with respect to' of an " -match � for 	 � � 	��

>� � � 	 �
;
 is defined to be the
set of displacements

� 4 1� i g 	 � � 	 '
��G�,
7& ' . Further define� 4 1� 	�fh� � 0 g 2 i � � 0 j 2 i ã
>	 '
 to be the union of
� 4 1� i g 	 � � 	 '
;��,
¥& ' over all " -matches � in fh� � 0 g 2 i � � 0 j 2 i ã . We now

have:

Proposition 2 If dKa�f gLi j�i ã and ' a � is such that ' �Udba� then dKa � 4 1� 	�fh� � 0 g 2 i � � 0 j 2 i ã
>	 '
 .

4.1 Find Partial Matches

FindPartialMatches 	 � �J����"I
 takes three arguments: a
probe

�
and a data set � (on a circle of size �), and an

integer " . Note that d is an " -match if and only if
� �Sd�² �¸}] �] &T" (dot product over $). The list of all these dot

products is the convolution of � with the function whose
value at

^
is
� 	´& ^
 ; using the fast Fourier transform (over$p(6�), FindPartialMatches computes this in time �
	�� log ��
 .

(Recall that we have assumed a word length proportional to
log)G} log � . This precision in the computation of the
transform suffices so that rounding errors do not affect the
computation of any value

� �ßd,² � by more than 1 (4, hence
after a final rounding to the nearest integer, the list of dot
products is correct.)

4.2 Overall Analysis

We begin with an upper bound on the probability that
FindPartialTrans outputs a fixed invalid " -match d for � and�

(the inputs to FindPartialTrans). For the remainder of this
section let µo�t	�=>� 3
>	 43 log 4

3 & 1
3
�4 1 2

1 4 Ú , let åY� 2
3 	 1 &p��
;µ ,

and let äL� 17
1 4 Ú .

Lemma 4 If d is an invalid " -match for � and
�

, the prob-
ability that dLa � � is at most 8ç �� 4 1 .

Proof: Let è æ �X� ' a � : ' �Sd­(a¯�e� : then
] è æ] �t"L�Gé

for some é�F 0. Now let ˜è�æ be a subset of
] è�æ] of size "�� 1.

FindPartialTrans will output d if there is an element ' of ˜è�æ
and an element �UaÞ� such that

(i) Rep� 	�� � i �6	���
;
 u Rep � 	�� � i �I	 '
;
H� Rep � 	�� � i �6	�dJ
B
	 mod ��
 , or

(ii) Rep� 	�� � i �6	���
;
 � | u
Rep� 	��q� i � 	 '
;
�� Rep � 	��q� i � 	{dJ
;
À	 mod �C
 .

The probability of this event is at most 	�"�� 1
;� 8� �� 4 1 . Since�e}®äI	�"K� 1
;� ,

Lemma 5 If d a fhgwi jCi ã the probability that
FindPartialTrans outputs d is at least ê 4 ãê � 1 &`� .
Proof: If d is not output by FindPartialTrans then ' 0 is such
that ' 0 �Ed`(at� . Since there are at most "Snë��� such
elements the claim follows. ±
Applying a Chernoff bound we obtain that

� "5��ä æ }
å log �7�onkì 0 1

3 4 4
3 log 4

3 23í 1 î6ïBð2 ñ log � if d is an invalid " -match,

and
� "5��ä æ n`å log �7�QnYìz4 í 1 î6ï;ð18 ñ log � if dKaDf gLi j�i ã . Thus

the probability of dpa�f gLi j�i ã not being reported is at most
1� Ì�Í 3 and the probability of d�(a�f gLi j�i ã being reported is at

most 1� Ì�Í 3 . Since the size of f gwi jCi ã is at most � 2 and the
set of invalid " -matches that can potentially be reported is

also at most � 2, we obtain that the probability of failure is
at most 1��Ì .

Computing | can be done in time �
	 log /�0 1 2)3
 as before.
FindPartialTrans takes �
	;	�"°� 1
;� log 	B	�"°� 1
;��
B
 time, and
is called �
	�= log ��
 times. The ä æ ’s can be computed in�
	�=@� log ��
 time. Therefore (and since "S�.�) the total
running time is �
	�=I	�"K� 1
B� log2 �\� log /10 1 2)?
 .
Note: If we let "D� 0, then we obtain an �
	�=@� log2 ���
log /�0 1 2)3
 algorithm for the case of no point failures.
Whether it is preferable to use the asymptotically slightly
faster result stated earlier, will depend on the efficiency with
which Indyk’s procedure can be implemented.

5 Approximate Best Match

We have focussed on the Threshold formulation of the
Real problem. Much of the previous literature is stated in
terms of the optimization version of the problem: given

�
and � , find the smallest ! such that

�
can be carried to within

a directed Hausdorff distance ! of � . Depending on whether
the answer is required to be exact, this is either the Best
Match or Approximate Best Match formulation. For reasons
given earlier, having to do with finite precision in real-valued
data, we believe that the approximate formulation is more
natural (at least, if the approximation factor can be made
1 �S*wmC*QF 0).

Our algorithm can be used to solve this version. First
perform a “doubling search” on lg ! : run the Threshold
matching algorithm starting with !Q�k)3(220

, then !%�k)3(221
,

and in general !Q��)?(22 ò until an � 0 is reached for which no
matches are found. Then perform a regular binary search
on lg 	�)?(z!6
 between 2

�
0 4 1 and 2

�
0 . Then run the algorithm

another few times, decreasing the “precision parameter” * ,
until the best match value ! has been identified to within
the desired approximation factor 1 �S* . The runtime of this
procedure depends on the actual value of the best match! , and is 	 log log 	�)?(z!6
�� log *64 1
 times the runtime of the
Threshold algorithm with precision * .
6 Rigid Motions

We sketch how our method applies to solving the Rigid
Motions problem in any dimension � . (As will be apparent
from the method, in dimension �+F 2 Scaling can also be
allowed without substantial adverse effect on the analysis.)
We solve the Threshold, Nearly Exact and Approximate
Best Match formulations; the latter two are reduced to the
first, just as before, by either judicious choice of, or binary
search for, an appropriate threshold.

Notation: Given a point
^

and an affine subspace ¾ , letN ^ ró¾wO denote the shortest vector from
^

to a point in ¾ .

Given a set of points � ' 1 �3�ô����� '6õ � , let ¾�ö�÷ 1 i V¹V¹V i ÷3ø;ù denote the
affine subspace they span (by which we mean the lowest
dimension affine subspace containing all the points).

Let
â

: úûrü# Õ and let
]�] "]ô] be the Euclidean norm

of vector " . Define a “frame” for the probe, relative to the
function

â
, to be a set Ç����I� 1 �?�������J� � � � � which provides

a numerically stable way of “gripping” the probe, in the
following sense: if the positions of each of ��� 1 �3���ô����� õ �Q	 1 ný nT�W
 are perturbed by a small amount þ , forming a new
set of points � ' 1 �3�ô����� ' õ � s.t. Ô 	 ' � �J� �
bnZþ�m 1 n-��n ý , then
for any point of the probe

^
,
]ô] N ^ rÿ¾%ö�÷ 1 i V¹V¹V i ÷3ø;ù�O°&TN ^ r¾�ö � 1 i V¹V¹V i � ø;ù�O]�] nÅþ â 	 ý
 . The first �o& 1 points of Ç will be

referred to as its 	��%& 1
 -subframe Ç Û .
We will shortly outline an argument showing that forâ 	 ý

��	 3õ & 1
;(2, frames do exist; and a frame can be

quickly found.
First however we show how a frame Ç allows us to solve

the rigid motions problem in #¼� . Discretize the data by in-
troducing a scalar grid of length scale �
	Î*�(â 	���
;� 1 R 2
;
 , and
duplicating each data point at all points of the grid within
distance !,	 1 ���
	�*I
;
 . Then range over all ���@4 1 ways in
which the points of the 	��¥& 1
 -subframe Ç Û can be assigned
to data points. If, for such an assigment, there is a rigid
motion carrying the subframe to within directed Hausdorff
distance *�(â 	���
 of the chosen data points, then, for any
such rigid motion, any remaining point of the probe is re-
stricted to lie in a “solid ring” in space (annulus, in the plane)
whose cross-section has radius �
	Î*�
 . Upon finding that a
satisfactory rigid motion exists for a particular assignment,
choose one such rigid motion; then each remaining point
of the probe is constrained to lie on a circle. Form a one-
dimensional Integer problem on that circle by discretizing
it at a scale of �
	Î*�
 , and placing a data point at each “in-
teger” lying within distance �
	Î*�
 of any of the duplicated
data points in #
� . Solve all the circle problems and intersect
their solutions (allowing for rounding because of the slightly
differing discretizations on each circle).

The total number of probe points in all the one dimen-
sional Integer Exact problems is the same as the original
probe (minus the frame points); the total number of data
points in all these problems has increased by a factor that
depends only on the dimension. Since the runtime of the
one-dimensional integer exact problem (as given in theo-
rem 1, and noting that the parameters = and) are fixed in
this discussion) is convex, the total time required to solve
all instances at hand is no more than it would be solve one
problem containing all the probe and data points, hence�
	�� log ��
 . Combining the solutions requires only inter-
secting all candidate translations (allowing for rounding due
to the differing discretizations of the various circles), and
can be done in time �
	�� log ��
 . Hence the total runtime for
the algorithm is �
	���� log ��
 .

Quality of the solution: We phrase the 	Î!��B*I
 conditions for
the rigid motion problem by over-representing any particular
rigid motion as a point in 	{#¼�;
 ê , the � ’th “#¼� -coordinate”
being the image of the � ’th probe point. The set of rigid
motions satisfying the ! threshold condition is

f :gLi j � �3Ï³aS	�# �
 ê : �°	ÎÏD�J�

Æ�Y! and X is the

image of
�

under a rigid motion �W�
We require that the threshold algorithm solve:

Problem: Obtain a set � : i 9gLi j of “valid rigid motions” of the
probe, satisfying the following “ 	�!I�;*I
 conditions”:

1. Every point in � : i 9gLi j is the image of
�

under a rigid
motion.

2. �7	�f :gwi j � � : i 9gwi j
¥�Z*?! .
3. � : i 9gwi j � f : 0 1 Õ 9 2gLi j .

To summarize these results (and including the effect of
the secondary parameters on the runtime), we have:

Theorem 5 Let pattern
�

and data � be given in # � , along
with a threshold ! , a precision parameter * , and a reliability
parameter = . Let) be the space size of the problem. Then
in time �
	�=>���@*54 /�0 � 2 log 	���*54 1
,� log /�0 1 2 89;:
 the above al-

gorithm identifies a set of matches � : i 9gLi j , which with proba-
bility at least 1 &ß�74�< satisfies the 	Î!I�;*I
 conditions above.

Frame Selection: In any fixed dimension � a frame can
be selected in time �
	��,
 as follows: begin by selecting
any point. Next, choose the point furthest from the first; in
general, choose the point furthest from the affine subspace
spanned by the existing points. (This is facilitated by ap-
plying a Gram-Schmidt process each time a new point is
adjoined, thus obtaining an orthogonal basis for the sub-
space. The square of the distance of each point from the
subspace can be updated by subtracting the square of the
projection on the newest dimension.)

Lemma 6 This process yields a frame with
â 	 ý
��û	 3õ &

1
B(2.

Proof: By induction on
ý
. The case

ý � 1 is immediate.
Let
ý F 1; let ��� 1 �3���ô����� õ � be the first

ý
points selected by the

process; and let � ' 1 �3���ô��� ' õ � be points s.t. Ô 	 ' � �J� �
q�kþ¯mº� .
Let

^
be any probe point. Let ·¸��N ^ r ¾�ö � 1 i V¹V¹V i � ø î 1 ù�O ,

let · Û �»N ^ r ¾�ö�÷ 1 i V¹V¹V i ÷ ø î 1 ù�O , let µe�»N � õ r ¾�ö � 1 i V¹V¹V i � ø î 1 ù�O
and let µ Û ��N ' õ r�¾�ö�÷ 1 i V¹V¹V i ÷ ø î 1 ù�O . By construction,

]�] ·]�] n]�] µ]�] .
Given two vectors _,� � , let � Ò denote the projection of _

on � , namely � Ò � Ò�� ���� � � .

Now N ^ rÀ¾�ö�÷ 1 i V¹V¹V i ÷3ø;ù�O�&tN ^ r ¾�ö � 1 i V¹V¹V i � ø;ù�OÃ�ó	�· Û &µ Û���
7&Y	�·G&¯µ �
��t	�· Û &¯·q
��-	�µ � &¯µ Û���
 . The inductive
hypothesis implies that

]ô] · Û &¼·]�] n-þ â 	 ý & 1
 , while, as we
next show, the inductive hypothesis and the fact that

]�] ·]�] n]ô] µ]ô] together imply that
]�] µ � &�µ Û� �]ô] nYþb	 2 â 	 ý & 1
3� 1
 ; the

bound
]�] N ^ r[¾%ö�÷ 1 i V¹V¹V i ÷ ø ù�O�&
N ^ r[¾�ö � 1 i V¹V¹V i � ø ù�O]�] n-þb	 3 â 	 ý &

1
�� 1
 follows and implies the lemma.

Lemma 7
]�] � ÒL& � Ò Õ ã]�] n]ô] "]�] .

Lemma 8
]�] � ÒL&-	 � �Z"I
´Ò]ô] n 	
	 ã 	
	 � 	
	 Ò 	
		
	 � 	
	 .

Lemma 7 is immediate.
Proof of lemma 8: Fixing _ and letting · vary, the vectors·bÒ lie on the sphere for which the segment 0 _ is a diameter.
With this in mind, the case

]�] "]�] }]�] �]�] is immediate. If]ô] "]�] �]�] �]�] , set � to be the angle between � and � �G" ; ��n
arcsin]ô] "]�] (]�] �]�]
 . The central angle in the above sphere
between the points � Ò and 	 � �E"I
 Ò , i.e. the angle between
the vectors � Ò &­_6(2 and 	 � � "I
 Ò &­_6(2, is 2 � . The distance
between � Ò and 	 � �`"I
 Ò is therefore bounded by

]�] _]�] sin �
and hence by

]�] _]�] ²]�] "]�] (]�] �]�] . ±
To continue with the proof of lemma 6, write µ � &­µ Û��� �	�µ � &Åµ Û�
b�X	�µ Û� &kµ Û� �
 . By lemma 7

]�] µ Û� &kµ Û� �]�] n]ô] ·E&-· Û]�] n]�] þ â 	 ý & 1
]�] . By lemma 8
]�] µ � &kµ Û�]�] n]ô] µ Û &Xµ]�] ²]�] ·]�] (]�] µ]�] n]�] µ Û &¬µ]�] . Write µ Û &¬µ.�	;N '6õ r ¾%ö�÷ 1 i V¹V¹V i ÷3ø î 1 ù�OH&tN � õ r ¾�ö�÷ 1 i V¹V¹V i ÷3ø î 1 ù�O�
b�X	;N¹� õ r¾�ö�÷ 1 i V¹V¹V i ÷3ø î 1 ù�O%&³N � õ r ¾%ö � 1 i V¹V¹V i � ø î 1 ù�OÎ
 . The fact that]ô] '5õ &Y� õ]�] nÖþ immediately implies the same of the first

term; the inductive hypothesis implies that the second term
is of norm at most þ â 	 ý & 1
 . In combination, then,]ô] µ � &`µ Û� �]�] n®þb	 2 â 	 ý & 1
�� 1
 . ±
7 Parallelizability

It is easy to check that the algorithms can, for any fixed
dimension, be parallelized to run in polylogarithmic time
with a polylogarithmic work overhead.

8 Acknowledgments

Thanks to Amihood Amir, Piotr Indyk and Suresh
Venkatasubramanian for helpful communications.

References

[1] T. Akutsu. Protein structure alignment using dynamic
programming and iterative improvement. IEICE Trans.
on Information and Systems, Vol. E78-D No. 0:1-8,
1996.

[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Con-
gruence, similarity, and symmetries of geometric ob-
jects. Discrete and Computational Geometry, 3:237-
256, 1988.

[3] M. J. Atallah. Checking similarity of planar figures. In-
ternat. J. Comput. Inform. Science 13:279-290, 1984.

[4] M. D. Atkinson. An optimal algorithm for geometrical
congruence. J. Algorithms, 8:159-172, 1987

[5] E. Bach, J. Shallit. Algorithmic Number Theory, Vol-
ume 1: Efficient Algorithms. MIT Press, 1996.

[6] J. L. Bentley and M. I. Shamos. Divide-and-Conquer in
Multidimensional Space. Proc. 8’th Symp. on Theory
of Comput., 220-230, 1976.

[7] J. L. Bentley. Multidimensional divide and conquer.
Comm. ACM 23(4):214-229, 1980.

[8] R. S. Boyer and J. S. Moore. A fast string-searching
algorithm. Comm. ACM, 20(10):62-72, 1977.

[9] L. P. Chew, M. Goodrich, D. Huttenlocher, K. Ke-
dem, J. Kleinberg, and D. Kravets. Geometric pattern
matching under Euclidean motion. Proc. 5’th Cana-
dian Conf. Comp. Geom., 151-156, 1993.

[10] P. J. de Rezende, D. T. Lee. Point Set Pattern Matching
in d-Dimensions. Algorithmica 13:387-404, 1995.

[11] P. W. Finn, L. E. Kavraki, J-C. Latombe, R. Motwani,
C. Shelton, S. Venktasubramanian, A. Yao. RAPID:
Randomized Pharmacophore Identification for Drug
Design. Proc. 13’th ACM Symp. Comp. Geom., 324-
333, 1997.

[12] M. J. Fischer and M. S. Paterson, String Matching and
Other Products, pages 113-125. In R. M. Karp, editor,
Complexity of Computation. SIAM-AMS 1974.

[13] M. T. Goodrich, J. S. B. Mitchell, and M. W. Orletsky.
Practical methods for approximate geometric pattern
matching under rigid motions. Proc. 10’th ACM Symp.
Comp. Geom., 103-112, 1994.

[14] J. E. Hopcroft and D. P. Huttenlocher. Affine invariants
for model-based recognition, in Geometric Invariance
on Computer Vision, J. Mundy and A. Zisserman, eds.,
354-374, 1992.

[15] D. P. Huttenlocher and K. Kedem. Efficiently comput-
ing the Hausdorff distance for point sets under trans-
lation. Proc. 6’th ACM Symp. Comp. Geom., 340-349,
1990.

[16] D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On
dynamic Voronoi diagrams and the minimum Haus-
dorff distance for point sets under Euclidean motion
in the plane. Proc. 8’th ACM Symp. Comp. Geom.,
110-120, 1992.

[17] D. P. Huttenlocher, K. Kedem and M. Sharir. The up-
per envelope of Voronoi Surfaces and its Applications.
Proc. 7’th ACM Symp. Comp. Geom., 194-203, 1991.

[18] P. Indyk, Faster algorithms for string matching prob-
lems: matching the convolution bound. These Pro-
ceedings.

[19] P. Indyk, R. Motwani and S. Venkatasubramanian,
Geometric Matching Under Noise: Combinatorial
Bounds and Algorithms. To appear in Proc. 10’th
SIAM-ACM Symp. Discr. Alg., 1999.

[20] S. Irani and P. Raghavan. Combinatorial and Experi-
mental Results for Randomized Point Matching Algo-
rithms. Proc. 12’th ACM Symp. Comp. Geom., 68-77,
1996.

[21] R. M. Karp and M. O. Rabin. Efficient Randomized
Pattern-Matching Algorithms. Technical Report TR-
31-81, Aiken Computation Laboratory, Harvard Uni-
versity, 1981.

[22] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pat-
tern matching in strings. SIAM J. Comp., 6(2):323-350,
1977.

[23] J. H. Morris and V. R. Pratt. A linear pattern match-
ing algorithm. Technical Report No. 40, Computing
Center, University of California, Berkeley, 1970.

[24] D. M. Mount, N. S. Netanyahu, J. Le Moigne. Im-
proved Algorithms for Robust Point Pattern Matching
and Applications to Image Registration. Proc. 14’th
ACM Symp. Comp. Geom., 1998.

[25] F. P. Preparata and M. I. Shamos. Computational Ge-
ometry: an Introduction. Springer Verlag, 1985.

[26] W. Rucklidge. Efficient Visual Recognition Using the
Hausdorff Distance. Springer Verlag, 1996.

[27] F. F. Yao, Computational Geometry. In J. van Leuwen,
ed., Handbook of Theoretical Computer Science, vol.
A: Algorithms and Complexity, 343-390, 1991.

