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Signal Propagation and Noisy Circuits
William S� Evans� Leonard J� Schulman

Abstract�The information carried by a signal decays when
the signal is corrupted by random noise� This occurs when a
message is transmitted over a noisy channel� as well as when
a noisy component performs computation� We �rst study
this signal decay in the context of communication and obtain
a tight bound on the rate at which information decreases as a
signal crosses a noisy channel� We then use this information
theoretic result to obtain depth lower bounds in the noisy
circuit model of computation de�ned by von Neumann� In
this model� each component fails �produces � instead of �
or vice�versa	 independently with a �xed probability� and
yet the output of the circuit is required to be correct with
high probability� Von Neumann showed how to construct
circuits in this model that reliably compute a function and
are no more than a constant factor deeper than noiseless
circuits for the function� We provide a lower bound on the
multiplicative increase in circuit depth necessary for reliable
computation� and an upper bound on the maximum level of
noise at which reliable computation is possible�

A preliminary version of this work appeared in the �rst
author
s thesis ����

Keywords�mutual information� data processing inequal�
ity� noisy circuit complexity

I� Introduction

Our present treatment of error is unsatisfac�

tory and ad hoc� It is the author�s conviction�

voiced over many years� that error should be

treated by thermodynamical methods� and be the

subject of a thermodynamical theory� as informa�

tion has been� by the work of L� Szilard and C�E�

Shannon�

J� von Neumann ����

T
HE decay of an information signal as it propagates
through a medium is an unavoidable phenomenon� fa�

miliar in almost every form of communication	 sound� wire�
radio and so on�

The problem of signal decay is not restricted to commu�
nication	 that it plagues long computations� as well� was
all too apparent to the 
rst users of electronic computers�
and was for example the spur for Hamming�s interest in
coding theory ��
�

Von Neumann recognized that� rather than being tech�
nological and passing� this signal decay was an essential
di�culty for large�scale computations� that by their nature
rely on the propagation of long chains of events ��
� Von
Neumann�s goal was to subject noisy computation to the
same thermodynamical treatment that communication had
received in the contemporary work of Shannon ��
� Surpris�
ingly� it took over thirty�
ve years before the tools devel�
oped by Shannon to study information and communication
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were successfully applied to the problem of noisy compu�
tation� in the work of Pippenger ��
�
In this paper� we investigate the propagation of informa�

tion signals in noisy media� We study a basic question that
is relevant to any such propagation� whether in communi�
cation or in computation� To set the framework we recall
the well known �data processing inequality� for informa�
tion� Let X be a random variable denoting the message
chosen at the source� Let X be input to a communication
channel� and let the random variable Y be the output of
that channel� let Y in turn be input to another communi�
cation channel� and let Z be the output of that channel�
�Thus Z depends on X solely through Y �� The mutual in�
formation I�X�Y � �de
nitions below� is a nonnegative real
number measuring the information available about X after
the 
rst channel� likewise I�X�Z� measures the informa�
tion available after the second channel� The data process�
ing inequality states that no matter what the properties of
the second channel� I�X�Z� � I�X�Y ��

I�X�Y �z �� �
X � Y � Z� �z �
I�X�Z�

If the second channel is noisy then one may expect that
this inequality will be strict� and further� that the signal
decay will a�ect the capabilities of the communication or
computation system�
Our objective is therefore to obtain� as a function of the

Y � Z channel alone� a tight upper bound on the ratio
I�X�Z��I�X�Y ��
The bound is required to hold for every distribution on

X and for every form of dependence of Y on X� The desire
for an inequality that is true under such a stringent re�
quirement is motivated by the intended application of the
inequality	 namely inferring the global properties of com�
munication or computation systems from the local proper�
ties of their components�
The 
rst inequality of this type on the ratio

I�X�Z��I�X�Y � was derived by Pippenger �for symmetric
binary channels� as a key step in his method for showing
a lower bound on the depth� and an upper bound on the
maximum tolerable component noise� of noisy formulas ��
�
In this paper we improve Pippenger�s inequality� and ob�

tain the exact upper bound on the maximum achievable
�information propagation factor� I�X�Z��I�X�Y �� for any
binary channel� This may be considered a quanti�ed data
processing inequality� The inequality is also shown to hold
under certain conditioning events� and in this form� we em�
ploy it to obtain lower bounds on the complexity of reliable
circuits with noisy components�
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A� Circuit Depth

We apply our bound on the information propagation fac�
tor to obtain lower bounds on the depth of noisy circuits�
Von Neumann introduced this model of computation in an
attempt to capture the limitations of physical circuits� In
his de
nition� a noisy circuit is composed of gates that fail
�produce a � instead of a � or vice versa� independently
with probability �� This is the de
nition we adopt� It is�
perhaps� unreasonable to assume that a physical circuit can
rely on its gates to fail with exact probability �� Alterna�
tive noisy circuit models that weaken this assumption have
been proposed ��
� Our goal� however� is to show lower
bounds� for which the strong von Neumann model is an
appropriate choice since the lower bounds automatically
apply to all weaker models�

To study the limitations of physical circuits� von Neu�
mann asked whether noisy circuits can compute the same
functions as circuits with noiseless gates� and if so� at what
cost in depth �latency�� Von Neumann provided the fol�
lowing positive� but quali
ed� response to this question	
Every circuit with noiseless gates can be simulated by a
circuit with noisy gates� whose depth is at most a con�
stant times the depth of the original circuit� provided that
�� the probability of error in each component of the cir�
cuit� is less than some ��� �Von Neumann�s construction
using ��input majority gates required � � ������� but� as
he argued� �� � ��� is the true limit of his method�� The
simulation is� of course� not perfect� The guarantee is only
that the noisy circuit is ��reliable� that it produces the cor�
rect answer on every input with probability at least �� �
for a 
xed � � ����
This answer has two especially interesting features� The


rst is the existance of a limit �� on component failure�
above which the construction fails� The second is that the
construction requires a slow�down �i�e� increase in depth�
by a factor strictly greater than �� For a long time it
was not known whether these features were necessary� or
were artifacts of von Neumann�s construction� Finally� Pip�
penger showed� through an elegant information theoretic
argument� that both features were necessary� at least for
noisy formulas �circuits whose gates have out�degree �� ��
�
Shortly afterward� Feder extended Pippenger�s bound to
general noisy circuits ��
�
In this paper� we improve both Pippenger�s and Feder�s

results� The key component in the improved result is our
precise bound on the information propagation factor� We
discuss this bound in section III� We then discuss the lower
bound on circuit depth in section IV� First some notation�

II� Notation

We use PrfXg to denote �PrfX � �g�PrfX � �g�� the
probability distribution on the random variable X� The en�
tropy of a distribution PrfXg is denoted H�PrfXg� or
H�X�� and in the special case of a binary�valued ran�
dom variable with distribution �q� �� q� we abbreviate by
H�q� � H�q� �� q�� A binary channel is characterized by
a row�stochastic matrix A �

�
��a a
b ��b

�
�
gure ��� Let Y

denote the input random variable� and Z the output ran�
dom variable of a binary channel� Conditional on input ��
the output distribution is PrfZjY � �g � ��� �� �A� condi�
tional on input � it is PrfZjY � �g � ��� �� �A� and given
input distribution PrfY g� it is the weighted combination
PrfZg � PrfY g �A�

Input Output

�� b

�� a

a

b

�

�

�

�

Fig� 
� Binary channel

III� Quantified Data Processing Inequality

Our 
rst step relies upon a geometric interpretation of
mutual information� The mutual information between X
and Y is

I�X�Y � �
X
x

PrfX � xg
X
y

PrfY � yjX � xg

log
PrfY � yjX � xg

PrfY � yg
� H�Y ��

X
x

PrfX � xgH�Y jX � x�

The distribution PrfY g is the weighted average of the dis�
tributions PrfY jX � xg� Consider a distribution as an
element of the hyperplane of points whose coordinates sum
to �� The entropy function H de
nes a surface above this
hyperplane� The mutual information between X and Y is
the di�erence between the height of this surface at PrfY g�
and the averaged height

P
x PrfX � xgH�Y jX � x�� In

the case of binary valued distributions� the mutual informa�
tion I�X�Y � is simply the height � of the entropy surface
above the line passing through H�PrfY � �jX � �g� and
H�PrfY � �jX � �g�� at the point PrfY � �g �
gure ���
De
ne the discrete second derivative of a function f on

R to be f��x� y� p� � pf�x�� ��� p�f�y�� f�px���� p�y�
for x� y in the domain of f and p � ��� �
� Observe that
for binary valued X� I�X�Y � � �H��PrfY � �jX �
�g�PrfY � �jX � �g�PrfX � �g�� �The de
nition ob�
viously extends beyond binary valued X but this will not
be needed in the paper�� Thus� mutual information is �after
reversing sign� a discrete second derivative of the entropy
function�
If we input the random variable Y to a channel A�

we obtain an output variable Z with conditional distri�
butions PrfZjX � �g � PrfY jX � �g �A and PrfZjX �
�g � PrfY jX � �g � A� and overall distribution PrfZg �
PrfX � �gPrfZjX � �g� PrfX � �gPrfZjX � �g� Just
as for I�X�Y �� the mutual information I�X�Z� is given
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�

�

� �

PrfY � �jX � �gPrfY � �jX � �g

PrfY � �g

�

H�Y �

�

�

� �

PrfZ � �jX � �g PrfZ � �jX � �g

PrfZ � �g

�
�

H�Z�

Fig� �� I�X�Y 
 and I�X�Z


by a discrete second derivative� I�X�Z� � �H��PrfZ �
�jX � �g�PrfZ � �jX � �g�PrfX � �g� ���� 
g�
ure ��� Recall that we wish to obtain an upper bound� as
a function of the channel A� on the ratio I�X�Z��I�X�Y ��
This is equivalent to determining the maximum over all
PrfY jX � �g�PrfY jX � �g and all weights PrfXg� of the
ratio �����
We will 
nd the maximum ratio ���� by explicitly iden�

tifying parameters for which it is attained� Our 
rst step in
determining these parameters relies on a very general fact
about maximizing the ratio between two discrete second
derivatives�
Lemma �� If the functions f� g 	 ��� �
� Rhave negative

second derivatives on ��� �� then

sup
x�	y�
����
p�����


f��x� y� p�

g��x� y� p�
� sup

t�����


f ���t�

g���t�
�

Equality is attained in the limit jx� yj � � where x and y

approach a value of t achieving supt�����

f ���t

g���t
 �

Proof� Let c � supt�����

f ���t

g���t
 � If c is 
nite� observe

that �cg�f��� � cg���f �� � � on ��� ��� This implies cg�f
is concave on ��� �
� thus �cg � f���x� y� p� � � �for x �� y �
��� �
� p � ��� ��� and consequently f��x� y� p��g��x� y� p� �
c� If c is in
nite this inequality is trivial� Equality of the
suprema is observed by taking a series of points t for which
f ���t��g���t� approaches the limit c �
nite or in
nite�� For

each point t � ��� ��� limh��
f��t�t�h�p

g��t�t�h�p


� f ���t

g���t
 �

We employ the lemma with f�t� � H��t� � �
t� � A� and g�t� � H�t� � � t�� We have
I�X�Z� � �H��z�� z�� p� � �f��y�� y�� p� and I�X�Y � �
�H��y�� y�� p� � �g��y�� y�� p� where p � PrfX � �g�
yi � PrfY � �jX � ig� and zi � PrfZ � �jX � ig� Since
H is strictly concave� the lemma implies that the informa�
tion propagation factor I�X�Z��I�X�Y � is maximized for
pairs of distributions PrfY jX � �g and PrfY jX � �g that
are almost indistinguishable� jPrfY � �jX � �g�PrfY �
�jX � �gj � �� In fact� unless the channel is either per�
fectly noiseless or perfectly noisy� that is unless the entries
of A are all ��s and ��s� the maximum ratio is achieved only
in the limit of very close distributions� Thus a �nontrivial�
noisy channel performs at its peak e�ciency only when it
is carrying a very weak signal�
For example� suppose we transmit one bit of information

over a long cable and each meter of the cable introduces
some random noise that is symmetric in the sense that it
a�ects ��s and ��s with the same probability� We will later
see that in this symmetric case� the information propaga�
tion factor is maximized when each of the distributions
PrfY jX � �g and PrfY jX � �g are asymptotically close
to the uniformdistribution ���s and ��s equally likely�� This
is also the distribution each signal approaches as it travels
along this cable� Lemma � implies that the greatest rate
of information loss �the smallest information propagation
factor� occurs in the 
rst part of the cable� For a cable�
this can also be observed just by examining powers of the
matrix describing a short stretch of cable� but the lemma
carries the conclusion also to more complicated cases in
which information is recombined� as in a circuit� One may
also conclude that� in certain cases� if several signals carry
information about an event� it may be best to propagate
each signal separately rather than combine the information
into a single� clearer signal� This is because the information
carried by each separate� weak signal can propagate at close
to the maximumpropagation factor� while the information
carried by a strong signal decays more rapidly� �The par�
ticulars of the case must be considered however� since only
certain weak signals approach the minimum loss��
Theorem �� Let X and Y be binary random variables�

Let the channel A be

A �

�
�� a a
b �� b

�
�

Let Z be the binary random variable output by the channel
A on input Y � Then

I�X�Z�

I�X�Y �
� sin� 	



IEEE TRANSACTIONS ON INFORMATION THEORY� VOL� XX� NO� Y� MONTH ���� �

where 	 is the angle between the vectors �
p
�� a�

p
a� and

�
p
b�
p
�� b��

Proof� Let f and g be as above� Let A�t� � ���a�t�
b��� t�� The ratio

f ���t��g���t� � ��� a� b��
t�� � t�

A�t��� �A�t��

is maximized at t �
p
b��� b���

p
b��� b� �

p
a��� a���

The value of the ratio for this value of t is � �	p
b��� a� �

p
a��� b�


�
� Now lemma � implies

I�X�Z�

I�X�Y �
�

f��y�� y�� p�

g��y�� y�� p�

� ��
	p

b��� a� �
p
a�� � b�


�
� �� cos� 	 � sin� 	�

Note that for symmetric channels the maximum occurs
at t � ���� implying that the conditional distributions on
Y given X for which the information propagation factor is
maximized� are close to the uniform distribution� which is
also the stationary distribution� For asymmetric channels
the maximumoccurs away from the stationary distribution�

Theorem � extends in a useful way under certain con�
ditioning events	 if Q is a random variable such that Z
is independent of �Q�X� given Y � then the theorem holds
under conditioning by Q�

Corollary �� Let X and Y be binary random variables�
Let the channel A be

A �

�
�� a a
b �� b

�
�

Let Z be the binary random variable output by the channel
A on input Y � Let Q be a �not necessarily binary� random
variable such that Z is independent of �Q�X� given Y �
Then

I�X�ZjQ�
I�X�Y jQ� � sin� 	

where 	 is the angle between the vectors �
p
�� a�

p
a� and

�
p
b�
p
�� b��

Proof� Since Z is independent of �Q�X� given Y �
PrfZjQXY g � PrfZjY g and thus PrfZjQ � q�X � xg �
PrfY jQ � q�X � xg � A for all values q and x taken by
the random variables Q and X respectively� Therefore the
distributions on X� Y � and Z given Q � q satisfy the con�
ditions on the distributions of X� Y � and Z in theorem ��
It follows from the theorem that

I�X�ZjQ � q�

I�X�Y jQ � q�
� sin� 	�

The corollary follows since

I�X�ZjQ�
I�X�Y jQ� �

P
q PrfQ � qgI�X�ZjQ � q�P
q PrfQ � qgI�X�Y jQ � q�

� max
q

I�X�ZjQ � q�

I�X�Y jQ � q�

� sin� 	�

IV� Noisy Circuit Depth

Our lower bound on circuit depth follows the general
outline of Pippenger�s lower bound on formula depth ��
�
The complications introduced by adopting a circuit rather
than a formula model require a careful application of the
conditioned version of the quanti
ed data processing the�
orem �� Using this theorem also results in a better lower
bound than that obtained by either Pippenger or Feder ��
�
We begin with a sketch of Pippenger�s argument�
For each input bit X upon which the function depends�

there is a setting of the other inputs so that the function
is X �or X � the complement of X�� A reliable circuit for
the function� with this setting of the inputs� must output a
value that is highly correlated withX� By Fano�s lemma� if
X is a random variable then the mutual information carried
by the output about X must be high�
On the other hand� one shows that the amount of infor�

mation the input X can �send� to the output is restricted
by the structure of the intervening noisy circuit	 in partic�
ular� the information is bounded by the sum over all paths
from X to the output� of a quantity that is exponentially
small in the length of the path� Pippenger established this
for formulas� by showing that the total information sent
is bounded by the sum of the information sent over each
path from X to the output� This supports the view of in�
formation as a kind of �uid that �ows from the input X to
the output along the wires of the formula� At each gate�
several paths combine� but the �uid �owing out of the gate
is no more than the sum of the �uid �owing in�
Such a statement requires two inequalities to hold� One

of the inequalities is the data processing inequality which
states that I�Y �X� � I�Y�� � � � � Yk�X� where Y�� � � � � Yk
are the inputs to a gate with pre�noise output Y � This
of course holds for circuits as well� The second inequality
is I�Y�� � � � � Yk�X� � P

i I�Yi�X�� This holds for formu�
las since the Yi are mutually independent given X� but it
may not be true for circuits� Figure � shows a circuit in
which I�Y�� � � � � Yk�X� is greater than

P
i I�Yi�X�� Thus

the method of decomposing the circuit into a set of disjoint
paths while not decreasing the information between input
and output� which works in the case of formulas� seems
unlikely to succeed for circuits�
Rather than going through the intermediate step of de�

composing the circuit into disjoint paths� we directly upper
bound the information between the values carried by any
set of wires and the inputX� For circuits composed of gates
that err with probability ���
��� �����
����noisy gates���
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Y�

Fig� �� If R is the output of a very long chain of noisy gates then R

is essentially a random bit� Thus I�Y��X
 � I�Y��X
 is close to
zero� while I�Y 
� Y ��X
 is close to 
�

the bound we obtain is the sum of 
�jP j over all paths P
from X to these wires� This establishes that the total in�
formation sent by an input to the output of the circuit is
bounded by the sum of 
�jP j over all paths P from that in�
put to the output� Since we consider a set of paths� rather
than an individual path� the argument for the 
� drop in
information at every noisy gate is more complicated� this
is addressed using corollary ��
Lemma 	� Let G be a circuit composed of ���
����noisy

gates� Suppose each input to G is X �a binary random
variable� or a constant� Let W be the vector of random
values carried by a set of wires in G� Then

I�W �X� �
X

P from X to W


�jP j

where the sum is over paths P in G from input X to wires
in W � and jP j is the number of gates on the path P �

Proof� View G as a directed acyclic graph whose
vertices are gates of the circuit� inputs to the circuit �X
and constants � and ��� and the output terminal� and whose
edges are wires� Direct a wire �edge� from vertex h to g
if the output of h is the input of g� Number the input
vertices � and number the gate vertices distinctly from �
to the number of gates inG so that each wire starts from its
smaller numbered endpoint� Such a numbering is possible
since G is acyclic� Number the wires with the number of
their smaller numbered endpoint�
The proof is by induction on the number of the highest

numbered wire in W � If the highest numbered wire has
number � then the edges in W carry a combination of con�
stant values and X� If W contains a wire with value X
then I�W �X� � � and there is at least one wire that orig�
inates at X� i�e� one path of length � from X to wires in
W � If all the wires in W are constant then I�W �X� � �
and there are no paths from X to wires in W � In either
case�

I�W �X� �
X

P from X to W


�jP j�

Assume the lemma holds for all W that contain wires
numbered � t� Consider a set W containing wires num�
bered � t � �� Let Z be the binary random value carried
by the wires numbered t � � in W � �Several wires may be
numbered t � � if gate t � � has several outputs�� Since
each gate has a distinct number and noise occurs at the
gate� Z is well de
ned� Let W�� � � � �Wm be the wires in

W numbered � t� Now I�W �X� � I�Z�W�� � � � �Wm�X��
Expanding we have

I�Z�W�� � � � �Wm�X� � I�Z�XjW�� � � � �Wm�

� I�W�� � � � �Wm�X��

Let Y be the pre�noise output of gate t� �� The output Z
of gate t�� is the result of passing Y through a symmetric
channel with noise ��� 
���� The input X and the values
W�� � � � �Wm� since they are the output of gates numbered
� t� are independent of Z given Y � Thus corollary � implies

I�Z�XjW�� � � � �Wm� � 
�I�Y �XjW�� � � � �Wm�

since the square of the sine of the angle between
�
p
�� a�

p
a� and �

p
b�
p
�� b� for a � b � �� � 
��� is


��
Let Y�� � � � � Yk be the inputs to gate t� �� By the data

processing inequality�

I�Y �XjW�� � � � �Wm� � I�Y�� � � � � Yk�XjW�� � � � �Wm��

Therefore�

I�Z�W�� � � � �Wm�X� � 
�I�Y�� � � � � Yk�XjW�� � � � �Wm�

� I�W�� � � � �Wm�X�

� 
�I�Y�� � � � � Yk�W�� � � � �Wm�X�

� ��� 
��I�W�� � � � �Wm�X��

Since Y�� � � � � Yk are inputs to gate t��� they are wires with
numbers � t� Thus we can apply the inductive hypothesis
to both terms to obtain

I�Z�W�� � � � �Wm�X� � 
�
X

P from X to
fY����� �Yk�W����� �Wmg


�jP j � ��� 
��
X

P from X to
fW����� �Wmg


�jP j

� 
�
X

P from X to
fY����� �Ykg


�jP j � 
�
X

P from X to
fW� ���� �Wmg


�jP j

� ��� 
��
X

P from X to
fW� ���� �Wmg


�jP j

�
X

P from X to
fY����� �Ykg


��jP j��
 �
X

P from X to
fW����� �Wmg


�jP j

�
X

P from X to Z


�jP j �
X

P from X to
fW����� �Wmg


�jP j

�
X

P from X to
fZ�W����� �Wmg


�jP j

�
X

P from X to W


�jP j

A� Noisy Circuit Depth Lower Bound

We say that a function depends on an argument if for
some assignment to the remaining arguments the function
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remains undetermined� We show that any circuit C that re�
liably computes a binary function that depends on n argu�
ments using ��� 
����noisy k�input gates must have depth
at least R logk n� for an R � � depending on k and 
�
On the other hand� there is a function that depends on

n � kd arguments that can be computed by a circuit using
noiseless k�input gates of depth d	 take the d�fold com�
position of a gate that depends on its k inputs� Since the
function depends on kd arguments and the circuit uses only
k�input gates� its minimumnoiseless circuit depth is d� Our
result implies that any reliable noisy circuit for such a func�
tion has depth at least Rd� Thus there are functions whose
shallowest noisy circuits are deeper by a factor of R than
their shallowest noiseless circuit�
Theorem 	� Let f be a function that depends on n in�

puts� Let C be a circuit of depth d using gates with at most
k inputs� where each gate fails independently with proba�
bility ���
���� Suppose C ��reliably computes the function
f where � � ���� Let � � � � � log � � �� � �� log��� ���

� If 
� � ��k then d � log�n�

log�k��
 �

� If 
� � ��k then n � ����
Proof� Let x�� � � � � xn be the inputs to the function

f � Since f depends on all inputs� for each input xi there
exists a setting of the other n� � inputs so that f is either
the function xi or xi� Let Ci be the circuit C restricted
to this setting for the n � � inputs other than xi� Let X
be a uniformly distributed binary random variable� Let
Ci�X� be the random variable that is the output of Ci

when xi � X� By Fano�s inequality ��� Theorem ������
�

I�Ci�X��X� � �� ���

We apply lemma � with G � Ci and W � Ci�X� to
obtain the upper bound

I�Ci�X��X� �
X
P�Ci


�jP j ���

where the sum is over paths in C from xi to the output�
Combining the bounds ��� and ��� and summing over all

Ci gives

n� �
X
P�C


�jP j� ���

The 
rst result of the theorem follows easily from the
following lemma�
Lemma 
� For all circuits C of depth d that are com�

posed of k�input gates� if 
� � ��k then

X
P�C


�jP j � kd
�d

where the sum is over paths in C from C�s inputs to C�s
output�

Proof� It su�ces to show that when 
� � ��k�
the expression

P
P�C 
�jP j is maximized for C equal to

the complete k�ary tree of depth d� since this tree hasP
P 
�jP j � kd
�d�

If C is not a tree then by duplicating any gate with mul�
tiple outputs� we can change C into a tree without a�ecting
the number or length of paths� We can thus assume that C
is a tree� If C is not complete then some vertex v at depth
l � d has fewer than k children� If v is not a leaf then
adding a child to v increases the sum over paths by 
��l��
�
If v is a leaf then adding k children to v increases the sum
by k
��l��
 � 
�l which is strictly positive since 
� � ��k�

Combining the result of lemma � with equation ���� we
obtain

n� � kd
�d

which implies the 
rst result of the theorem�
For the second result� notice that every gate increases the

number of paths from inputs to output� However� since the
degrees of the gates are bounded� the paths of the circuit
must also become increasingly long� If the gates are too
noisy� the additional paths will not compensate for the loss
in signal quality� In a large enough circuit� the output will
have little dependence on most of the inputs� There is a
threshold on the noise level� above which we cannot reliably
compute functions of an arbitrary number of inputs�
In order to bound this threshold� we 
rst claim that there

exists � � i � n such thatX
P�Ci

��kjP j � ��n

where the sum is over paths in C from xi to the output�
The claim follows by an averaging argument and the fact
that

P
P�C ��kjP j � � �the Kraft inequality��

Combining equations ��� and ��� with the above claim�
for 
� � ��k� we obtain

� �
X
P�Ci


�jP j �
X
P�Ci

��kjP j � ��n

which implies the second result of the theorem�
This theorem improves on the results of Pippenger and

Feder in two ways� First� we increase the lower bound on
the threshold for 
� Second� we increase the factor by which
the depth of the reliable circuit must increase� To compute
a function that depends on n inputs� Feder shows that a
reliable circuit must have depth greater than logk n by at
least a factor ���� � logk 
� �the same factor provided by
Pippenger for formulas�� Our result is that this factor must
be at least ���� � logk 


��� See 
gure ��
Our lower bound on the depth of reliable circuits should

be compared with the depth of reliable circuits constructed
by von Neumann�s method� Von Neumann devotes a cor�
rection level composed of ��input majority gates to increase
reliability after several computation levels� Pippenger an�
alyzes this method when computation is performed by ��
input parity gates and determines that depth increases by
a factor asymptotic to � � �� log������ as � � � ��
� Our
result implies the factor must be at least asymptotic to
� � ��� ln ��
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�

��

��

� ��� ��� ��� ��� ���

this paper Feder

�

depth
factor

Fig� �� Lower bounds on factor of increase in circuit depth using
��input� ��noisy gates�

Von Neumann�s method using ��input majority gates
works only for � � ���� Our bound on the noise threshold
shows that for k�input gates� reliable computation by cir�
cuits is possible only for � � �� � ��

p
k���� For formulas�

when k � �� Hajek and Weller obtained the stronger result
that reliable computation is impossible for � � ��� ���
� For
even k � �� theorem � provides the best known threshold
bound for both circuits and formulas� but for odd k � ��
we have obtained tight bounds on the noise threshold for
formulas by extending the method of Hajek and Weller ��
�
Our depth bounds can be easily extended to the case

of asymmetric noise� in which a gate fails with di�erent
probabilities if its pre�noise output is � or �� If Y is the
pre�noise output of the gate then the noisy output Z of the
gate is the output of an arbitrary binary channel A on input
Y � We use theorem � to bound the fraction of information
preserved in crossing this more general channel�
Theorem 
� Let f be a function that depends on n in�

puts� Let C be a circuit of depth d using gates with at most
k inputs� The proper outcome of each gate is subjected to
the channel A �

�
��a a
b ��b

�
� Suppose C ��reliably computes

the function f where � � ���� Let � � � � � log � � �� �
�� log��� ��� Let � � ��

	p
b��� a� �

p
a��� b�


�
�

� If � � ��k then d � log�n�

log�k�
 �

� If � � ��k then n � ����
Proof� The proof is identical to the proof of theorem �

with the bound � �from theorem �� replacing 
��
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