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Signal Propagation and Noisy Circuits

William S. Evans, Leonard J. Schulman

Abstract— The information carried by a signal decays when
the signal is corrupted by random noise. This occurs when a
message is transmitted over a noisy channel, as well as when
a noisy component performs computation. We first study
this signal decay in the context of communication and obtain
a tight bound on the rate at which information decreases as a
signal crosses a noisy channel. We then use this information
theoretic result to obtain depth lower bounds in the noisy
circuit model of computation defined by von Neumann. In
this model, each component fails (produces 1 instead of 0
or vice-versa) independently with a fixed probability, and
yet the output of the circuit is required to be correct with
high probability. Von Neumann showed how to construct
circuits in this model that reliably compute a function and
are no more than a constant factor deeper than noiseless
circuits for the function. We provide a lower bound on the
multiplicative increase in circuit depth necessary for reliable
computation, and an upper bound on the maximum level of
noise at which reliable computation is possible.

A preliminary version of this work appeared in the first
author’s thesis [1].

Keywords— mutual information, data processing inequal-
ity, noisy circuit complexity

I. INTRODUCTION

QOur present treatment of error is unsatisfac-
tory and ad hoc. It is the author’s conviction,
votced over many years, that error should be
treated by thermodynamical methods, and be the
subject of a thermodynamical theory, as informa-
tion has been, by the work of L. Szilard and C.FE.
Shannon.

J. von Neumann 1952
THE decay of an information signal as it propagates
through a medium is an unavoidable phenomenon, fa-
miliar in almost every form of communication: sound, wire,
radio and so on.

The problem of signal decay is not restricted to commu-
nication: that it plagues long computations, as well, was
all too apparent to the first users of electronic computers,
and was for example the spur for Hamming’s interest in
coding theory [2].

Von Neumann recognized that, rather than being tech-
nological and passing, this signal decay was an essential
difficulty for large-scale computations, that by their nature
rely on the propagation of long chains of events [3]. Von
Neumann’s goal was to subject noisy computation to the
same thermodynamical treatment that communication had
received in the contemporary work of Shannon [4]. Surpris-
ingly, it took over thirty-five years before the tools devel-
oped by Shannon to study information and communication
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were successfully applied to the problem of noisy compu-
tation, in the work of Pippenger [5].

In this paper, we investigate the propagation of informa-
tion signals in noisy media. We study a basic question that
is relevant to any such propagation, whether in communi-
cation or in computation. To set the framework we recall
the well known “data processing inequality” for informa-
tion. Let X be a random variable denoting the message
chosen at the source. Let X be input to a communication
channel, and let the random variable Y be the output of
that channel; let Y in turn be input to another communi-
cation channel, and let Z be the output of that channel.
(Thus Z depends on X solely through ¥.) The mutual in-
formation I(X;Y") (definitions below) is a nonnegative real
number measuring the information available about X after
the first channel; likewise I(X;7) measures the informa-
tion available after the second channel. The data process-
ing inequality states that no matter what the properties of
the second channel, I(X;7) < I(X;Y).

I(X;Y)
—_——

X—=Y 7

—————
I(X;7)

If the second channel is noisy then one may expect that
this inequality will be strict, and further, that the signal
decay will affect the capabilities of the communication or
computation system.

Our objective 1s therefore to obtain, as a function of the
Y — Z channel alone, a tight upper bound on the ratio
I(X; 72)/I1(X;Y).

The bound is required to hold for every distribution on
X and for every form of dependence of Y on X. The desire
for an inequality that is true under such a stringent re-
quirement 1s motivated by the intended application of the
inequality: namely inferring the global properties of com-
munication or computation systems from the local proper-
ties of their components.

The first inequality of this type on the ratio
I(X;7Z)/I(X;Y) was derived by Pippenger (for symmetric
binary channels) as a key step in his method for showing
a lower bound on the depth, and an upper bound on the
maximum tolerable component noise, of noisy formulas [5].

In this paper we improve Pippenger’s inequality, and ob-
tain the exact upper bound on the maximum achievable
“information propagation factor” I(X; Z)/I(X;Y), for any
binary channel. This may be considered a quantified data
processing inequality. The inequality is also shown to hold
under certain conditioning events, and in this form, we em-
ploy it to obtain lower bounds on the complexity of reliable
circuits with noisy components.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. Y, MONTH 1999 2

A. Circuit Depth

We apply our bound on the information propagation fac-
tor to obtain lower bounds on the depth of noisy circuits.
Von Neumann introduced this model of computation in an
attempt to capture the limitations of physical circuits. In
his definition, a noisy circuit is composed of gates that fail
(produce a 0 instead of a 1 or vice versa) independently
with probability €. This is the definition we adopt. It is,
perhaps, unreasonable to assume that a physical circuit can
rely on its gates to fail with exact probability e. Alterna-
tive noisy circuit models that weaken this assumption have
been proposed [6]. Our goal, however, is to show lower
bounds, for which the strong von Neumann model is an
appropriate choice since the lower bounds automatically
apply to all weaker models.

To study the limitations of physical circuits, von Neu-
mann asked whether noisy circuits can compute the same
functions as circuits with noiseless gates; and if so, at what
cost in depth (latency)? Von Neumann provided the fol-
lowing positive, but qualified, response to this question:
Every circuit with noiseless gates can be simulated by a
circuit with noisy gates, whose depth is at most a con-
stant times the depth of the original circuit, provided that
¢, the probability of error in each component of the cir-
cuit, is less than some ¢5. (Von Neumann’s construction
using 3-input majority gates required € < 0.0073, but, as
he argued, ¢g = 1/6 is the true limit of his method.) The
simulation is, of course, not perfect. The guarantee is only
that the noisy circuit is §-reliable; that it produces the cor-
rect answer on every input with probability at least 1 — §
for a fixed § < 1/2.

This answer has two especially interesting features. The
first 1s the existance of a limit ¢y on component failure,
above which the construction fails. The second is that the
construction requires a slow-down (i.e. increase in depth)
by a factor strictly greater than 1. For a long time it
was not known whether these features were necessary, or
were artifacts of von Neumann’s construction. Finally, Pip-
penger showed, through an elegant information theoretic
argument, that both features were necessary, at least for
noisy formulas (circuits whose gates have out-degree 1) [5].
Shortly afterward, Feder extended Pippenger’s bound to
general noisy circuits [7].

In this paper, we improve both Pippenger’s and Feder’s
results. The key component in the improved result is our
precise bound on the information propagation factor. We
discuss this bound in section ITI. We then discuss the lower
bound on circuit depth in section IV. First some notation.

II. NoTATION

We use Pr{X} to denote (Pr{X = 0}, Pr{X = 1}), the
probability distribution on the random variable X. The en-
tropy of a distribution Pr{X} is denoted H(Pr{X}) or
H(X), and in the special case of a binary-valued ran-
dom variable with distribution (¢,1 — ¢) we abbreviate by
H(q) = H(q,1 — q). A binary channel is characterized by

l—a a

a row-stochastic matrix A = ('3%,%,) (figure 1). Let ¥

denote the input random variable, and Z the output ran-
dom variable of a binary channel. Conditional on input 0,
the output distribution is Pr{Z|Y = 0} = (1,0) - 4; condi-
tional on input 1 it is Pr{Z|Y = 1} = (0,1) - A; and given
input distribution Pr{Y}, it is the weighted combination
Pr{Z) = Pr{Y}- 4.

Input Output
1—a
0 0
a
b
1 1
1-15

Fig. 1. Binary channel

ITI. QUANTIFIED DATA PROCESSING INEQUALITY

Our first step relies upon a geometric interpretation of
mutual information. The mutual information between X
and Y is

I(X;Y)=) Pr{X=2}) Pr{¥Y =y|X =z}

Pr{Y = y|X = 2}
Pr{Y =y}
=H(Y)-> Pr{X =2}H(Y|X =2)

log

The distribution Pr{Y} is the weighted average of the dis-
tributions Pr{Y|X = z}. Consider a distribution as an
element of the hyperplane of points whose coordinates sum
to 1. The entropy function H defines a surface above this
hyperplane. The mutual information between X and Y 1s
the difference between the height of this surface at Pr{Y},
and the averaged height >~ Pr{X = z}H(Y|X ==2). In
the case of binary valued distributions, the mutual informa-
tion I(X;Y) is simply the height o of the entropy surface
above the line passing through H(Pr{Y = 0|X = 0}) and
H(Pr{Y = 0|X = 1}), at the point Pr{Y = 0} (figure 2).

Define the discrete second derivative of a function f on
R to be fo(x,y,p) = pf(x) + (1 —p)f(y) — f(pz + (1 —p)y)
for @,y in the domain of f and p € [0,1]. Observe that
for binary valued X, I(X;Y) = —Ha(Pr{Y = 0|X =
01, Pr{Y = 0|X = 1},Pr{X = 0}). (The definition ob-
viously extends beyond binary valued X but this will not
be needed in the paper.) Thus, mutual information is (after
reversing sign) a discrete second derivative of the entropy
function.

If we input the random variable Y to a channel A,
we obtain an output variable Z with conditional distri-
butions Pr{Z|X = 0} = Pr{V|X =0} - A and Pr{7|X =
1} = Pr{Y|X = 1} - A; and overall distribution Pr{Z} =
Pr{X = 0}Pr{Z|X = 0} + Pr{X = 1}Pr{Z|X = 1}. Just
as for I(X;Y), the mutual information I(X;7) is given
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0 a4 Pr{y =0} Al
Pr{y = 0|X =1} Pr{y = 0|X = 0}
1-

0 f Pr{Z =0} 1
Pr{Z =0|X =1} Pr{Z = 0|X =0}

Fig. 2. I(X;Y) and I(X;2)

by a discrete second derivative, I(X;7) = —Hy(Pr{Z =
01X = 0}, Pr{Z = 0|X = 1},Pr{X = 0}) (o, fig-
ure 2). Recall that we wish to obtain an upper bound, as
a function of the channel A, on the ratio I(X; Z)/I1(X;Y).
This is equivalent to determining the maximum over all
Pr{V|X = 0}, Pr{YV|X = 1} and all weights Pr{X}, of the
ratio o'/a.

We will find the maximum ratio '/« by explicitly iden-
tifying parameters for which it is attained. Our first step in
determining these parameters relies on a very general fact
about maximizing the ratio between two discrete second
derivatives.

Lemma 1: If the functions f, g : [0, 1] — R have negative
second derivatives on (0,1) then

folx,y,p) (@)

sup ———= = sup <.

e#ye[0,1] 92(2,¥,P)  te(o1) 9”(1)
P€(0,1)

Equality is attained in the limit | — y| — 0 where 2 and y
1 t

approach a value of ¢ achieving SUDye(0,1) 77(7)

Proof: Let ¢ = SUPye(0,1) g::((tt)) If ¢ is finite, observe

that (cg — )" = cg” — f < 0on (0,1). This implies cg — f
is concave on [0, 1], thus (cg — f)a(z,y,p) <0 (for z £y €
[0,1], p € (0,1)) and consequently fa(x,y,p)/g2(x,y,p) <
c. If ¢ is infinite this inequality 1s trivial. Equality of the
suprema is observed by taking a series of points ¢ for which
F'(t)/g" (t) approaches the limit ¢ (finite or infinite). For

each point t € (0,1), limp_,q gzgiiizg = 5::8; [ |

We employ the lemma with f(t) = H((t,1 —
t) - A) and g¢(t) = H({E, 1 — ). We have
I(X;7) = —Ha(z0,21,p) = —f2(yo,y1,p) and I(X;Y) =
—H2(yo,y1,p) = —g2(yo,y1,p) where p = Pr{X = 0},

yi = Pr{Y = 0|X =}, and z = Pr{Z = 0|X = {}. Since
H is strictly concave, the lemma implies that the informa-
tion propagation factor I(X; Z)/I(X;Y) is maximized for
pairs of distributions Pr{Y|X = 0} and Pr{Y|X = 1} that
are almost indistinguishable, | Pr{Y = 0|X =0} —Pr{Y =
0]X = 1}| = 0. In fact, unless the channel is either per-
fectly noiseless or perfectly noisy, that is unless the entries
of A are all 0’s and 1’s, the maximum ratio is achieved only
in the limit of very close distributions. Thus a (nontrivial)
noisy channel performs at its peak efficiency only when it
is carrying a very weak signal.

For example, suppose we transmit one bit of information
over a long cable and each meter of the cable introduces
some random noise that is symmetric in the sense that it
affects 0’s and 1’s with the same probability. We will later
see that in this symmetric case, the information propaga-
tion factor 1s maximized when each of the distributions
Pr{V|X = 0} and Pr{Y|X = 1} are asymptotically close
to the uniform distribution (0’s and 1’s equally likely). This
is also the distribution each signal approaches as it travels
along this cable. Lemma 1 implies that the greatest rate
of information loss (the smallest information propagation
factor) occurs in the first part of the cable. For a cable,
this can also be observed just by examining powers of the
matrix describing a short stretch of cable, but the lemma
carries the conclusion also to more complicated cases in
which information is recombined, as in a circuit. One may
also conclude that, in certain cases, if several signals carry
information about an event, it may be best to propagate
each signal separately rather than combine the information
into a single, clearer signal. This is because the information
carried by each separate, weak signal can propagate at close
to the maximum propagation factor, while the information
carried by a strong signal decays more rapidly. (The par-
ticulars of the case must be considered however, since only
certain weak signals approach the minimum loss).

Theorem 1: Let X and Y be binary random variables.
Let the channel A be

1—a a
A:( , 1—b)'

Let Z be the binary random variable output by the channel
A on input Y. Then

(X5 7)

< sin @
(XY < sin
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where 6 is the angle between the vectors (/1 — a,+/a) and
(Vo,V/T—0).

Proof: Let f and g be as above. Let A(t) = (1—a)t+
b(1 —t). The ratio

/") =(1-a- b)zm

is maximized at ¢ = \/b(1—0)/(\/b(1 — b) + /a(l — a)).

The value of the rat102 for this value of ¢ 1s 1 —
(\/b(l —a)+ a(l - b)) . Now lemma 1 implies
1(X;7) _ Ja(yo, y1,p)
I(X5Y)  ga(yo,y1,p)
2
<1- (\/b(l —a) +/a(l - b))
—1—cos?0 =sin? 0.
|

Note that for symmetric channels the maximum occurs
at t = 1/2, implying that the conditional distributions on
Y given X for which the information propagation factor is
maximized, are close to the uniform distribution, which 1is
also the stationary distribution. For asymmetric channels
the maximum occurs away from the stationary distribution.

Theorem 1 extends in a useful way under certain con-
ditioning events: if () is a random variable such that Z
is independent of (@, X) given Y, then the theorem holds
under conditioning by .

Corollary 1: Let X and Y be binary random variables.
Let the channel A be

1—a a
a= (100
Let Z be the binary random variable output by the channel
A oninput V. Let @ be a (not necessarily binary) random

variable such that 7 is independent of (@, X) given Y.
Then

1(X; Z|Q) .2
v =Y
where ¢ is the angle between the vectors (/1 — a,+/a) and
(Vb, /T =1).

Proof:  Since 7 is independent of (@, X) given Y,
Pr{Z|QXY} = Pr{Z[y'} and thus Pr{Z]Q = ¢, X = «} =
Pr{Y|Q = ¢, X = «} - A for all values ¢ and « taken by
the random variables @@ and X respectively. Therefore the
distributions on X, Y, and Z given ) = ¢ satisfy the con-
ditions on the distributions of X, Y, and Z in theorem 1.
It follows from the theorem that

I(X;Z]Q = q)

< sin? 4.
I(X;YQ=9q) ~

The corollary follows since

I(X;2]1Q) 2, Pr{iQ = q}(X;Z|Q = q)
I(X;YQ) >, Pr{Q=q}(X;Y]|Q=0q)

g L 21Q@ = q)
T e I(X;Y|Q=q)
< sin? 4.

IV. Noisy CircuiT DEPTH

Our lower bound on circuit depth follows the general
outline of Pippenger’s lower bound on formula depth [5].
The complications introduced by adopting a circuit rather
than a formula model require a careful application of the
conditioned version of the quantified data processing the-
orem 1. Using this theorem also results in a better lower
bound than that obtained by either Pippenger or Feder [7].
We begin with a sketch of Pippenger’s argument.

For each input bit X upon which the function depends,
there is a setting of the other inputs so that the function
is X (or X, the complement of X). A reliable circuit for
the function, with this setting of the inputs, must output a
value that is highly correlated with X. By Fano’s lemma, if
X is arandom variable then the mutual information carried
by the output about X must be high.

On the other hand, one shows that the amount of infor-
mation the input X can “send” to the output is restricted
by the structure of the intervening noisy circuit: in partic-
ular, the information is bounded by the sum over all paths
from X to the output, of a quantity that is exponentially
small in the length of the path. Pippenger established this
for formulas, by showing that the total information sent
is bounded by the sum of the information sent over each
path from X to the output. This supports the view of in-
formation as a kind of fluid that flows from the input X to
the output along the wires of the formula. At each gate,
several paths combine, but the fluid flowing out of the gate
is no more than the sum of the fluid flowing in.

Such a statement requires two inequalities to hold. One
of the inequalities is the data processing inequality which
states that I[(Y;X) < I(Y1,...,Ys; X) where Y1,..., Y}
are the inputs to a gate with pre-noise output Y. This
of course holds for circuits as well. The second inequality
is I(Yr,..., Y X) < 57, I(Yi; X). This holds for formu-
las since the Y; are mutually independent given X; but it
may not be true for circuits. Figure 3 shows a circuit in
which I(Y3,...,Ys; X) is greater than >, I(Y;; X). Thus
the method of decomposing the circuit into a set of disjoint
paths while not decreasing the information between input
and output, which works in the case of formulas, seems
unlikely to succeed for circuits.

Rather than going through the intermediate step of de-
composing the circuit into disjoint paths, we directly upper
bound the information between the values carried by any
set of wires and the input X . For circuits composed of gates
that err with probability (1—£)/2 (“(1—¢)/2-noisy gates”),
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Y
R \

X

Fig. 3. If R is the output of a very long chain of noisy gates then R
is essentially a random bit. Thus I(Y7;X) 4+ I(Y2; X) is close to
zero, while I(Y'1,Y 2; X)) is close to 1.

XOR

the bound we obtain is the sum of ¢2I¥! over all paths P
from X to these wires. This establishes that the total in-
formation sent by an input to the output of the circuit 1s
bounded by the sum of €211 over all paths P from that in-
put to the output. Since we consider a set of paths, rather
than an individual path, the argument for the £ drop in
information at every noisy gate is more complicated; this
1s addressed using corollary 1.

Lemma 2: Let G be a circuit composed of (1—¢)/2-noisy
gates. Suppose each input to G is X (a binary random
variable) or a constant. Let W be the vector of random
values carried by a set of wires in G. Then

D

P from X to W

I(W;X) < APl

where the sum is over paths P in & from input X to wires
in W, and |P| is the number of gates on the path P.

Proof:  View (G as a directed acyclic graph whose
vertices are gates of the circuit, inputs to the circuit (X
and constants 0 and 1), and the output terminal; and whose
edges are wires. Direct a wire (edge) from vertex h to g¢
if the output of A is the input of g. Number the input
vertices 0 and number the gate vertices distinctly from 1
to the number of gates in G so that each wire starts from its
smaller numbered endpoint. Such a numbering is possible
since (G is acyclic. Number the wires with the number of
their smaller numbered endpoint.

The proof is by induction on the number of the highest
numbered wire in W. If the highest numbered wire has
number 0 then the edges in W carry a combination of con-
stant values and X. If W contains a wire with value X
then I(W; X) = 1 and there is at least one wire that orig-
inates at X, 1.e. one path of length 0 from X to wires in
W. If all the wires in W are constant then I(W;X) = 0
and there are no paths from X to wires in W. In either
case,

I(W;X) < ¢l

D

P from X to W

Assume the lemma holds for all W that contain wires
numbered < ¢. Consider a set W containing wires num-
bered <t + 1. Let Z be the binary random value carried
by the wires numbered ¢ 4+ 1 in W. (Several wires may be
numbered ¢ + 1 if gate ¢ + 1 has several outputs.) Since
each gate has a distinct number and noise occurs at the
gate, 7 is well defined. Let Wi, ..., W,, be the wires in

W numbered < t. Now I(W;X) = I(Z,Wy,... ,Wy; X).
Expanding we have
HZWi,... Wh X) =I(Z; X|[Wh,...,Wp)
+I(Wy, ..., Wi X).

Let Y be the pre-noise output of gate t + 1. The output Z
of gate t +1 is the result of passing Y through a symmetric
channel with noise (1 — &)/2. The input X and the values
Wi, ..., Wi, since they are the output of gates numbered
< t, are independent of Z given Y. Thus corollary 1 implies

HZ; X|Wi, oo W) < ETY; X W, oo, W)

since the square of the sine of the angle between

(VT=a,v/a) and (vb,\/T=0b) for a = b = (1 — £)/2 is
&

Let Y1,..., Y be the inputs to gate ¢t + 1. By the data
processing inequality,

IV, X|Wh, o000 W) <T(Yh, .o Vi X|Wa, oo, W)
Therefore,
HZ, Wi, oo Wi X) < E2I(V, . Y XIWa, oo W)
+I(Wh, ..., Wn; X)
=&Y, Y, W, Wi X)
+ (1 =HIWh,...,Wn; X).
Since Y7, ..., Yy are inputs to gate 41, they are wires with

numbers < f. Thus we can apply the inductive hypothesis
to both terms to obtain

HZ, Wy, Wi X) <62 ) Pl (1—¢7) D Pl

P from X to P from X to
{Y1,... .Y, Wy,... Wy} {Wi,... . Wp}

:€2 Z €2|P| +€2 Z €2|P|

P from X to P from X to
{Y1,..., Y%} Wi,..., Wy}
2 2| P
+(1-¢%) )y ¢
P from X to
{Wi,.. We}
< 30 ern 3 gl
P from X to P from X to
{Y1,...,Yx} Wi,... , Wy}

= Y @y Y e

P from X to Z P from X to

1y--0 m

€2|P|
P from X to
{Z,Wi,... . Wn}

< )

P from X to W

€2|P|

A. Nowsy Circuit Depth Lower Bound

We say that a function depends on an argument if for
some assignment to the remaining arguments the function
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remains undetermined. We show that any circuit C that re-
liably computes a binary function that depends on n argu-
ments using (1 —&)/2-noisy k-input gates must have depth
at least Rlog, n, for an R > 1 depending on k and €.

On the other hand, there is a function that depends on
n = k% arguments that can be computed by a circuit using
noiseless k-input gates of depth d: take the d-fold com-
position of a gate that depends on its k inputs. Since the
function depends on k¢ arguments and the circuit uses only
k-input gates, its minimum noiseless circuit depth is d. Our
result implies that any reliable noisy circuit for such a func-
tion has depth at least Rd. Thus there are functions whose
shallowest noisy circuits are deeper by a factor of R than
their shallowest noiseless circuit.

Theorem 2: Let f be a function that depends on n in-
puts. Let C' be a circuit of depth d using gates with at most
k inputs, where each gate fails independently with proba-
bility (1—£)/2. Suppose C' §-reliably computes the function
f where § < 1/2. Let A=1+6logd+ (1 —6)log(1 —4).

o If €2 > 1/k then d > %

o If €2 < 1/k then n < 1/A.

Proof:  Let xq,...,2, be the inputs to the function
f. Since f depends on all inputs, for each input ; there
exists a setting of the other n — 1 inputs so that f is either
the function x; or ;. Let C; be the circuit C restricted
to this setting for the n — 1 inputs other than z;. Let X
be a uniformly distributed binary random variable. Let
C;(X) be the random variable that is the output of Cj
when ¢; = X. By Fano’s inequality [8, Theorem 2.11.1],

I(Gi(X); X) 2 A (1)

We apply lemma 2 with G = C; and W = C;(X) to
obtain the upper bound

1) x) < 30 ¢ (2)

PeC;

where the sum is over paths in C' from z; to the output.
Combining the bounds (1) and (2) and summing over all
C; gives

nA< Y Pl (3)

PeC

The first result of the theorem follows easily from the
following lemma.

Lemma 3: For all circuits C' of depth d that are com-
posed of k-input gates, if €2 > 1/k then

Z €2|P| S k’d€2d

PeC

where the sum 1s over paths in C' from C’s inputs to C’s
output.

Proof: It suffices to show that when &2 > 1/k,
the expression ZPec€2|P| 1s maximized for C' equal to
the complete k-ary tree of depth d, since this tree has

ZP €2|P| — k,ngd.

If C'is not a tree then by duplicating any gate with mul-
tiple outputs, we can change C' into a tree without affecting
the number or length of paths. We can thus assume that C'
is a tree. If C'is not complete then some vertex v at depth
! < d has fewer than k children. If v 1s not a leaf then
adding a child to v increases the sum over paths by £20+1),
If v is a leaf then adding & children to v increases the sum
by k&20+1D) — £20 which is strictly positive since £2 > 1/k.

|

Combining the result of lemma 3 with equation (3), we
obtain

nA S k’d€2d

which implies the first result of the theorem.

For the second result, notice that every gate increases the
number of paths from inputs to output. However, since the
degrees of the gates are bounded, the paths of the circuit
must also become increasingly long. If the gates are too
noisy, the additional paths will not compensate for the loss
in signal quality. In a large enough circuit, the output will
have little dependence on most of the inputs. There is a
threshold on the noise level, above which we cannot reliably
compute functions of an arbitrary number of inputs.

In order to bound this threshold, we first claim that there
exists 1 < ¢ < n such that

> /K < 1/n

PeC;

where the sum is over paths in C' from z; to the output.
The claim follows by an averaging argument and the fact
that ) p. 1/kIPI < 1 (the Kraft inequality).

Combining equations (1) and (2) with the above claim,
for €2 < 1/k, we obtain

A<y &< Yk <1/n

PeC; PeC;

which implies the second result of the theorem. |

This theorem improves on the results of Pippenger and
Feder in two ways. First, we increase the lower bound on
the threshold for &. Second, we increase the factor by which
the depth of the reliable circuit must increase. To compute
a function that depends on n inputs, Feder shows that a
reliable circuit must have depth greater than log, n by at
least a factor 1/(1 + log, &) (the same factor provided by
Pippenger for formulas). Our result is that this factor must
be at least 1/(1 + logy, £?). See figure 4.

Our lower bound on the depth of reliable circuits should
be compared with the depth of reliable circuits constructed
by von Neumann’s method. Von Neumann devotes a cor-
rection level composed of 3-input majority gates to increase
reliability after several computation levels. Pippenger an-
alyzes this method when computation i1s performed by 3-
input parity gates and determines that depth increases by
a factor asymptotic to 1+ 2/logz(1/¢) as e — 0 [9]. Our
result implies the factor must be at least asymptotic to

14+ 4e/In3.
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Fig. 4. Lower bounds on factor of increase in circuit depth using

3-input, e-noisy gates.

Von Neumann’s method using 3-input majority gates
works only for ¢ < 1/6. Our bound on the noise threshold
shows that for k-input gates, reliable computation by cir-
cuits is possible only for ¢ < (1 — 1/+v/k)/2. For formulas,
when k£ = 3, Hajek and Weller obtained the stronger result
that reliable computation is impossible for € > 1/6 [10]. For
even k > 2, theorem 2 provides the best known threshold
bound for both circuits and formulas, but for odd & > 3,
we have obtained tight bounds on the noise threshold for
formulas by extending the method of Hajek and Weller [1].

Our depth bounds can be easily extended to the case
of asymmetric noise, in which a gate fails with different
probabilities if its pre-noise output 18 0 or 1. If Y is the
pre-noise output of the gate then the noisy output Z of the
gate is the output of an arbitrary binary channel A on input
Y. We use theorem 1 to bound the fraction of information
preserved in crossing this more general channel.

Theorem 3: Let f be a function that depends on n in-
puts. Let C' be a circuit of depth d using gates with at most
k inputs. The proper outcome of each gate is subjected to
the channel A = (1;(1 1ib). Suppose C' §-reliably computes
the function f where § < 1/2. Let A =1+ dlogd + (1 —

2
§)log(1 — ). Let o = 1 — (\/b(l —a)++/a(l— b)) .
o I > 1/k then d > 2ER2Y.
o If o < 1/k then n < 1/A.
Proof: The proof is identical to the proof of theorem 2
with the bound ¢ (from theorem 1) replacing &2. [ |
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