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ABSTRACT

We address the problem of partitioning a set of n points into
clusters, so as to minimize the sum, over all intracluster pairs
of points, of the cost associated with each pair. We obtain
a randomized approximation algorithm for this problem, for
the cost functions £3,¢; and €2, as well as any cost function
isometrically embeddable in £3.

In the 2-cluster case the algorithm computes, with high
probability, a solution which differs in its labelling of no
more than an e fraction of the points, from a clustering
whose cost is within (1 + €) times optimal. Given a fixed
approximation parameter ¢, the runtime is linear in n for £3
problems of dimension o(log n/log log n); and nCloslog n) ip
the general case.

The case £2 is addressed by combining three elements: (a)
Variable-probability sampling of the given points, to reduce
the size of the data set. (b) Near-isometric dimension re-
duction. (c¢) A deterministic exact algorithm which runs in
time exponential in the dimension (rather than the number
of points). The remaining cases are addressed by reduction
to £3.

1. INTRODUCTION

We consider the problem of clustering, or classifying, a set
of data points 7'. Clustering is a ubiquitous problem in the
analysis of large data sets. It arises whenever there is a need
to organise data points by similarity, and identify patterns.
The wide variety of applications precludes any single math-
ematical formulation of the problem. Many straightforward
formulations are, as optimization problems, NP-complete.
It is therefore critical to identify a clustering criterion which
on the one hand is rich enough to be useful in applications,
and on the other hand is tractable enough that optimal or
near-optimal clusterings can be efficiently computed. In this
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paper we propose such a criterion. We demonstrate its ver-
satility by showing how various other clustering criteria re-
duce to it; and its amenability to computation by providing
a fairly efficient algorithm identifying near-optimal cluster-
ings. Crucially, the runtime of the algorithm grows only
moderately even in unbounded dimension (rather than suf-
fering the usual exponential “combinatorial explosion”); and
in moderate dimension (up to log ||/ loglog |T|), it runs in
linear time.

We adopt an edge-cost minimization approach to the clus-
tering problem. A cost ¢ is charged for every pair of
points u,v € T assigned to the same cluster. (Other terms
for such a cost are “weight”, “penalty”, “energy”, “dissim-
ilarity” and “distance”.) ¢ increases with dissimilarity of
points, although it is not necessarily a metric. The cluster-
ing task is to partition 1" into clusters S and S =1 — S so
that the total cost is minimized. In other words, if we de-
fine ¢(S) = Eu,ves ¢u,v, the task is to find a partition (.S, S)
minimizing ¢(S) + #(S) (which we will also write ¢(9, S)).
More generally the task is to find a “k-partition” into clus-
ters {S1,...,5k} whose sum of costs is minimal among k-
partitions.

The edge-cost approach offers two benefits. First, like any
approach in which an objective function is to be optimized,
it allows clustering algorithms to be compared both on the
basis of their runtimes and on the basis of the quality of
their output (namely whether they find an optimum or only
approximately optimum partition; and whether this is ac-
complished with certainty or only with high probability).
Second, we find out more than just what is the best partition
with respect to the stated criterion. The ratio (S, S)/¢(T),
or ¢(S1,...,Sk)/¢(T), gives an indication of the quality of
the partition: the achievable ratio may guide the choice of
the most appropriate k, including the possibility that no
partitioning hypothesis is supported by the data (k = 1).
At this level of generality, however, there is no way to find
an optimum partition without an exhaustive examination
of all 2711 (or generally Stirling number, second kind,
SiT|x = lel) partitions of the input set.

In this paper we provide an efficient randomized approxima-
tion algorithm for clustering with respect to a range of cost
functions ¢. This is achieved by a combination of sampling;
near-isometric dimension reduction; and reduction to the in-
teresting special case in which ¢ is the square of a Euclidean
metric (written ZS) This case occupies the central place in
our approach. Besides £2 we address also any cost function
isometrically embeddable in Zg, including £; and £. (Near



isometric embedding would also be sufficient.) Much of the
paper focusses upon an algorithm which, for any such cost
function and any fixed ¢, §, given a clustering problem on n
points in any dimension, computes in time n®°81°8 ")  with
probability at least 1 — §, a 2-clustering that is “e-close”
to optimum. In the special case that ¢ = £3 and that the
dimension is o(logn/loglogn), the runtime is linear in n.
That our output is “e-close” to optimal means that either its
cost is within (1+¢) times optimal; or its cost is less than an
e fraction of the cost of the original data and it differs from
an optimum clustering in its labelling of at most an e fraction
of the points. More precisely, if ¢,y 1s the cost of an optimal
clustering, and S is the clustering that is output, then: (a)
|6(S, S) — Popt| < edp(T) (which implies that if ¢ope > ep(T)
then ¢,, 1s multiplicatively approximated to within factor
(1+¢)); and (b) if dops < €dp(T) then the fraction of points
whose membership must be switched between S and S in
order to convert S into an optimal clustering, is less than
e. (For k > 2 the first of these guarantees is shown.) The
second guarantee is especially important, since we may be
most interested in the results precisely when a good clus-
tering of the data exists (as signified by ¢ops < ed(1)). In
this case the guarantee provides that, though the estimate
of ¢.ps may be inaccurate, the actual clustering output by
the algorithm will differ from the optimal clustering only in
the mislabelling of a very small fraction of outliers.

As a by-product, the second guarantee also provides valida-
tion of our clustering criterion. That is because it establishes
that, if the data can be clustered very well according to our
criterion, then any good clustering that we output makes
a meaningful statement about the data, because any good
clustering partitions the points in almost the same way as
the optimal one.

It is worth emphasizing that the clustering criterion ¢ of the
algorithm 1is, in an application, likely to be only a crude ap-
proximation of an ideal but intractable application-specific
criterion; and that the usefulness of the algorithm will rest
upon the insensitivity of the clustering task to this modifica-
tion in the criterion. However, it cannot be hoped that the
optimal clusterings according to the ideal criterion and to ¢,
will agree on outliers; therefore, mislabelling of a small frac-
tion of outliers while still obtaining a low cost clustering is
an acceptable sacrifice for the sake of an efficient algorithm.
For the case of metric spaces, an approximation algorithm
for max cut (i.e. K = 2) has been provided in recent inde-
pendent work by Fernandez de la Vega and Kenyon [14]
(building upon [2; 12; 13]). Max cut (maximization of
&(T) — ¢(S, S)) is NP-complete [31; 42; 18] (even for metric
spaces); min cluster (minimization of ¢(S, S)) is equivalent,
but multiplicative approximation of these quantities is not
equivalent, with min cluster being harder since there is al-
ways a clustering for which ¢(5,S) < ¢(T)/2.

The clustering problem is fully interesting already for the
case in which the points of T' are of equal “significance” or
“weight”. However, all our results go through, and are in
fact more naturally stated, for the case in which the points
are weighted by a nonnegative real valued function w; this
possibility will also be very useful in the algorithm. So, the
more general formulation of the cost function is

S)= Y wuwedun. (1)
{u,w}Cs

Observe that without loss of generality the points may be

assumed distinct. We will assume throughout that ¢ is
symmetric and that ¢.,. = 0 VYu € T hence equivalently
o(S) = %Eu,yeswuwv‘éuyv' We will also assume through-
out that ¢ is nonnegative.

For general references in the field of clustering see [10; 28;
23; 47; 19; 25; 36; 37; 1; 7]; for discussions of a variety of
interesting methods and application areas see [44; 40; 41;
46; 34; 33].

Other common approaches to clustering include k-means,
expectation-maximization (EM), and agglomerative meth-
ods. These methods do not provide guarantees on the qual-
ity of their output. Another approach based upon graphs
looks for min cuts (multiway cuts for & > 2) rather than
max cuts; in this case edges of the graph indicate similar-
ity rather than dissimilarity. Min cut is a computationally
easier formulation, with polynomial time exact algorithms
known for k = 2,3 and logk approximation for larger k.
In other formulations such as k-medians, substantial work
has been required even in order to obtain approximations in
the plane [3]. (For approaches to this formulation in more
general spaces, achieving logarithmic and constant factor
approximations, see see [4; 9; 26].)

A key role in our method is played by a random sampling
process which, given T, picks a very small weighted col-
lection of points. We show that for a range of cost func-
tions, the cost of this collection is with high probability close
to that of the original collection 7. Moreover in the case
¢ = £3, a clustering computation for such small samples can
also be used to induce a good clustering of T'. We therefore
begin by describing the sampling process.

2. SAMPLING PROCESS

An optimistic idea for the clustering problem is simply to
select each point with some small probability p; hopefully
then good partitions of the sample will “lift” to good parti-
tions of the original data. Indeed there is some promise in
this approach, for if we let 7" denote the selected set, then
E(6(T")) = p* E(¢(T)). However, this is futile as a method
of identifying good clusterings of 1. For, there are sets 7'
with the following property: for almost all small subsets S of
T, the partition of S inherited from the optimum partition
of T', is much more expensive than the optimal partition of
S. So examining the partitions of random subsets of T' does
not contribute substantially toward partitioning 7.

We propose instead a more interesting sampling method. In
this method the selection probabilities are determined by
the original weights and by the location of points within 77
a variable-weighting method is used to balance the effects of
the uneven sampling probabilities.

We analyze the sampling process for any nonnegative cost
function ¢ on the edges (pairs of points) satisfying the fol-
lowing “c-metric” condition: there is a positive constant c
such that ¢1/° is a metric. Thus QS;{; < qﬁ’/zc + qﬁiéf and
consequently also ¢, < 2°max{dzs:,¢-y}. With a little
more care note that

¢I7y S 2C_1(¢-T72 + ¢Z7y)' (2)

Given a collection of points 7' with weight function w, form
a new variable-weights collection 7" in the following random
process. For each point u € T let

SWy Z'UGT 'wv¢u,v

26(T) ®)

Ay =



(A satisfactory choice for s is, for example, 4. In practice it
may be desirable to adjust this value to optimize the per-
formance of the algorithm.) Observe that s = ) a,. Let
Bu =7 +a . To each point u assign an independently chosen
random varlable K, with the integral exponential dlstrlbu—
tion with expectation a.; namely, P(K., =1) = (1 — Bu.)B..
We will also denote this quantity pu,i.

Obse‘rve for future referencg that a, = l—ﬁﬁ =>4l -
Bu)Bu = >0  tpui = >.; B°. Moreover, the variance of an

integer exponential r.v. with expectation a is a(1 + a).

Now form the collection 17" by assigning weight wh = wuKu/ay

to each point u of T. We examine the r.v. ¢(7"). We begin
with its first moment, establishing that it is an estimator
of the desired quantity. This relies only on the indepen-
dence of the random variables { K, } and the weight selection

wy, = wu Ky /E(Ky).

’ 1 1o
E@(I") =5 Y dayBwiwy) (4)
z,y€T
= 7 Z bz E (wy)
z,yeT
= % Z ba,ywawy = $(1)
z,y€T

Next we turn to the second moment.

E(¢(T‘)2) =7 E Go,yPz, tw X

2,9,2,t€T YzQyAzae

z iJRP((Ke = ) A (Ky = J) A (K2 = k) A (K = 1£)).
§,7,k,£>0
We calculate this by beginning as if the variables K, K, K,
K are independent even when some of z,y, z, t collide; and
then correcting for the effects of collisions. The calculation
is involved, and is omitted entirely from this extended ab-
stract. The result is

N2y 2 2¢(T)
BO(T')) = ¢(T) +[== =T D as(l+ay)+ D 6
yeT z,yeT
()
Now we analyze this expression. Beginning with the second
term, recall that 3 a, = s, therefore 3" a? < 5%, and so

[@]2 Zay(l-I-ozy) < 4¢(T)2(1-|-1/5). (6)

Next we examine the third term. Recalling equation (3) and
that Bu = au/(1 + au), we write

wiw} B
2 %5,

z,y€T

B WAL (2N

[e"e
z,y€T Y

wmwy 1 —+ ozx)(l —+ ozy)
’y 2o Wada2) (20, wady,2)

z,y€T

and recalling > o, = s we have

Z ¢I7y ﬁ y < 4(1 + 8)2 ¢(T)2 y

§2
z,yeT

Y ﬁzﬁy

Wz Wy

z,y€T

Let us lower bound each of the terms in the last denomina-
tor. For the min term, recalling inequality 2, consider that
for any z € T

¢(T) = % z 'wu'wvﬁbu,v >~ Z wuwv ¢uz +¢z v)
u,vEeT u,vE€T
= l Z 'wu'wv26¢u,x = 20—1va Z 'wu¢u,x
2 u,vE€T ueT

Hence
min{) wga -, wedy-} > 2 Y1) /wr.

For the max term, write (again using inequality 2)

max{z 'wz¢m,27 Z 'wzﬁby,z} Z % Z 'wz(¢m,z + QSy,z)

z z

1_C¢r,y = Z_C'WTQSr,y

> %Zwﬁ

z

Now combine the min and max analyses to continue from
equation 2:

> #ug B. ﬂy <P 9(1) ) ()

z,yeT
Unifying equations 5, 6 and 7 we find that

THEOREM 1. If ¢ is a c-metric then for the random col-
lection T selected as described above,

E($(T")") < (T) (5 +4/s + 227> (1+ 5)°/57)
O

For the clustering procedure we will need a slight extension
of this statement. Let G be an undirected graph whose
¥ vertices are the points of a collection S, and let

Z Wy Wy Pu,v- (8)
{u,v}ea
If S C S then we let ¢c(S’) equal ¢pg/(S’) where G’ is the
induced graph on vertex set S’. By an analysis identical to
equation 4, the prescribed sampling procedure on a set T
yields

E(66(T")) = ¢a(T). (9)
Moreover, since 0 < ¢g(T") < ¢(T"),
E(¢a(T')*) < E(&(T")%). (10)

We therefore have:

THEOREM 2. If ¢ is a c-metric then for any graph G and
for the random collection T selected as described above,

E(¢a(T')*) < &(1)*(5+4/s + 2°7°(1+ 5)/5%)

3. THE CASE ¢ = £

Z ¢ =Y Hun{z WPz z, EZ ‘wZQSyyZ} max{zz WPz, z, Zz wZQSyyZ}



3.1 Preliminariesand related literature

We focus now on the central special case in which the cost
function is the square of Euclidean distance p.,, between
points u, v thus in this section ¢, = pfm.

We say that two sets S1,52 C R are separated (or strictly
separated) by sphere C if one of these sets is contained in the
interior and the other in the exterior of C' (the components
of RY—C, halfspaces labelled arbitrarily in case C is a hyper-
plane). We say that Sy, S; are weakly separated by sphere
C' if one of these sets is disjoint from the interior and the
other from the exterior of C. The key to the deterministic
algorithm computing the optimal 2-partition or k-partition
of a point set, is the following corollary of proposition 7:

CoRrOLLARY 3. If (S,T' —S) is an optimal partition with
respect to ¢ = {3 of a (possibly variable-weight) point set T,
then there exists a sphere separating S and T'— S.

Let ¢(S) be the center of gravity of a set of points S, ¢(S) =
'wgl ZuES wyu. (Here ws = Zueswm or simply in the
uniform-weights case.) Let Var(S) = w3’ Zyesvai,c(sy
(For brevity we will also, given sets S; and 52, let ps, s,

denote pe(sy),c(s,)- Thus Var(S) = w3 Zves'va%,s') Cal-

culation shows that an equivalent formulation of the £2 cost
function is ¢(S) = wiVar(S).

Weak separation was shown previously by Boros and Ham-
mer [8]. The distinction between the kinds of separation
was overlooked. Later Inaba, Katoh and Imai [24] pro-
posed examining all sphere partitions to find an optimal
partition. That proposal is justified only on the basis of
the present work, because weak separation does not imply
a sub-exponential time algorithm.

The proper handling of data that is “singular” in the sense
that it contains more than d 4+ 1 co-spherical points (not
necessarily a rarity in integer-coordinate data) has turned
out to be an aspect requiring substantial care both in the
description of the deterministic exact algorithm, and in its
implementation (by the author and by students).

On the other hand, since perturbations of the point loca-
tions affect ¢ continuously, this issue can, in the case of
approximation algorithms, be circumvented (though there
is no need to) by first perturbing the points into general
position with respect to spheres.

Based upon corollary 3 we provide a deterministic algorithm
computing an optimal 2-partition in section 3.3.

The first mention of £3 as a clustering criterion may be by
Kiseleva, Muchnik and Novikov [32], for point sets in one
dimension.

3.2 Necessary condition for local optimality

Since points are allowed varying weights, it is natural to al-
low clusterings in which the weight of a point is allocated
among several clusters. However as can easily be verified,
to any such clustering there corresponds another of lesser
or equal cost which splits no points. (This is true of any
cost function, requiring only ¢, = 0 Vu; and also for cri-
teria such as ¢ discussed in section 5.) Hence in the sequel
only partitions which assign points to unique clusters will
be considered.

DEFINITION 4. The distance between two k-partitions S =
{S1,..,5k} and R = {Ri,...,Rr} of a set T, is the least

number of elements whose memberships must be changed so

that Vi 35 S; = R;. (Equivalently, the least Hamming dis-
tance between the vectors in {1,...,k}" specifying the parti-

tions S and R, that can be obtained by permutation of the
alphabet {1, ...,k}.)

DEFINITION 5. A k-partition S = {S1,...,Sk} is j-stable
if its cost (S) = . #(Si) is minimal among all k-partitions
within distance j.

If S is optimal then it is j-stable for any j. If S is (n — 1)-
stable then it is optimal.
Consider a set R and a point v. Then ¢(RU {v}) — ¢(R) =

Wy ) ek 'wupiyv. This can be rewritten

$(RU{v}) — ¢(R) = wuwr ' ¢(R) + wrpyr].  (11)

For, place ¢(R) at the origin of the coordinate system, and v
at the position p,, r on the first axis. Then w, ZuGR wupi by =

Wy ZuGR 'M[Z? U? +(u1 — Pv,R)Q] = 'wv[ZueR Wy Zl “ +
'pr?),R - 2p’UyR Eu ’wuul] = Wy [EuGR 'wupu,R + prv,R] -
wowy' $(R) + wrpl g).

Note that equation 11 is a special case of the more general

o(R) = Z[M + %leijp%“Rj], (12)

- WR.
,J By

expressing the cost of R in terms of constituents {R;} with
weights {wr; } and costs {¢(R;)}. (Weights in R are summed
in case of repeated points.) This expression in turn can be
written in the following way, which will be useful in the se-
quel:

=> é(Ri)+ > (¢(Ri UR;)

1<

— o(R:) — ¢(Ry))
(13)

Now consider an existing partition {S, S} and a new point
v. To which cluster is it preferable to adjoin v? Define
three regions partitioning space as follows: the region in
which it is preferable to adjoin the new point to S, n(S) =
{v € R 6(S U {u}) — 6(S) < (5 U {v}) — 6(5)}; the
region in which it is preferable to adjoin to S, n(S) = {v €
RT: 6(S U {v}) — 6(5) > ¢(5 U {v}) — 6(5)}; and the
boundary between these two regions, where there is a tie,
v = n(S)° N n(S)°. The surface v is defined by the equa-
tion ¢(S U {v}) — &(S) = qu(S U {v}) — ¢(S), equivalently
Y ues Wups, = Y oues wups, 4, equivalently

wspy s + w5 B(S) = wepl 5+ wz'¢(5). (14)

Examination of the last condition shows that v, if not empty,
is a sphere (a hyperplane if ws = wg).

ProprosITION 6. S is 1-stable if and only if S C n(S)°
and S C n(S)°.

Proof: If Sis 1-stable then, for any point v € S, Eues—{v} 'wupiyv

< Yues Wubt,o- Equivalently, 3, c s wupto <3, cs Wb,
implying that v € n(S)¢. The argument for S is identical.
The converse is immediate. a

_ PROPOSITION 7. If S is 2-stable then either SNv = 0 or
Snv=0.



Proof: Suppose that u € SNv and v € SNv. Now exchange
the memberships of these points. The change in ¢ is A¢ =

‘w“(zreg—{v} 'wrpi,r_zses ‘wSpiys)—i_’w”(ZsGS—{u} 'wSp?MS_

Ereg'wrpf,yr). Since u and v are on v, each of these terms
equals —'wuvaiyv. Hence A¢ = —2wu'vaiyv < 0, contra-
dicting 2-stability. m|

Let ®4(n) = 3¢ ( ! )

PROPOSITION 8. A set of n points in R? has at most
®441(n—1) 2-stable 2-partitions. The clusters of every such
partition are separated by a sphere. Proof: An O(nd+1)
bound is immediate; further details omitted from this ex-
tended abstract. a

The 2-stable partitions are even further restricted. A subset
of a poset is termed a j-family if it contains no chains of
length j + 1 [21]. (A 1-family is an antichain.)

ProposITION 9. If S C R then n(R) C n(S). Further-

more v(R) Nuv(S) can contain at most one point.

Proof: A consequence of the equation ¢(SU{v})—¢(S) =
Wy Zues ‘qui,v- a

CoROLLARY 10. (a) The collection of sets which occur as
clusters in 1-stable partitions of a set T are a 2-family in the
poset of subsets of T'. (b) The collection of sets SNn(S) for
1-stable partitions (S, S) of a set T' are an antichain in the
poset of subsets of T'. Proof: Omitted from this extended
abstract. a

3.3 Exactdeterministicalgorithmfor 2-partitions

THEOREM 11. For fized d an optimal 2-partition in R?
may be found in O(n®t!) time.

Proof: A time bound of O(n?*?) is easily obtained by ex-
pending O(n) time computing ¢ for each sphere partition.
The description of the method achieving time O(n?*!) is
omitted from this extended abstract.

3.4 Exactdeterministicalgorithmfor x-partitions

ProrosiTioN 12. To a 1-stable k-partition there corre-

sponds a set of spheres, such that each cluster region

2
18 the union of regions defined by intersections of interiors
or exteriors of the spheres. If the k-partition is 2-stable then
(just as for the 2-partition case) the boundary region between
two of these clusters can only contain points belonging to one
of them; the same number of spheres therefore also suffice
in order to separate the clusters. a

Let F(n,d, k) = n(d2)k+10((d+2)k)

ProprosiTioN 13. There is an algorithm finding the op-
temal k-partition of a set of n points which runs in time

F(n,d k).

Essential use is made here of the “sample points” algorithm
of Basu, Pollack and Roy, which produces representative
points in the cells defined by a set of polynomials ([5] §3.1.3
p. 1028). The reduction is omitted from this extended ab-
stract.

3.5 Simplification of ¢ clustering by dimen-
sion reduction

The set 1" of n points to be clustered may lie in a high di-

mensional Euclidean space. We need never consider a space

of dimension greater than n — 1: input given in a higher di-

mensional space should be reduced to this case by projection

onto the affine subspace containing 7'

ProroOSITION 14. Fiz any e > 0. Given a set T of n
points in R™™Y, a k-partition of T can be computed whose
cost ¢ 1s within a factor of 14+¢ of optimal, in time nO(:~?logn)

(for k = 2) and F(n,e"?logn, k) (for general k).

Proof: Johnson and Lindenstrauss showed that if a set T of
n points in Euclidean space is mapped under a random or-
thogonal projection M to an O(I%Qﬂ)—dimensional subspace,
then with high probability the distortion of the metric on
these points is no more than 1+ € [29] (a constant of 8 is
achievable in this theorem, with log being the natural log-

. . . . P P
arithm). The distortion is maxa,p,caer (222220d) SQych a
Pa,bPMc,Md

mapping may be found efficiently (in time O(nQ)) by trial
and error. Once a suitable mapping has been found, 2-
partition or k-partition algorithms (deterministic exact, for
a guaranteed approximation, or randomized approximate,
for a high probability result) can be applied. a
For the objective function ¥ to be defined in section (5) one
need range in the deterministic algorithm over hyperplane
rather than sphere partitions. As shown in [22], improv-
ing on the immediate O(n“t!), this can be done in time
O(n?log n) in dimension d. This can be improved:

NoTe 15. The optimal clustering for ¢ can be found in
time O(n?) for d > 2, by using geometric duality and com-
puting the incidence graph of the arrangement of hyper-
planes, in the same manner as in section 3.3.

3.6 Simplification of ¢ clustering by sampling
We now show what is the consequence for ¢ = £3 of using the
sampling process described in section 2. The cost function
£2 is of course a 2-metric in the sense discussed in section 2.
Hence theorem 1, with s > 4 and ¢ = 2, implies that

E($(1")*) < 1066(1)* = 106 E($(1"))*.

Fix s = 4. Let D(p;q) denote the information divergence
or Kullback-Liebler divergence, D(p;q) = plog(p/q) + (1 —
p)log((1 —p)/(1 —q)).

Given ¢, 0, set a = 6362, b = (log(n®™'671))/D(1/2;2/3),
and repeat the sampling process described in section (2)
t = ab times. Let T; (for 1 < i < t) be the collection of
points (with appropriate weights) obtained in trial i.

For a collection of points S and a sphere v containing no
point of S (with v; and 2 denoting the two closed regions of
space bounded by 7), let ¢~ (.S) be the cost of a partition of S
by v, namely ¢~(S) = ¢(SNy1)+&(SNv2); this corresponds
to the notation of equation 8 with the understanding that
the graph consists of all pairs of points not separated by ~.
Let U be the set of points sampled with nonzero weight in
any of the sampling processes. For every spherical partition
of the set U (represented by a sphere v passing through no
point of U), consider the following quantity:

h() = median?zl{é S 6aTuonsi)}. (15)
i=1



LEMMA 16. For any given sphere v, the inequality
|%| < €/2 holds with probability at least 1 —dn~=4"".
For the optimal sphere partition v of U, the inequality
|%| < € holds with probability at least 1 — dn=*"".
Proof: For a fixed sphere v, and any ¢, the random vari-
able ¢+(T;) is an unbiased estimator of ¢(T); and, using
theorem 2, its variance is at most 106¢(T)2.
Correspondingly, for a fixed sphere v, and any j, the random
variable M = 1 3°% ¢ (T,(;—1)+i) is an unbiased estima-
tor of ¢.(T), with variance at most 106¢(7)*/a. Hence

using the Chebychev inequality, P(|%%;T)| > e/2) <
45\2/2(;;])\? = % = 2/3. By an application of the Chernoff

bound this implies the first statement of the lemma. The
best sphere partition v satisfies ¢(7") < ¢(7')/2, which im-
plies the second statement of the lemma. a
As noted earlier, the number of distinct sphere partitions of
T is bounded by <I>d+1(n — 1) < n%*!. We can now con-
clude that with high probability, the sphere partitions of U
are an “e-approximate” set of representatives for the sphere
partitions of 7', in the following sense:

THEOREM 17. With probability at least 1—0: |%

€/2 for all spheres v, and, for the optimal sphere cut,

| <

PR < :
3.7 Randomized approximation algorithm for
2-partitions

1. Depending on the dimension d execute either 1A or

1B:

1A. If the dimension is low, d € o(e ™2 log n):
Carry out the above sampling procedure
t = 636e 2 log(n?t'671)/D(1/2;2/3) times, and pro-
ceed either to option 2A or 2B below.

1B. If the dimension is high, d € Q(e 7% log n):
First carry out the dimension-reduction procedure de-
scribed in section (3.5), reducing the dimension to
d' = O((£/3) % log n) while distorting all distances by
at most 1+ ¢/3. Then we carry out the sampling pro-
cedure, again using the parameter €/3, i.e. setting ¢t =
636(¢/3) 2 log(ndl‘i'lé_l)/D(l/Z; 2/3). (These choices
guarantee that the combined allowed error (1 + ¢/ 3)2
is less than 1+ ¢, provided € < 1; the case € > 1 is less
interesting.) Then we proceed to either option 2A or

2B below.

2. In the second step carry out either of the following
options:

2A. For each sphere partition v of U, calculate h(y). Se-
lect a sphere 4 minimizing h and use it to partition
T. This partition (which will generally include some
arbitrary choices for points near v) is the output of the
algorithm.

2B. For each sphere partition v of U, evaluate ¢~(1') (again
there will generally be some arbitrary choices for points
near v), and output the partition minimizing this quan-
tity.

COROLLARY 18. With probability at least 1 — § the value
of the cut output by the algorithm (using either option 2A or
2B) is within a multiplicative factor of 1 — e of the optimal
value. a

The output of option 2B is always of course at least as good
as that of option 2A, but it necessitates a slightly higher
runtime, about n|U|d+1; both the improvement in output
quality, and the increase in runtime, are fairly slight, so ei-
ther option seems reasonable. Since option 2B comes with
no better guarantees than option 2A, we evaluate the run-
time in terms of option 2A.

Run time of the algorithm: linear time suffices to compute
the quantities {au}uer required for the sampling proce-
dures. Generation in the simplest way of the r.v.s {K,}
used for each of the trials, requires time O(nlogn). How-
ever since almost all of these coefficients are likely to equal 0,
they can be generated in sublinear expected time (without
explicitly listing the zero-valued r.v.s).

Finally, time |T;||U|**" suffices to evaluate all spherical par-
titions vy of U with respect to each of the samples T; (1 <
i < t), and so time |U|4*? suffices to compute h(y). |U] is
bounded by the sum of the variables K;, and the expectation
of this sum is st. Since the K; are exponentially distributed
and independent, the distribution of their sum has exponen-
tial tails, hence the expected runtime of the computation
is O((e™?log(n?*'671))4*2). (Alternatively we can allow
another probability é of the algorithm failing, and simply
restart it whenever the |U] is too large.) Recall that due to
section 3.5, d may be assumed here to be the minimum of
8¢~ ?log n and the original dimension.

In conclusion, we have shown (neglecting the cost of the
linear algebra that may be required at initialization to iso-
metrically reduce the dimension of the problem to n — 1):

THEOREM 19. Given a clustering problem for cost func-
tion ¢ = £3 on n points in dimension d, the above algo-
rithm runs in time O((e ™2 log(ndl+15_l))dl+2) (where d' =
min{d, 8¢ logn}), and with probability at least 1 — § out-
puts a clustering with a cut cost within a factor of 1 — e of
optimum. O

If we simplify somewhat by assuming ¢ and § constant, this
gives a runtime of O(((d + 1)logn)?*t?). In the worst case
this is n®Uesl8m) If g ¢ 0(%%) then the runtime of the
algorithm is linear, and is dominated by the time to compute
the sampling probabilities a,.

3.8 Few pointsof agood clustering aremisla-
belled

Multiplicative approximation of the maximum cut value,
obtained above, does not imply multiplicative approxima-
tion of the min cluster value; however, it does imply, as we
now show, that the minimum cluster has been determined
correctly except for a small fraction of misidentified points.
This is the main goal of an automated clustering method,
since a realistic classification problem will generally be only
roughly modeled by a simple criterion such as ¢, so that
there is little reason to think that the decree of the opti-
mum ¢-clustering, concerning points at the fringes of the
clusters, carries much meaning. Nonetheless, multiplicative
approximation of the min cluster would be a stronger re-
sult and remains, at the least, an outstanding theoretical
problem.



Consider a cut (S,S) of T' (we will have in mind that this
is the optimal clustering, although this plays no role in the
following arguments, only in their application in note 23).
Let G denote the graph containing all edges that do not
cross this cut. Consider any other clustering (S’,S5’) of T;
and let G’ be the graph containing all edges that do not
cross the second cut. Hence ¢g(7T) and ¢g:(T) are the costs
of the two clusterings. Define the distance A(S, S') between
the two cuts to be ﬁ min{wsns' + Wsng, Weng + Wang }-
In case the points have unit weights this is the same (after
scaling) as the Hamming-type distance of definition 4.

Lemya 20. ¢(T) < (9 + zso)(@a(T) + ¢ (1))

This bound is not far from the truth; it is easy to construct
an example with ¢e(7) =0 and ¢(7) = mqﬁgz(T).

The lemma immediately implies:

TuEOREM 21. Let a clustering (S, S) be given (with cor-
responding graph G). Let ¢ be any positive number. Let
0 <e< m and suppose that ¢c(1) < ep(T). Let
(S’, 5" be another clustering (with corresponding graph G’ ),
such that A(S,S") > %, i.e. the two clusterings dif-
fer in the labelling of a substantial part of the data. Then
¢ (T) > cep(T).

So (S’,5') is a worse clustering than (.5, S), by a factor of
at least c.

To simplify the above theorem, in the particular case ¢ =1
we can for example say:

CorOLLARY 22. If¢a(T) < ep(T) < £¢(T) and A(S,S") >

17e, then ¢ (T) > ep(T).

Theorem 21 and this corollary are a precise formulation,
for ¢, of the intuitive statement that should hold for any
useful clustering criterion: that if the data set can be clus-
tered very well, then that clustering must be “meaningful”
or “nearly unique” — there cannot be an entirely different
way of achieving a clustering of similar quality.

NoTE 23. The algorithmic implication is as follows: the
algorithm of the preceding section can be run to identify a
(1—¢) multiplicative approximation of max cut. If the value
of that cut is less than (1 —e)¢(7T), then we can also obtain
a multiplicative approximation of the min cluster by using
e? in place of ¢ in the algorithm. On the other hand if it is
found that the max cut value is at least (1 —¢)¢(T), then we
can conclude that the clustering S’ so identified is very close
to the optimal clustering S, specifically A(S,S') < 17e.

Proof of lemma 20: We begin with a triangle inequality
concerning ¢. Given two weighted collections of points A

and B, let rap = [w]lp. From equation 12

wawWg
we read: rip = pin + %él + %?l. Now, we show the
A B
triangle inequality: rap + rec > rac. (Argument omitted
from this extended abstract.) This does not make r a
metric on clusters, because raa > 0 (unless Als a point).
We conclude also that

rap +rBo > rac/2. (16)

Now, consider the four subcollections defined by the cuts

Sand S: A =5nS, B=5nS,C =5n5, and

D = 5n5". In these terms, ¢c(1) = (AU B) + ¢(C U D),
b6 (T) = p(AUC)+¢(BUD), and A(S, S') = ﬁ min{wa-+
wp,wp + wc}.

We assume without loss of generality that A(S,S') = %.
Let E € {B,C} be the heavier of the two, so that wg =
max{wp, wc} > A(S, S")wr/2. Similarly let F' € {A, D} be
the heavier of the two, so that wp = max{w,q7 'wD} > wT/4.
Employ equation 13 to write: ¢(T') = ¢(A)+¢(B)+¢(C)+
5(D) + (6(A U B) — 6(4) — 6(B)) + (6(C U D) — 6(C) —
5(D)) + (6(A U C) — 6(4) — 6(C)) + ((B U D) — 6(B) —
6(D))+(G(AUD) —4(A)—4(D)) +H$(BUC) —6( B)—(C))
< (AU B)+6(CUD) +6(AUC) + 6(B U D) + ($(AU
D) - 6(4) ~ 6(D)) + (6(B U C) — 6(B) - 4(C))

= ¢(AUB)+¢(CUD)+d(AUC)+¢(BUD)+wawprip+
WBWCTBe -

This, by inequality 16, is

< (AUB)+6(CUD) +6(AUC) +6(BUD)+2uawp (st
rhp) + 2wpwe(rye +rhe
=¢(AUB)+¢(CUD)+¢(AUC) 4+ ¢(BUD)

+ 20 awp (LAVEL=SAIZ0E) | S(EUD)=0(E)=u(b)
+ 20guc(UEUR=SEI=n) ‘”FUC)JU(, F-g(c) ),

B F

<g(AuB)+¢(§uD)+¢(AgC>+¢(Bug)

+32 ¢(AUE)+ S ¢(EUD)+ ST ¢(BUF)+ ST ¢(FUC).
Every argument of ¢ in the last line is the same as one of
those in the preceding line. Both 2;”—;3 and 2;”—‘4 are bounded
above by 22T < _24 __ while both 2¥< and 2¥B are
wg A(5,9) wp wp
bounded above by Z“—FT < 8. Hence
1y
A(S, S
(6(AU B) +6(C U D) +$(AUC) +6(B U D))

O+ J(@a(T) + ¢ (T)).

o(T) < 9+

IA

4
A(S, 5
O

3.9 Randomized approximation algorithm for
k- partltlons

Similar to the case k¥ = 2; omitted from the extended ab-

stract.

4. THECASES¢ =4,¢,AND OTHER COST
FUNCTIONS

Having obtained a clustering algorithm for £2, we are posi-
tioned to take advantage of the generosity of £3 as a host
space.

By a cost function on a set of points 7' we mean a function A :
T? — R which is symmetric, nonnegative, and 0 on the diag-

onal. An embedding of (7, A) in (7", X’) with distortion C is

. via),e c
amap ¢: T — T such that supabcdeT(A(a b))J(b( )AL(d“)l)) =

C. If C =1 we say ¢ is isometric (regardless of whether the
domain and range are metric spaces). We will abbreviate
by writing simply £1,£> or £3 when all that matters is that
the dimension of the space is finite. Note that for £2 and £2
no dimension beyond n — 1 need be considered. A space is
finite if T is finite.

THEOREM 24. [Linial, London and Rabinovich] (a)
There is an algorithm which, given a cost function A on a set
of n points T, identifies a minimum-distortion embedding of
(T, \) in £3, in time polyomial in n. (b) Euvery finite £1 or
£ space is isometrically embeddable in £3.



Hence our approximation scheme solves also the cases ¢ = £
and ¢ = £, in the same asymptotic runtime (i.e. nO(loglog n)
for fixed €, § and k) guaranteed for the case £3. Note that
this does not supply a way of taking advantage of an initially
low dimension to obtain an improved runtime. Finally note
that whether or not a given cost function is known to be £3-
embeddable, one may solve the PSD program, and provide
a good clustering opportunistically if a low distortion em-
bedding exists.

5. DISCUSSION AND OTHER OBJECTIVE
FUNCTIONSFOR CLUSTERING

Some interesting objective functions for clustering do not fall
within the framework discussed in this paper, of the sum of
a cost function over all intra-cluster pairs of points.

One such criterion which has attracted considerable atten-
tion is ¥(S) = |S|Var(S) = Y, cspis = ¢(5)/IS] (in
this section we let ¢ = ZS) Clustering so as to minimize
> (S;) (sometimes known as “sum of squares minimiza-
tion”) appears to have been discussed first for one dimen-
sion by Fisher in 1958 [17] and for higher dimensions by
Ward in 1963 [48] and Shlezinger in 1965 [45]; a partial list
of subsequent literature is [16; 27; 20; 35; 43; 6; 30; 11;
24; 22; 15], and some surveys touching on the subject are
[19; 38]. (Point weights appear not to have been discussed
in this literature, but can be accomodated without harm to
any existing result.) The regions containing optimal clusters
relative to the ¢ criterion are Voronoi cells centered on the
centers of gravity of the clusters; the ¢ and ¢ criteria gen-
erally lead to quite different kinds of optimum partitions.
Which criterion, if either, is preferable will depend on the
application domain. The restriction that optimal regions for
the ¢ criterion must be convex can be regarded as either an
advantage or a limitation of the criterion. The full version
of this paper contains some examples which may help clarify
the relative advantages of the two criteria.

The earliest related discussion we are aware of is by Neyman;
it appears that his proposed clustering criterion corresponds
to the function }_ o pv,s [39]. We are not aware of any ex-
isting algorithmic work specifically concerning this criterion.
However, just as for any criterion of the form Zvesg(pvys)
(g monotone increasing), optimal cluster regions must be
Voronoi cells, so an exhaustive examination of such parti-
tions will find an optimal partition in time O(n®*?).

The Johnson-Lindenstrauss dimension-reduction step is use-
ful for both of the above objective functions, since, for the
same reasons described earlier in the paper, it reduces the
effective dimension of a 1 & ¢ approximation problem to

O(e™? log n).
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