
CHAPTER 2. RANDOMIZED AND DISTRIBUTIONAL COMPLEXITY; LINEAR
PROGRAMMING

2.2 Game tree evaluation: randomized algorithms

Let us now focus on game trees with a uniform structure. The most canonical example is alter-
nating levels of binary AND and OR gates. This can be simplified with the identity OR(x, y) =
¬AND(¬x,¬y). So we can reduce to the problem of evaluating a complete binary tree of NAND
gates. (In the conversion, it may be necessary to flip the input gates or the output gate or both; but
this does not affect the query complexity of the problem.)

NAND 0 1
0 1 1
1 1 0

The key to savings in the randomized case is that when either input to a NAND gate is found to
be 0, the output is bound to be 1 and therefore we don’t need to look at the other input. This
suggests a Random DFS evaluation–randomly, uniformly pick which child to recurse on–should be
efficient. Of course, the potential savings make sense for deterministic evaluation too, but if we
go in a prescribed order, the adversary will always make us see a 1 first. (This is exactly what we
exploited in the lower bound in the previous section.) A randomized algorithm has the advantage
that if either child equals 0, we have half probability of looking at that child first and avoiding the
other evaluation.

Simpler question: MAJ3 trees of depth n

There’s a small technical challenge in analyzing the NAND tree so let’s look at an easier question:
The complete ternary tree of depth n in which every non-leaf vertex is a Majority gate. (A singleton
node is depth 0.) Let Sn = worst-case expected number of leaves evaluated by Random DFS.

MAJ

r1
r2

r3

MAJ MAJ MAJ

.

000 011 100 101
etc

Whatever the values of the three children of a node, we only have to evaluate the last child if the
first two disagreed. At least one of the three pairs is always in agreement, so the probability we first
find a disagreeing pair is at most 2/3. So

Sn ≤ (2/3) · 3 · Sn−1 + (1/3) · 2 · Sn−1 = (8/3)Sn−1

Hence (keeping in mind S0 = 1), Sn ≤ (8/3)n = Nlog3 8/3 ∼= N0.893 where N = 3n is the number of
leaves.

What we have here is very much like a branching process. Every node has either two or three
children (until level n at which the branching process is cut off), and the savings in the randomized
algorithm comes from showing that, in the notation of the next section, µ̄ ≤ 8/3.

Caltech CS150b 2019. 8

2.2. GAME TREE EVALUATION: RANDOMIZED ALGORITHMS

Digression: branching processes

Let µ be a probability distribution on the nonnegative integers. The branching process or Galton-
Watson process with distribution µ is the following tree-valued random variable T:

T has a root. Each vertex v of T gets some Nv children, for Nv independently distributed according
to µ. Let µ̄ = E(Nv) (possibly infinite).

Theorem 6. TFAE:

1. T is a.s. finite. (a.s. = Almost Surely = With Probability 1)

2. µ̄ ≤ 1 and µ1 < 1.

The intuition is this. In the subcritical regime, i.e., µ̄ < 1, each parent has less than 1 child on
average—so no wonder the generations die out with probability 1. In the supercritical regime,
µ̄ > 1, things are not so definite—it could happen for example that the root has no children at all—
but, the number of vertices at a level is generally drifting upwards, and as it grows, the likelihood
of population collapse decreases drastically, so overall, the probability of the tree being infinite is
positive. The critical case µ̄ = 1 is (as always in these kinds of problems) hardest to determine and
here we have two cases. One is that µ1 = 1 in which case the process is deterministic, T is infinite
and there is nothing more to say. The other is that µ1 < 1 which implies that µ0 > 0. Now the
number of children at each level of the tree is just drifting without bias up or down. However,
there is an absorbing boundary at 0: extinction is forever. This process is not a random walk with
bounded step size, such as we have studied in “gambler’s ruin”, but intuitively it behaves similarly,
and it goes extinct with probability 1 for basically the same reason.

Here we prove formally only a weaker version of (2) ⇒ (1); after that we’ll give some idea of the
other direction but point to Grimmett and Stirzaker §5.4 Thm (5) for a full proof [18].

If µ̄ < 1 then T is a.s. finite.

Proof. We will use the shorthand µ≥i = ∑j≥i µj.

When a vertex has N children, we list them in an arbitrary “birth order” as children 1, . . . , N.
The “address” of a vertex of the tree is a finite string of positive integers (X1 . . . X`): the root is
represented by the empty string and the address of a vertex is its parent’s address followed by its
place in the birth order.

For a string (X1 . . . X`), let JX1 . . . X`K be the (indicator rv of) the event that this address exists in
the tree. An equivalent characterization of this event is that

1. The root has at least X1 children, and

2. The vertex (X1) has at least X2 children, and . . .

3. The vertex (X1 . . . X`−1) has at least X` children.

Note that µ̄ = ∑i≥0 iµi = ∑i≥1 µ≥i.

We have the following:

Pr(JX1 . . . X`K) =
`

∏
j=1

µ≥Xj

The event that T is infinite is equivalent to the event that ∑~XJ~XK = ∞. Let’s calculate the expectation
of the LHS. Note that in the following calculation all products are of finitely many terms.

Caltech CS150b 2019. 9

CHAPTER 2. RANDOMIZED AND DISTRIBUTIONAL COMPLEXITY; LINEAR
PROGRAMMING

E(∑
~X

J~XK) = ∑
~X

Pr(J~XK) = ∑
`≥0

∑
~X:|~X|=`

`

∏
j=1

µ≥Xj

= ∑
`≥0

`

∏
j=1

∑
X≥1

µ≥X

= ∑
`≥0

`

∏
j=1

µ̄

= ∑
`≥0

µ̄`

=
1

1− µ̄
< ∞ here we finally use µ̄ < 1

Now let’s recall the first Borel-Cantelli lemma (??) (Reminder: Let Bi be countably many events s.t.
∑i≥1 Pr(Bi) < ∞. Then Pr(lim sup B) = 0.) It follows that T is almost surely finite. 2

Caltech CS150b 2019. 10

