
3.6. MIN-CUT AND NETWORK RELIABILITY

3.6 Min-cut and network reliability

3.6.1 Min-Cut: Karger’s algorithm

We consider undirected simple (no loops or multiple edges) weighted graphs G on n vertices.

w(i, j) ≥ 0, w(i, j) = w(j, i), i 6= j ∈ {1, . . . , n}

Write w(G) = ∑k<` w(k, `).

A cut is a partition of the vertices into two non-empty subsets S, S̄; the weight of cut (S, S̄) is

w(S, S̄) = ∑
i∈S,j∈S̄

w(j, i)

A min-cut is a cut of minimum weight over all possible cuts; the min-cut problem is that of comput-
ing the value of the min-cut. Usually we also mean that we want to output some cut of this value.
This doesn’t make the problem much harder: if you know the min-cut value is c, try removing
some edge e, of weight say w. If the remaining graph has a cut of weight c−w, then you can safely
put this edge in the cut, and if the remaining graph has only cuts of weight > c− w, then you can
safely exclude the edge from the cut. Either way, you can just check the next edge, in the first case
with the graph G− e, in the second case with the graph G. (This is known as a “self-reducibility”
argument. We saw this idea last term when we were studying algorithms for perfect matching.)

Today: Randomized poly-time algorithm for min-cut. (Deterministic poly-time is known but is
much more complicated.) Then we’ll combine these ideas (slightly extended) with the #DNF ap-
proximation algorithm (also slightly extended), to give a FPRAS (will be defined below) for the
network reliability problem.

Contrast: The max-cut problem is NP-complete.

Definition 31. Let {i, j} be an edge of G. In the contraction of G by {i, j}, G/{i, j}, the vertices i and j
are replaced by a single new vertex (i, j), and for each v 6∈ {i, j} any edges {i, v} or {j, v} are replaced by
the edge {(i, j), v}, with the sum of the constituent weights; the edge {i, j} is removed; the rest of the graph
remains unchanged.

�
�
�
�

�
�
�
�

12 22

1

50

i j

k l
��

��
��

��
��

��

@
@
@

@4

5 -

"
"
"
"
"

@
@

@
(i, j)

k l

17 26

50

With each contraction, the number of vertices of G decreases by one. There is a 1− 1 correspon-
dence between cuts of G that don’t separate i and j, and cuts of G/(i, j). In particular, every cut in
the graph G/{i, j} is a cut in G. So min-cut(G/{i, j}) ≥ min-cut(G).

Let c be the value of a min-cut of G. In particular, the edges incident on any vertex of G sum to
at least c. This remains true of every vertex of Ht (because the min-cut is nondecreasing, as just
noted), so

w(Ht) ≥
(n− t)c

2
(3.22)

(the factor of two for counting weights from both ends).

Theorem 32. Let (S, S̄) be a min-cut. The probability that Karger’s algorithm outputs a refinement of (S, S̄)
is at least n′(n′−1)

n(n−1) .

Caltech CS150b 2019. 37

CHAPTER 3. WEIGHTED SAMPLING

Algorithm 4: Karger(G, n′): Karger’s Min Cut Algorithm [25]

Input: Undirected simple graph G with edge-weights w; desired size n′ ≥ 2.
Output: An n′-way cut
H0 := G
t := 0
while t < n− n′ do

Pick (i, j) ∈ E(Ht) with probability w(i, j)/w(Ht)
Ht+1 := Ht/{i, j}
t← t + 1

Return the cut of G corresponding to the n′ = n− t vertices in Ht.

Exercise: For n′ = 2 this is tight.

Proof. As noted, w(S, S̄) = c. (S, S̄) is output by the algorithm if and only if none of the edges
crossing this cut is contracted by the algorithm in its n − 2 iterations. Suppose that none of the
edges in (S, S̄) was contracted in Ht−1. Then

Pr(an edge of (S, S̄) is contracted in Ht) =
c

w(Ht−1)
≤ 2

n− t + 1

where in the inequality we have applied (3.22). Therefore, for the output of the algorithm,

Pr[min-cut (S, S̄) coarsens the output Hn−n′] = (1− c
w(H0)

)(1− c
w(H1)

) · · · (1− c
w(Hn−(n′+1))

)

≥ (1− 2
n
)(1− 2

n− 1
) · · · (1− 2

n′ + 1
)

=
n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · · · · n′

n′ + 2
· n′ − 1

n′ + 1

=
n′(n′ − 1)
n(n− 1)

. (3.23)

2

If this is run to completion (n′ = 2), the bound is 1
(n

2)
. This is therefore a lower bound on the

probability of success, even if there is only one min-cut.

Corollary 33. Repeating Karger’s algorithm O(n2) times gives a probability bounded away from 0 of
correctly outputting the min-cut value, and repeating the algorithm O(n2 log n) times gives a probability
bounded away from 0 that we observe all min cuts. (Which is even more than we required for this problem –
but we’ll want the stronger property a little later.)

The second part of the corollary comes from the well-known:

Coupon collector’s problem: sample with repetition from k kinds of coupons. How many trials
until all kinds have been seen? (Was assigned as an exercise)

1 2 3 · · · · · · · · · k

If all probabilities are 1
k , then the expected number of trials is Θ(k log k).

If all probabilities are at least p, then the expected number of trials is O(1
p log 1

p).

It will be a homework problem that each contraction step can be implemented in time O(n), and
therefore that one trial of the algorithm runs in time O(n2). Consequently the time to success with
constant probability is O(n4). Now let’s see a faster method.

Caltech CS150b 2019. 38

