3.6. MIN-CUT AND NETWORK RELIABILITY

3.6 Min-cut and network reliability

3.6.1 Min-Cut: Karger’s algorithm
We consider undirected simple (no loops or multiple edges) weighted graphs G on n vertices.

w(i,j) >0, w(ij)=w(ji), i#je{l,...,n}
Write w(G) = Yoo w(k, £).

A cut is a partition of the vertices into two non-empty subsets S, S; the weight of cut (S, S) is

w(S,S) =Y w(ji

i€S,jeS

A min-cut is a cut of minimum weight over all possible cuts; the min-cut problem is that of comput-
ing the value of the min-cut. Usually we also mean that we want to output some cut of this value.
This doesn’t make the problem much harder: if you know the min-cut value is ¢, try removing
some edge e, of weight say w. If the remaining graph has a cut of weight ¢ — w, then you can safely
put this edge in the cut, and if the remaining graph has only cuts of weight > ¢ — w, then you can
safely exclude the edge from the cut. Either way, you can just check the next edge, in the first case
with the graph G — ¢, in the second case with the graph G. (This is known as a “self-reducibility”
argument. We saw this idea last term when we were studying algorithms for perfect matching.)

Today: Randomized poly-time algorithm for min-cut. (Deterministic poly-time is known but is
much more complicated.) Then we’ll combine these ideas (slightly extended) with the #DNF ap-
proximation algorithm (also slightly extended), to give a FPRAS (will be defined below) for the
network reliability problem.

Contrast: The max-cut problem is NP-complete.

Definition 31. Let {i,j} be an edge of G. In the contraction of G by {i,j}, G/{i,j}, the vertices i and j
are replaced by a single new vertex (i,]), and for each v & {i,j} any edges {i,v} or {j, v} are replaced by
the edge {(i,), v}, with the sum of the constituent weights; the edge {i,j} is removed; the rest of the graph
remains unchanged.

i] .
g (i,7)
12 22 -

26

k I k 50 l

50

With each contraction, the number of vertices of G decreases by one. There is a 1 — 1 correspon-
dence between cuts of G that don’t separate i and j, and cuts of G/(i,). In particular, every cut in
the graph G/{i,j} is a cut in G. So min-cut(G/{i,j}) > min-cut(G).

Let ¢ be the value of a min-cut of G. In particular, the edges incident on any vertex of G sum to

at least c. This remains true of every vertex of H; (because the min-cut is nondecreasing, as just

noted), so

(n—t)c
2

(the factor of two for counting weights from both ends).

w(Hy) > (3.22)

Theorem 32. Let (S, S) be a min-cut. The probability that Karger’s algorithm outputs a refinement of (S, S)

. n'(n'—1)
is at least (=)

Caltech CS150b 2019. 37

CHAPTER 3. WEIGHTED SAMPLING

Algorithm 4: Karger(G, n’): Karger’s Min Cut Algorithm [25]

Input: Undirected simple graph G with edge-weights w; desired size n’ > 2.
Output: An n’-way cut
HO =G
t:=0
while t <n—n' do
Pick (i,j) € E(H;) with probability w(i, j) /w(H;)
Hip1 := Hi/{i,j}
tet+1

Return the cut of G corresponding to the n’ = n — t vertices in H;.

Exercise: For n’ = 2 this is tight.

Proof. As noted, w(S,5) = c¢. (S,5) is output by the algorithm if and only if none of the edges
crossing this cut is contracted by the algorithm in its n — 2 iterations. Suppose that none of the
edges in (S, S) was contracted in H; 1. Then

c < 2
(Hi-1) ~m—t+1

where in the inequality we have applied (3.22). Therefore, for the output of the algorithm,

Pr(an edge of (S, S) is contracted in H;) = -

Pr[min-cut (S, S) coarsens the output H, /| = (1 —

2 2 2
> (1-)1 -
2 (1= = =) W+1)
n—2 n—3 n—4 n n-1
T n n—-1 n-2 n+2 n+1
n'(n' —1)
= .2
n(n—1) (323)
O

1
(G)"

probability of success, even if there is only one min-cut.

If this is run to completion (1’ = 2), the bound is This is therefore a lower bound on the

Corollary 33. Repeating Karger’s algorithm O(n?) times gives a probability bounded away from 0 of
correctly outputting the min-cut value, and repeating the algorithm O(n?logn) times gives a probability
bounded away from 0 that we observe all min cuts. (Which is even more than we required for this problem —
but we’ll want the stronger property a little later.)

The second part of the corollary comes from the well-known:

Coupon collector’s problem: sample with repetition from k kinds of coupons. How many trials
until all kinds have been seen? (Was assigned as an exercise)

L2 s o,

If all probabilities are %, then the expected number of trials is ©(klogk).

If all probabilities are at least p, then the expected number of trials is O(% log %)

It will be a homework problem that each contraction step can be implemented in time O(#n), and
therefore that one trial of the algorithm runs in time O(n?). Consequently the time to success with
constant probability is O(n*). Now let’s see a faster method.

Caltech CS150b 2019. 38

