5.2 Lecture 27 (5/Dec): Applications and further versions of the local lemma

5.2.1 Graph Ramsey lower bound

Ramsey’s theorem (the upper bound on the Ramsey number) runs in the opposite direction to Property B because it establishes the existence of something monochromatic. Not surprisingly, then, our use of the local lemma will be to provide a lower bound on Ramsey numbers. We already saw such a lower bound: a simple union bound argument gave $R(k, k) \geq (1 - o(1)) \frac{k}{e} \sqrt{2} \frac{2^{k/2}}{k}$. Now we will see how to improve this.

Theorem 93 $R(k, k) \geq \max \{n : e\binom{k}{2}\binom{n}{k-2} \leq 2^{\binom{k}{2} - 1}\}.$ Thus $R(k, k) \geq (1 - o(1)) \frac{k}{e} \sqrt{2} 2^{k/2}$.

To see that the condition on n implies the conclusion, raise each side to the power $\frac{1}{k-2}$. The $e\binom{k}{2}$ and $−1$ are inconsequential; we find that if n satisfies the following, then $R(k, k) \geq n$:

$$(1 + o(1))ne^{-\frac{(k-2)\log(k-2)+k-2}{k-2}} \leq 2^{\frac{2^{k-1}}{k-2}}.$$

$$ne/k \leq (1 + o(1))2^{\frac{k+1}{k}}.$$

Proof: As before, sample a graph from $G(n, 1/2)$. For each set of k vertices the “bad event” of a clique or independent set occurs with probability $2^{\binom{k}{2}}$. For the dependency graph, connect two subsets if they intersect in at least two vertices. The degree of this dependency graph is strictly less than $e\binom{k}{2}\binom{n}{k-2}$ (relying on $k \geq 3$, since the theorem is easy for $k = 2$) because this counts neighbors with the extra information of a distinguished edge in the intersection, so $\Delta + 1 \leq \binom{k}{2}\binom{n}{k-2}$. □

This bound, due to Spencer [96], improves on the union bound by a factor of only 2. While the improvement factor is very small, qualitatively it is meaningful. It shows that a certain negative correlation among edges is possible: you have a graph which is big enough to have on average many copies of each graph of size k. (The union bound was tailored so that the expected number of copies of a k-clique was just below $1/2$, and the same for a k-indep-set. Now we have twice as many places to put each of the k vertices, so we expect to see about 2^{k-1} of each of these subgraphs.) Yet as you look across different subgraphs of this graph, there is a kind of negative correlation which prevents the occurrence of these extreme graphs (the k-clique and the k-indep-set). The FKG inequality helps illustrate that the Lovász local lemma did something truly non-local in the probability space. Any independent sampling method would result in a monotone event such as a specific k-clique, being at least as likely as the product of its constituent events (the indicators of each edge in the clique).

It is a major open problem to improve on either $\liminf \frac{1}{k} \log R(k, k) \geq \sqrt{2}$ or $\limsup \frac{1}{k} \log R(k, k) \leq 4$. Actually this gap is small by the standards of Ramsey theory. For more on the general topic see [23].

5.2.2 van der Waerden lower bound

Here is another “eventual inevitability” theorem; as before, the local lemma will provide a counterpoint.

Theorem 94 (van der Waerden [103]) For every integer $k \geq 1$ there is a finite $W(k)$ such that every two-coloring of $\{1, \ldots, W(k)\}$ contains a monochromatic arithmetic sequence of k terms.
The best upper bound on $W(k)$, due to Gowers [47], is $\leq 2^{2^{2^{2k+9}}}$.

The gap in our knowledge for this problem is even worse than for the graph Ramsey numbers: the current lower bound, which we’ll see below, is $W(k) \geq \frac{2^{k-1}}{(k+2)e^2}$. (A better bound is known for prime k.) First we show an elementary lower bound:

Theorem 95 $W(k) > 2^{\frac{k-1}{k+1}}\sqrt{k - 1}$.

Proof: Color uniformly iid. The probability of any particular sequence being monochromatic is 2^{1-k}. The union bound shows that all these events can be avoided provided

$$\frac{n(n-1)}{k-1}2^{1-k} < 1 \quad (5.3)$$

(count n places the sequence can start, while the step size is bounded by $\frac{n-1}{k-1}$). The bound $n \leq 2^{\frac{k-1}{k+1}}\sqrt{k - 1}$ implies $W(k) > 2^{\frac{k-1}{k+1}}\sqrt{k - 1}$. \hfill \Box

Now for the improved bound through the local lemma:

Theorem 96 (Lovász [33]) $W(k) \geq \frac{2^{k-1}}{(k+2)e^2}$.

Proof: Again color uniformly iid. For a dependency graph, connect any two intersecting sequences. The degree of this graph is bounded by

$$\frac{(n-1)k^2}{k-1}$$

(k^2 choices for which elements they have in common, $\frac{n-1}{k-1}$ possible step sizes). Thus all the bad events can be avoided if

$$2^{1-k} \leq \frac{1}{e(1 + \frac{k^2(n-1)}{k-1})},$$

which in turn is implied by the bound in the statement of the lemma.

The improvement here came because a union bound over approximately n^2/k terms was replaced by a smaller factor of about nk. \hfill \Box

5.2.3 Heterogeneous events and infinite dependency graphs

There are two generalized forms of the local lemma that come fairly easily.

2The original bound of van der Waerden is of Ackermann type growth [2]. The first primitive recursive bound, due to Shelah [33], is this. For any function $f : \mathbb{N} \to \mathbb{N}$ let $\hat{f} : \mathbb{N} \to \mathbb{N}$ be $\hat{f}(1) = f(1), \hat{f}(k) = f(\hat{f}(k-1)) (k > 1)$. So, letting $\exp_2(k) := 2^k$, the tower function is $T = \exp_2$. Shelah’s bound is of the form \hat{T} or in other words \exp_2.

Heterogeneous events

It is not necessary that we use the same upper bound on $\Pr(B_j)$ for all j. Instead, we can allow events of various probabilities. Those which are more likely to occur, must have in-edges from events of smaller total probability. On the other hand less likely events can tolerate more in-edges (as measured by total probability). This is formulated, in a slightly circuitous way, in the following version of the lemma.

Lemma 97 Let events B_j and dependency edges E be as before. If there are $x_j < 1$ such that for all j,

$$\Pr(B_j) \leq x_j \prod_{(k,j) \in E} (1 - x_k)$$

Then

$$\Pr(\bigcap B_j^c) \geq \prod_j (1 - x_j).$$

The proof method is the same. Show inductively on m that (for any subcollection of m events and any ordering on them), $\Pr \left(B_m \mid \bigcap_{j \leq m-1} B_j^c \right) \leq x_m$.

Infinite dependency graphs

Typically, the restriction that S is finite can be dropped due to compactness of the probability space. Specifically, suppose that—as in most applications—there is an underlying space of independent rvs X_k, k ranging over some index set U, and each X_k ranging in some compact topological space R_k. Moreover suppose that every one of the bad events B_j is a function of only finitely many of the X_k’s, say of $k \in U_j \subseteq U$, U_j finite. Suppose moreover that each B_j is an open set in $\prod_{k \in U_j} R_k$. Then each B_j^c is a closed set in the product topology on $\prod_{k \in U} R_k$. Since the product topology is itself compact by Tychonoff’s theorem, it satisfies the Finite Intersection Property: a collection of closed sets of which any finite subcollection has nonempty intersection, has nonempty intersection. Consequently, under the additional topological assumptions made here—which are trivially satisfied if each X_k takes on only finitely many values—the supposition in the local lemma (in either formulation 90 or 97) that S is finite, may be dropped.