3.7 Lecture 19 (14/Nov): cont. Bourgain embedding

3.7.1 cont. Bourgain embedding: L_1

We use this notation for open balls:

$$B_r(x) = \{z : d(x,z) < r\}$$

and for closed balls, $\bar{B}_r(x) = \{z : d(x,z) \leq r\}$.

Recall that we are now analyzing the embedding for any single pair of points x,y.

Let $\rho_0 = 0$ and, for $t > 0$ define

$$\rho_t = \sup \{r : |B_r(x)| < 2^t \text{ or } |B_r(y)| < 2^t\}$$

up to $\hat{t} = \max\{t : \text{RHS} < d(x,y)/2\}$.

It is possible to have $\hat{t} = 0$ (for instance if no other points are near x and y).

Observe that for the closed balls B we have that for all $t \leq \hat{t}$, $|B_{\rho_t}(x)| \geq 2^t$ and $|B_{\rho_t}(y)| \geq 2^t$. This means in particular that (due to the radius cap at $d(x,y)/2$, which means that y is excluded from these balls around x and vice versa), $\hat{t} < s$.

Set $\rho_{\hat{t}+1} = d(x,y)/2$, which means that it still holds for $t = \hat{t} + 1$ that $|B_{\rho_t}(x)| < 2^t$ or $|B_{\rho_t}(y)| < 2^t$, although (in contrast to $t \leq \hat{t}$), $\rho_{\hat{t}+1}$ is not the largest radius for which this holds.

Note $\hat{t} + 1 \geq 1$. Also, $\rho_{\hat{t}+1} > \rho_{\hat{t}}$ (because the latter was defined to be less than $d(x,y)/2$). But for $t \leq \hat{t}$ it is possible to have $\rho_t = \rho_{t-1}$.

$\hat{t} + 1$ will be the number of scales used in the analysis of the lower bound for the pair x,y. I.e., we use the sets T_{ij} for $0 \leq t \leq \hat{t} + 1$. Any contribution from higher-t (smaller expected cardinality) sets is “bonus.”

Consider any $1 \leq t \leq \hat{t} + 1$.

Lemma 61 With positive probability (specifically at least $(1 - 1/\sqrt{e})/4$), $|\tau_{t_1}(x) - \tau_{t_1}(y)| > \rho_t - \rho_{t-1}$.

Proof: Suppose wlog that $|B_{\rho_t}(x)| < 2^t$. By Eqn (3.17) (with $t-1$), $|\bar{B}_{\rho_{t-1}}(y)| \geq 2^{t-1}$ (and the same for x but we don’t need that). If

$$T_{i_1} \cap B_{\rho_{t}}(x) = \emptyset$$

and

$$T_{i_1} \cap \bar{B}_{\rho_{t-1}}(y) \neq \emptyset$$

then

$$\|\tau_{t_1}(x) - \tau_{t_1}(y)\| > \rho_t - \rho_{t-1}.$$

We wish to show that this conjunction happens with constant probability. (See Fig. 3.9)

The two events (3.18), (3.19) are independent because T_{i_1} is generated by independent sampling, and because, due to the radius cap at $d(x,y)/2$ (and because $\rho_t < \rho_{t+1}$), $B_{\rho_t}(x) \cap \bar{B}_{\rho_{t-1}}(y) = \emptyset$.

First, the x-ball event (3.18):

$$\Pr(T_{i_1} \cap B_{\rho_{t}}(x) = \emptyset) = (1 - 2^{-t})|B_{\rho_{t}}(x)|$$

$$\geq (1 - 2^{-t})2^t$$

$$= (1 - 2^{-t})2^t$$

$$\geq 1/4 \quad \text{for } t \geq 1$$
Second, the \(y \)-ball event (3.19):

\[
\Pr(T_t \cap \bar{B}_{\rho_{t-1}}(y) \neq \emptyset) = 1 - (1 - 2^{-t})|B_{\rho_{t-1}}(y)|
\geq 1 - (1 - 2^{-t})^{2^{t-1}}
\]

and recalling \(1 + x \leq e^x \) for all real \(x \),

\[
\geq 1 - e^{-1/2}
\]

Consequently, \(|\tau_t(x) - \tau_t(y)| > \rho_t - \rho_{t-1}\) with probability at least \((1 - 1/\sqrt{e})/4\). \(\square\)

Now, let \(G_{x,y,t} \) be the “good” event that at least \((1 - 1/\sqrt{e})/8\) of the coordinates at level \(t \), namely \(\{\tau_j\}_{j=1}^{s'} \), have

\[
|\tau_j(x) - \tau_j(y)| > \rho_t - \rho_{t-1}.
\]

If the good event occurs for all \(t \), then for all \(x, y, t \),

\[
\|\tau(x) - \tau(y)\|_1 \geq \frac{1}{s} \frac{(1 - 1/\sqrt{e})}{8} d(x, y) \geq \frac{1}{2}.
\]

Here the first factor is from the normalization, the second from the definition of good events, and the third from the cap on the \(\rho_t \)'s.

We can upper bound the probability that a good event \(G_{x,y,t} \) fails to happen using Chernoff:

\[
\Pr(-G_{x,y,t}) \leq e^{-\Omega(s')}.
\]

Now taking a union bound over all \(x, y, t \),

\[
\Pr(\bigcup_{x,y,t} -G_t) \leq e^{-\Omega(s')} n^2 \lg n < 1/2
\]

for a suitable \(s' \in \Theta(\log n) \).

To be specific we can use the following version of the Chernoff bound (see problem set 4):

Lemma 62 Let \(F_1, \ldots, F_{s'} \) be independent Bernoulli rvs, each with expectation \(\geq \mu \). \(\Pr(\sum F_i < (1 - \epsilon)\mu s') \leq e^{-\epsilon^2 \mu s'/2} \).

which permits us (plugging in \(\epsilon = 1/2 \)) to take \(s' = \frac{32\sqrt{e}}{\sqrt{e}-1} \log(n^2 \lg n) \). \(\square\)

Exercise: Form a Fréchet embedding \(X \to \mathbb{R}^n \) by using as \(T_i \)'s all singleton sets. Argue that this is an isometry of \(X \) into \((\mathbb{R}^n, L_\infty) \). Consequently \(L_\infty \) is universal for finite metrics. (This, I believe, was Fréchet’s original result [38].)
3.7.2 Embedding into any L_p, $p \geq 1$

As a matter of fact the above embedding method has distortion just as good into L_p, for any $p \geq 1$. Start by expanding:

$$\|\tau(x) - \tau(y)\|_p = \left(\frac{1}{m^2} \sum_{ij} (\tau_{ij}(x) - \tau_{ij}(y))^p\right)^{1/p}$$ \hspace{1cm} (3.20)

We begin with the upper bound, which is unexciting:

$$\leq \left(\frac{1}{m^2} \sum_{ij} (d(x,y))^p\right)^{1/p} = d(x,y).$$

For the lower bound, we use the power-means inequality. Note that (3.20) is a p'th mean of the quantities $(\tau_{ij}(x) - \tau_{ij}(y))$, ranging over i,j. So from Lemma 15,

$$\geq \frac{1}{m^2} \sum_{ij} |\tau_{ij}(x) - \tau_{ij}(y)| = \|\tau(x) - \tau(y)\|_1$$

so for any τ and any $p > 1$, the L_p distortion of τ is no more than its L_1 distortion. This demonstrates the generalization of Theorem (60) with $O(\log^2 n)$ ($p \geq 1$) replacing $O(\log n)$.

3.7.3 Aside: Hölder’s inequality

Although we already proved the power means inequality directly in Lemma 15, it is worth seeing how it fits into a framework of inequalities. The power means inequality is a comparison between two integrals over a measure space that is also a probability space (i.e., the total measure of the space is 1). Power means follows immediately from an important inequality that holds for any measure space (and indeed generalizes the Cauchy-Schwarz inequality), Hölder’s inequality:

Lemma 63 (Hölder) For norms with respect to any fixed measure space, and for $1/p + 1/q = 1$ (p and q are “conjugate exponents”), $\|f\|_p \cdot \|g\|_q \geq \|fg\|_1$.

To see the power means inequality, note that over a probability space, $\|f\|_p$ is simply a p'th mean. Now plug in the function $g = 1$ and Hölder gives you power means.