
6 Lecture 6, October 13, 2014

6.1 Perfect Matchings in General Graphs: Finding Them. The Isolating Lemma

We now develop a randomized method of Mulmuley, U. Vazirani and V. Vazirani to find a perfect matching
if one exists. A polynomial time algorithm is implied by the previous testing method along with self-
reducibility of the perfect matching decision problem. However, with the following method we can solve
the same problem in parallel, that is to say, in polylog depth on polynomially many processors. (The
deterministic version of this complexity class is known as NC, and the randomized as RNC. More exactly,
RNC=

⋃
i≥1RNCi where RNCi allows poly-many processors and depth O((log n)i).) This is not actually

the first RNC algorithm for this task—that is an RNC3 method due to [38]—but it is the “most parallel”
since it solves the problem in RNC2.

A slight variant of the method yields a minimum weight perfect matching in a weighted graph with “small”
weights, that is, integer weights represented in unary; and there is a fairly standard reduction from the
problem of finding a maximum matching to finding a minimum weight perfect matching in a graph with
weights in {0, 1}. So we actually through this method can find a maximum matching in a general graph,
with a similar total amount of work.

A key part of the method is the following lemma. First some notation. Let A = {a1, a2, . . . , am} be a finite
set. Let S = {S1, . . . , Sk} be a collection of subsets of A. If a1, . . . , am are assigned weights w1, . . . , wm, the
weight of set Si is defined to be w(Si) = ∑aj∈Si

wj.

Lemma 27 ([50] Isolating Lemma) Let the weights w1, . . . , wm be independent random variables, each wi being
sampled uniformly in some set Ri ⊆ R, |Ri| ≥ r. Then

Pr[∃ i �= j s.t. w(Si) = w(Sj) = min
�
{w(S�)}] ≤ m

r
(13)

This lemma is remarkable because of the absence of a dependence on k in the conclusion.

Proof: Consider any vector of weights w1, . . . , wm and any index i ∈ {1, . . . , m}. Let

αi,0 = min
j:ai /∈Sj

w(Sj)

αi,1 = min
j:ai /∈Sj

w(Sj − {ai})

Neither of these quantities depends on wi. Define the “bad event” Bi to be the event that

αi,1 + wi = α0,i. (14)

If none of the bad events occur, then there is only a single minimum weight subset, because the direction
of the inequality in Eqn. 14 for each i shows whether ai is in any minimum weight subset.

The bad events may be highly correlated, but no matter. Each Bi occurs with probability at most 1/r, as
we see by first conditioning on the weights other than wi and then noting that equality in Eqn. 14 can
occur only for at most one of the values in Ri. The lemma follows by a union bound. �

Now we describe the algorithm to find a perfect matching (or report that probably none exists) in a graph
G = (V, E) with n = |V|, m = |E|.
For every (i, j) ∈ E pick an integer weight wij iid uniformly distributed in {1, . . . , 2m}. By the isolating
lemma, there is with probability at least 1/2 a unique minimum weight perfect matching of G.

Define the matrix T by:

Tij =

⎧⎨
⎩

0 if {i, j} /∈ E
2wij if {i, j} ∈ E, i < j

−2wji if {i, j} ∈ E, i > j
(15)

This is an instantiation of the Tutte matrix, with xij = 2wij .

22

Claim 28 If there is a unique minimum weight perfect matching of G (call it M) then Det(T) �= 0 and moreover,
the highest power of 2 that divides det(T) is 22W, where W is the weight of M. I.e. Det(T) = 22W× [an odd
number].

Proof: of Claim: As before we look at the contributions to Det(T) of all the permutations π that are
supported by edges of the graph. The contributions from permutations having odd cycles cancel out—
that is just because this is a special case of a Tutte matrix.

It remains to consider permutations π that have only even cycles.

• If π consists of transpositions along the edges of M then it contributes ±22W .

• If π has only even cycles, but does not correspond to M, then:

– If π is some other matching of weight W ′ > W then it contributes ±22W ′
.

– If π has only even cycles and at least one of them is of length ≥ 4, then by separating each
cycle into a pair of matchings on the vertices of that cycle, π is decomposed into two matchings
M1 �= M2 of weights W1, W2, so π contributes ±2W1+W2 . Because of the uniqueness of M not
both of M1 and M2 can achieve weight W, so W1 + W2 > 2W. �

Now let

mij = ∑
π:π(i)=j

sign(π)
n

∏
k=1

Tk,π(k)

= ±2wij Det(T̂ij)

(16)

where T̂ij is the (i, j)-deleted minor of T (the matrix obtained by removing the i’th row and j’th column
from T).

Claim 29 For every {i, j} ∈ E:

1. The total contribution to mij of permutations π having odd cycles is 0.

2. If there is a unique minimum weight perfect matching M, then:

(a) If {i, j} ∈ M then mij/22W is odd.

(b) If {i, j} /∈ M then mij/22W is even.

Proof: of Claim: This is much like our argument for Det(T) but localized.

1. If π has an odd cycle then it has an even number of odd cycles and hence an odd cycle not containing
point i. Pick the “first” odd cycle that does not contain point i and flip it to obtain a permutation
πr. Note that (πr)r = π. The contribution of πr to mij is the negation of the contribution of π to mij,
because we have replaced an odd number of terms from the Tutte matrix by the same entry with a
flipped sign.

2. By the preceding argument, whether or not {i, j} ∈ M, we need only consider permutations contain-
ing solely even cycles. Just as argued for Claim 28, the contribution of every such permutation π can
be written as 2w(M1)+w(M2), where M1 and M2 are two perfect matchings obtained as follows: each
transposition (i, j) in π puts the edge {i, j} into both of the matchings; each even cycle of length ≥ 4
can be broken alternatingly into two matchings, one of which (arbitrarily) is put into M1 and one
into M2.

The only case in which there is a term for which w(M1) + w(M2) = 2W is the single case that
{i, j} ∈ M and π consists entirely of transpositions along the edges of M. In every other case, at
least one of M1 or M2 is distinct from M, and therefore w(M1) + w(M2) > 2W. The claim follows.

�

23

Finally we collect all the elements necessary to describe the algorithm:

1. Generate the weights wi uniformly in {1, . . . , 2m}.

2. Define T as in Eqn (15), compute its determinant and if it is nonsingular invert it. (Otherwise, start
over.) This determinant computation and the inversion can be done (deterministically) in depth
O(log2 n) by Csanky’s algorithm [14]. But a more efficient way is using Pan’s randomized algo-
rithm [54], which works in depth O(log2 n) and uses O(n3.5m) processors to invert an n× n matrix
with m-bit integers.

3. Determine W by factoring the greatest power of 2 out of Det(T).

4. Obtain the values±mij from the equations mij = ±2wij Det(T̂ij) and Det(T̂ij) = (−1)i+j(T−1)ji Det(T).
(Cramer’s rule.) If mij/22W is odd then place {i, j} in the matching.

5. Check whether this defines a perfect matching. This is guaranteed if the minimum weight perfect
matching is unique. If a perfect matching was not obtained (which will occur for sure if there is no
perfect matching, and with probability ≤ 1/2 if there is one), generate new weights and repeat the
process.

Of course, if the graph has a perfect matching, the probability of incurring k repetitions wihout success is
bounded by 2−k, and the expected number of repetitions until success is at most 2.

The simultaneous computation of all the mij’s in step 2 is key to the efficiency of this procedure.

The numbers in the matrix A are integers bounded by ±22m. As mentioned, Pan’s algorithm inverts such
a matrix using O(n3.5m) processors.

For the maximum matching problem, we use a simple reduction: use weights for each of the non-edges
too, but sample those weights uniformly from 2mn + 1, . . . , 2mn + 2m (rather than 1, . . . , 2m like the graph
edges). Then no minimum weight perfect matching will use any of the non-edges. The cost of this
reduction is that the integers in the matrix now use O(mn) rather than O(m) bits, so the number of
processors used by the maximum matching algorithm is O(n4.5m).

(For detail on parallelized linear algebra algorithms see [43] §2.4 & 2.5.5.)

24

