1. Give upper and lower bounds on the randomized query complexity of evaluating a boolean formula that is a complete binary tree of depth n (= maximum number of edges on a root-leaf path) consisting of AND gates at even levels and OR gates at odd levels.

2. Let L be any computational problem. In class we proved the equivalence $C_{\text{RAND}}(L) = C_{\text{DIST}}(L)$ for “Las Vegas” complexity. Prove the following extension of the weak side of this theorem to “Monte Carlo” complexity.

Definition: $C_{\text{RAND},\lambda}(L) = \inf_p \max_x E_p(C(r, x))$, where p ranges over probability distributions on deterministic algorithms r, with the restriction on p that for every x (an input to the problem), the probability of error on x is $\leq \lambda$. (Note that unlike in the Las Vegas case, p is allowed to employ deterministic algorithms r which err on some inputs x.)

Definition: $C_{\text{DIST},\lambda}(L) = \sup_q \min_r E_q(C(r, x))$, where q ranges over all probability distributions on inputs x and where r ranges over all deterministic algorithms that have probability of error $\leq \lambda$ on distribution q.

As in class, $C(r, x)$ is the run-time (or query complexity, or any other real-valued performance measure) of r on input x.

Theorem 1 (Yao) $C_{\text{RAND},\lambda}(L) \geq (1/2)C_{\text{DIST},2\lambda}(L)$.