Cyclic algebras: a tool for Space-Time Coding

CMI seminar, Caltech
January 20th, 2005

Frédérique Oggier

joint work with
Jean-Claude Belfiore and Ghaya Rekaya, ENST, Paris, France
Emanuele Viterbo, Politecnico di Torino, Torino, Italy
The problem we are interested in

- Codes for multiple antennas, with \(M \) transmit and \(M \) receive antennas.
- Also called **Space-Time Codes**.
The 2×2 MIMO channel

X: 2×2 matrix codeword from a space-time code

$$C = \left\{ X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \bigg| x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}$$

the x_i are functions of the information symbols taken from a constellation S (e.g. PSK, QAM).

H: 2×2 channel matrix is a complex Gaussian matrix with independent, zero mean, entries.

Z: 2×2 complex Gaussian noise matrix.

$Y = HX + Z$
The code design

The goal is the design of the codebook C:

$$C = \left\{ \mathbf{X} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \mid x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}$$

the x_i are functions of the information symbols taken from a constellation S (e.g. PSK, QAM).

- The pairwise probability of error of sending \mathbf{X} and decoding $\hat{\mathbf{X}} \neq \mathbf{X}$ is upper bounded by

$$P(\mathbf{X} \rightarrow \hat{\mathbf{X}}) \leq \frac{const}{|\det(\mathbf{X} - \hat{\mathbf{X}})|^{2M}}.$$

- We assume the receiver knows the channel (this is called the coherent case).
A simplified problem

Find a family \mathcal{C} of $M \times M$ matrices such that

$$\det(X_i - X_j) \neq 0, \ X_i \neq X_j \in \mathcal{C}.$$
A simplified problem

- Find a family \mathcal{C} of $M \times M$ matrices such that
 \[\det(X_i - X_j) \neq 0, \; X_i \neq X_j \in \mathcal{C}. \]
 Such a family \mathcal{C} is said fully-diverse.

- Furthermore
 \[|\det(X_i - X_j)|^2 \geq \text{const}, \; X_i \neq X_j \in \mathcal{C}. \]
The idea behind division algebras

- The difficulty in building \mathcal{C} such that
 \[\det(X_i - X_j) \neq 0, \ X_i \neq X_j \in \mathcal{C}, \]
 comes from the non-linearity of the determinant.
- An algebra of matrices is linear, so that
 \[\det(X_i - X_j) = \det(X_k), \]
 X_k a matrix in the algebra.
The idea behind division algebras

- The problem is now to build a family C of matrices such that
 \[\det(X) \neq 0, \ 0 \neq X \in C. \]
 or equivalently, such that each $0 \neq X \in C$ is invertible.
- By definition, a field is a set such that every (nonzero) element in it is invertible.
- Take C inside an algebra of matrices which is also a field.
- A division algebra is a non-commutative field.
The leitmotiv

Let C be a subset of an algebra of matrices which is a division algebra, then

$$\det(X_i - X_j) \neq 0, \ X_i \neq X_j \in C.$$
Outline

- Division algebras do exist: the Hamiltonian Quaternions
- Introducing number fields
- Introducing cyclic algebras
- Encoding and Rate
- Full diversity
The Hamiltonian Quaternions: definition

Let \{1, i, j, k\} be a basis for a vector space of dimension 4 over \(\mathbb{R}\).

We have the rule that \(i^2 = -1\), \(j^2 = -1\), and \(ij = -ji\).

The Hamiltonian Quaternions is the set \(\mathbb{H}\) defined by

\[
\mathbb{H} = \{x + yi + zj + wk \mid a, b, c, d \in \mathbb{R}\}.
\]
Hamiltonian Quaternions are a division algebra

- Define the conjugate of a quaternion $q = x + yi + wk$:
 $$\bar{q} = x - yi - zj - wk.$$

- Compute that
 $$qq = x^2 + y^2 + z^2 + w^2, \ x, y, z, w \in \mathbb{R}.$$

- The inverse of the quaternion q is given by
 $$q^{-1} = \frac{\bar{q}}{qq}.$$
Hamiltonian Quaternions: a matrix formulation

Any quaternion \(q = x + yi + zj + wk \) can be written as
\[
(x + yi) + j(z - wi) = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C}.
\]

Now compute the multiplication by \(q \):
\[
(\alpha + j\beta)(\gamma + j\delta) = \alpha\gamma + j\alpha\delta + j\beta\gamma + j^2\beta\delta = (\alpha\gamma - \beta\delta) + j(\alpha\delta + \beta\gamma)
\]

Write this equality in the basis \(\{1, j\} \):
\[
\begin{pmatrix}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{pmatrix}
\begin{pmatrix}
\gamma \\
\delta
\end{pmatrix}
= \begin{pmatrix}
\alpha\gamma - \beta\delta \\
\bar{\alpha}\delta + \beta\gamma
\end{pmatrix}
\]
Hamiltonian Quaternions and Cyclic Algebras

A handwaving parallel:

\[
\begin{pmatrix}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
x_0 & \gamma \sigma(x_1) \\
x_1 & \sigma(x_0)
\end{pmatrix}
\]

\[\mathbb{C} \leftrightarrow \text{a number field}\]

\[
\bar{x} \leftrightarrow \sigma(x)
\]

\[-1 \leftrightarrow \gamma\]
Number fields: the idea

- The set \mathbb{Q} is easily checked to be a field.

- Take i, such that $i^2 = -1$. One can build a new field “adding” i to \mathbb{Q}, the same way i is added to \mathbb{R} to create \mathbb{C}.

- To get a field, we add all the multiples and powers of i. We obtain $\mathbb{Q}(i)$.

- Note we can start with the field $\mathbb{Q}(i)$ and add $\sqrt{5}$, we get a new field, denoted by $\mathbb{Q}(i, \sqrt{5})$.

- We say that $\mathbb{Q}(i, \sqrt{5})$ is an extension of $\mathbb{Q}(i)$, which is itself an extension of \mathbb{Q}.
If L/K is a field extension, then L has a natural structure as a vector space over K

An element $x \in \mathbb{Q}(i, \sqrt{5})$ can be written as $w = x + y\sqrt{5}$, where $\{1, \sqrt{5}\}$ are the basis “vectors” and $x, y \in \mathbb{Q}(i)$ are the scalars.

Also $w = (a + ib) + \sqrt{5}(c + id)$, $a, b, c, d \in \mathbb{Q}$. Thus $\mathbb{Q}(i, \sqrt{5})$ is a vector space of dimension 2 over $\mathbb{Q}(i)$, or of dimension 4 over \mathbb{Q}

A finite field extension of \mathbb{Q} is called a number field.
Hamiltonian Quaternions and Cyclic Algebras

A handwaving parallel:

\[
\begin{pmatrix}
\alpha & -\beta \\
\beta & \bar{\alpha}
\end{pmatrix} \leftrightarrow \begin{pmatrix}
a_0 + \sqrt{5}b_0 & \gamma \sigma(a_1 + \sqrt{5}b_1) \\
a_1 + \sqrt{5}b_1 & \sigma(a_0 + \sqrt{5}b_0)
\end{pmatrix}, \quad a_0, a_1, b_0, b_1 \in \mathbb{Q}(i)
\]

\[\mathbb{C} \leftrightarrow \mathbb{Q}(i, \sqrt{5})\]

\[\bar{x} \leftrightarrow \sigma(x)\]

\[-1 \leftrightarrow \gamma\]
A way to describe i is to say it is the solution of the equation $X^2 + 1 = 0$. Building $\mathbb{Q}(i)$, we thus add to \mathbb{Q} the solution of a polynomial equation.

Such a polynomial is called the \textit{minimal polynomial}.

The polynomial $X^2 + 1$ is the minimal polynomial of i over \mathbb{Q}. Similarly, $X^2 - 5$ is the minimal polynomial of $\sqrt{5}$ over $\mathbb{Q}(i)$.
Defining automorphisms

- We define automorphisms of a number field L using the roots of the minimal polynomial.
- For $\mathbb{Q}(\sqrt{5})$, $X^2 - 5 = (X + \sqrt{5})(X - \sqrt{5})$, there are thus two automorphisms
 \[
 \sigma_1 : \quad \mathbb{Q}(\sqrt{5}) \rightarrow \mathbb{Q}(\sqrt{5}) \quad a + b\sqrt{5} \mapsto a + b\sqrt{5}
 \]
 \[
 \sigma_2 : \quad \mathbb{Q}(\sqrt{5}) \rightarrow \mathbb{Q}(\sqrt{5}) \quad a + b\sqrt{5} \mapsto a - b\sqrt{5}
 \]
- True for $a, b \in \mathbb{Q}(i)$ or \mathbb{Q}.
- Note that $\sigma_2(\sigma_2(a + b\sqrt{5})) = a + b\sqrt{5}$.
Hamiltonian Quaternions and Cyclic Algebras

A handwaving parallel:

\[
\begin{pmatrix}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
a_0 + \sqrt{5}b_0 & \gamma \sigma(a_1 + \sqrt{5}b_1) \\
a_1 + \sqrt{5}b_1 & \sigma(a_0 + \sqrt{5}b_0)
\end{pmatrix},
\quad a_0, a_1, b_0, b_1 \in \mathbb{Q}(i)
\]

\[\mathbb{C} \leftrightarrow \mathbb{Q}(i, \sqrt{5})\]

\[\bar{x} \leftrightarrow \sigma(a_0 + \sqrt{5}b_0) = a_0 - \sqrt{5}b_0\]

\[-1 \leftrightarrow \gamma\]
Cyclic algebras

Let L/K be a Galois extension of degree n such that its Galois group $G = Gal(L/K)$ is cyclic, with generator σ. Denote by K^* (resp. L^*) the non-zero elements of K (resp. L), and choose an element $\gamma \in K^*$. We construct a non-commutative algebra, denoted $\mathcal{A} = (L/K, \sigma, \gamma)$, as follows:

$$\mathcal{A} = L \oplus eL \oplus \ldots \oplus e^{n-1}L$$

such that e satisfies

$$e^n = \gamma \quad \text{and} \quad \lambda e = e\sigma(\lambda) \text{ for } \lambda \in L.$$

Such an algebra is called a cyclic algebra.

The algebra \mathcal{A} is defined as a direct sum of copies of L, thus an element x in the algebra is written

$$x = x_0 + ex_1 + \ldots + e^{n-1}x^{n-1},$$

with $x_i \in L$.

Since the algebra is noncommutative, the rule $\lambda e = e\sigma(\lambda)$ explains how to do the computation if the element e is multiplied by the left.
Cyclic algebras: matrix formulation

We illustrate the computation on an example. For \(n = 2 \), we have

\[
xy = (x_0 + ex_1)(y_0 + ey_1) \\
 = x_0y_0 + x_0ey_1 + ex_1y_0 + ex_1ey_1 \\
 = x_0y_0 + e\sigma(x_0)y_1 + ex_1y_0 + \gamma\sigma(x_1)y_1,
\]

since \(e^2 = \gamma \). In matrix form, this yields

\[
xy = \begin{pmatrix} x_0 & \gamma\sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}.
\]
Cyclic algebras: matrix formulation

\[\mathcal{A} = L \oplus eL \]

such that \(e \) satisfies

\[e^2 = \gamma \quad \text{and} \quad \lambda e = e\sigma(\lambda) \quad \text{for} \quad \lambda \in L. \]

\[x = x_0 + ex_1 \in \mathcal{A} \leftrightarrow \begin{pmatrix} x_0 & \gamma \sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix} \]

\[e \in \mathcal{A} \leftrightarrow \begin{pmatrix} 0 & \gamma \\ 1 & 0 \end{pmatrix} \]
Cyclic Algebras: encoding and rate

- Information symbols are from QAM constellations, or HEX constellations.

- Since QAM symbols are in $\mathbb{Z}[i] \subseteq \mathbb{Q}(i)$.

- Consider our example, where $L = \mathbb{Q}(i, \sqrt{5})$. Then

$$\mathcal{C} = \left\{ \begin{pmatrix} a_0 + \sqrt{5}b_0 & \gamma(a_1 - \sqrt{5}b_1) \\ a_1 + \sqrt{5}b_1 & a_0 - \sqrt{5}b_0 \end{pmatrix}^T \mid a_0, a_1, b_0, b_1 \in \mathbb{Q} \text{QAM} \right\}.$$

- Codes made from cyclic algebras are said full rate: n^2 information symbols encoded for n^2 symbols transmitted.
Introducing the notion of norm

- We have defined *automorphisms* of a number field L using the roots of the minimal polynomial.

- For $\mathbb{Q}(\sqrt{5})$, $X^2 - 5 = (X + \sqrt{5})(X - \sqrt{5})$, there are thus two automorphisms

 $\sigma_1 : \mathbb{Q}(\sqrt{5}) \rightarrow \mathbb{Q}(\sqrt{5})$

 $a + b\sqrt{5} \mapsto a + b\sqrt{5}$

 $\sigma_2 : \mathbb{Q}(\sqrt{5}) \rightarrow \mathbb{Q}(\sqrt{5})$

 $a + b\sqrt{5} \mapsto a - b\sqrt{5}$

- True for $a, b \in \mathbb{Q}(i)$ or \mathbb{Q}.

- The *norm* of x is defined by

 $$N_{L/K}(x) = \prod_{i=1}^{n} \sigma_i(x)$$
Full diversity

- Remember that codes coming from cyclic algebras satisfy
 \[\det(X_i - X_j) = \det(X), \ X_i \neq X_j, \ X \in C. \]

- We want \(\det(X) \neq 0 \) for all \(X \neq 0 \).

- If \(n = 2 \), we have
 \[
 \det \begin{pmatrix}
 x_0 & \gamma \sigma(x_1) \\
 x_1 & \sigma(x_0)
 \end{pmatrix}
 = x_0 \sigma(x_0) - \gamma x_1 \sigma(x_1)
 = N_{L/K}(x_0) - \gamma N_{L/K}(x_1).
 \]
 Thus
 \[
 \det(X) = 0 \iff \gamma = N_{L/K} \left(\frac{x_0}{x_1} \right),
 \]
Full diversity

Theorem. Let L/K be a cyclic extension of degree n with Galois group $Gal(L/K) = < \sigma >$. If $\gamma, \gamma^2, \ldots, \gamma^{n-1} \in K^*$ are not a norm, then the cyclic algebra $\mathcal{A} = (L/K, \sigma, \gamma)$ is a division algebra.
Suppose you want a code for M antennas.

- Take a number field of degree M, say $\mathbb{Q}(i, \sqrt{5})$ for $M = 2$. (with cyclic Galois group).
- Build the code
 \[
 \mathcal{C} = \left\{ \begin{pmatrix} a_0 + \sqrt{5}b_0 & \gamma(a_1 - \sqrt{5}b_1) \\ a_1 + \sqrt{5}b_1 & a_0 - \sqrt{5}b_0 \end{pmatrix}^T \mid a_0, a_1, b_0, b_1 \in \mathbb{Q}\text{QAM} \right\}.
 \]
- Choose γ which is not a norm, to get a division algebra.
And next?

- In this talk, I explained how to build a cyclic division algebra.
- There are more properties one can get for these codes.
 1. a lower bound on the diversity
 2. the same average transmit energy per antenna
 3. shaping gain