Discrete time Markov Chains

Let E be a discrete space, finite or at most countable

- $E = \{ \text{red, green, orange}\}$
- $E = \{0, 1\}$
- $E = \{\text{rain, sunshine, snow}\}$
- $E = \{1, 2, \ldots, M\}$
- $E = \mathbb{N}$ \quad ($E = \{0, 1, 2, 3, \ldots\}$)
- $E = \mathbb{Z}$ \quad ($E = \{-\infty, -4, -3, -2, -1, 0, 1, 2, 3, \ldots\}$)

Def. We say that the sequence of random variables $X = (X_n, n \geq 0)$ with values in E is a Markov Chain if it possesses the Markov property:

For all $n \in \mathbb{N}, y, x_0, \ldots, x_n \in E$ such that

\[P(X_n = x_n, \ldots, X_0 = x_0) > 0 \quad \text{we have} \]

\[P(X_{n+1} = y \mid X_n = x_n, \ldots, X_0 = x_0) = P(X_{n+1} = y \mid X_n = x_n) \]

Observe that if $P(X_n = x_n) > 0$ then

\[\sum_{y \in E} P(X_{n+1} = y \mid X_n = x_n) = 1 \]
Def A matrix $P = (P(x,y), x, y \in E)$ is said to be a stochastic matrix if its coefficients are positive and the sum of the coefficients over each row is equal to 1:

$$\sum_{y \in E} P(x,y) = 1$$

Def Let $(Q_n, n \geq 1)$ be a sequence of stochastic matrices. We say that the matrices $(Q_n, n \geq 1)$ are transition matrices of the Markov Chain X if for all $n \geq 1$ and $x, y \in E$ such that $1P(x_{n-1} = x) > 0$, we have $y \in E$

$$Q_n(x,y) = 1P(x_n = y | x_{n-1} = x)$$

Let P be a stochastic matrix. We say that the Markov Chain X is homogeneous of transition matrix P if for all $n \geq 0$ and $x, y \in E$ such that $1P(x_n = x) > 0$, we have $y \in E$

$$1P(x_{n+1} = y | x_n = x) = P(x_n, y)$$

By convention, we write

$$1P(x_{n+1} = y | x_n = x_n, \ldots, x_0 = x_0) = P(x_n, y)$$

if $1P(x_n = x_n, \ldots, x_0 = x_0) = 0$
Ex Refined model for the Grøthenburg weather

\(E = \{ \text{rain, sunshine, snow} \} \)

Weather evolves according to \(P_{\text{summer}} \) in May - Sept. \(P_{\text{winter}} \) in Oct. - Apr.

\[
P_{\text{summer}} = \begin{bmatrix} 0.75 & 0.25 & 0 \\ 0.25 & 0.75 & 0 \\ 0.5 & 0.5 & 0 \end{bmatrix}
\]

Draw the transition graph

\[
P_{\text{winter}} = \begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.15 & 0.7 & 0.15 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}
\]

Ex

\(X_n \): a stock of spare parts at time \(n \) (\# of spare parts at time \(n \))

\(D_{n+1} \): the demand (\(\text{rand. var on } \mathbb{N} \))

\(q \): the supply (constant, quantity of spare parts built per time)

is \(X_n \) a MC?

\[
X_{n+1} = (X_n + q - D_{n+1})^+
\]

Assume \(D_n \) are i.i.d., \(p_k = \Pr(D = k) \), is \(X_n \) an hom MC?

\[
\Pr(x, y) = p_k \quad \text{if } y = x + q - k
\]

\[
\Pr(x, 0) = \Pr(D \geq x + q) = \sum_{k \geq x+q} p_k
\]
The simple symmetric random walk on \mathbb{Z} is defined by

$$S_n = S_0 + \sum_{k=1}^{n} Z_k$$

where $Z = (Z_n, n \geq 1)$ is a sequence of iid random variables.

$$P(Z_n = 1) = P(Z_n = -1) = \frac{1}{2}$$

S_n is a homogeneous Markov chain on \mathbb{Z}

$$P(x,y) = 0 \quad \text{if} \quad |x-y| \neq 1$$

$$P(x, y) = \frac{1}{2} \quad \text{if} \quad |x-y| = 1$$

P: deterministic function

$$\begin{align*}
\text{Ex} & \quad \text{F} \quad \longrightarrow \quad E \\
(\text{Un}, n \geq 1) & \quad \text{a sequence of iid random variables on } F \quad \text{(indep of } X_0) \\
X_{n+1} & = P(X_n, U_n) \\
X_n: & \\text{H.M.C.} \quad P(x, y) = 1 \quad \text{if} \quad P(f(x, U_1) = y) \quad \text{for } x, y \in E
\end{align*}$$
Computer simulations of MC

U_0, U_1, U_2, \ldots, iid r.a.v. uniformly distributed in $[0,1]$

Ψ, how to simulate a. M.C. (X_0, X_1, \ldots) with state space $E = \{1, 2, \ldots, k\}$

initial distribution μ^0

transition matrix P

Ψ: initiation function

$\Psi: [0,1] \rightarrow E$ piecewise constant

$\Psi_0(x) = \begin{cases} 1 & \text{for } x \in [0, \mu^0_i] \\ 2 & \text{for } x \in (\mu^0_i, \mu^0_i + \mu^0_j] \\ 3 & \text{for } x \in (\sum_{i=1}^{k-1} \mu^0_i, \sum_{i=1}^{k} \mu^0_i] \end{cases}$

ϕ: update function

$\phi: [0,1] \times E \rightarrow E$

$\phi(i, x) = \begin{cases} 1 & \text{for } x \in [0, P_{i,1}] \\ 2 & \text{for } x \in (P_{i,1}, P_{i,1} + P_{i,2}] \\ 3 & \text{for } x \in (\sum_{i=1}^{k-1} P_{i,e}, \sum_{i=1}^{k} P_{i,e}] \end{cases}$
Simultaneous:

\[X_0 = \psi(U_0) \]
\[X_1 = \phi(X_0, U_1) \]
\[\vdots \]
\[X_3 = \phi(X_2, U_3) \]

Let \(X \) be a H.M.C. compute \(\Pr(X_2 = y \mid X_0 = x) \)

\[
\Pr(X_2 = y \mid X_0 = x) = \frac{\Pr(x_2 = y, x_0 = x)}{\Pr(x_0 = x)}
\]

\[
= \sum_{z \in \mathcal{E}} \frac{\Pr(x_2 = y, x_1 = z, x_0 = x)}{\Pr(x_0 = x)}
\]

\[
= \sum_{z \in \mathcal{E}} \frac{\Pr(x_1 = z, x_0 = x)}{\Pr(x_0 = x)} \cdot \frac{\Pr(x_2 = y, x_1 = z, x_0 = x)}{\Pr(x_2 = y, x_1 = z, x_0 = x)}
\]

\[
= \sum_{z \in \mathcal{E}} \frac{\Pr(x_1 = z \mid x_0 = x) \cdot \Pr(x_2 = y \mid x_1 = z, x_0 = x)}{\Pr(x_0 = x)}
\]

\[
= \sum_{z \in \mathcal{E}} \frac{\Pr(x_1 = z \mid x_0 = x) \cdot \Pr(x_2 = y \mid x_1 = z, x_0 = x)}{\Pr(x_0 = x)}
\]

\[
= \sum_{z \in \mathcal{E}} \Pr(x, z) \cdot P(z, y) = P^2(x, y)
Similarly if \(P^k \) is the \(k \)-th power of \(P \) then
\[
P(X_k = y \mid X_0 = x) = P^k(x, y)
\]
\[
P(X_{k+n} = y \mid X_n = x) = P^k(x, y)
\]

Proposition Let \(m \geq 1 \), \(A \subseteq E^m \) and
\[
I_n = \{ (x_1, \ldots, x_{n+m}) \in A \} \quad \text{for} \quad n \geq 0
\]
We consider for \(n \geq 1 \), \(\overline{S}_n = \{ (x_0, \ldots, x_{n-1}) \in B \} \), where \(B \subseteq E^n \). If \(P(X_n = x_n, \overline{S}_n) > 0 \) then we have
\[
P(I_n \mid X_n = x_n, \overline{S}_n) = P(I_n \mid X_n = x_n)
\]
\[
= P(I_0 \mid X_0 = x_0)
\]
\[
= 1
\]
(* H. M. C. *)

Def We say that an event \(I \) is a.s. if \(P(I \mid X_0 = x) = 1 \)
\(\forall x \in E \)
Let \(\mathcal{L}_0 \) be the law of \(X_0 \):

\[
\mathcal{L}_0 (x) = 1 \mathbb{P} (X_0 = x) \quad \forall x \in E
\]

\[
1 \mathbb{P} (X_1 = y) = \sum_{x \in E} 1 \mathbb{P} (X_1 = y \mid X_0 = x) \mathbb{P} (X_0 = x) \\
= \sum_{x \in E} \mathcal{L}_0 (x) \mathbb{P} (x, y)
\]

We use the notation

\[
\mathcal{L}_0 \mathbb{P} (y) = \sum_{x \in E} \mathcal{L}_0 (x) \mathbb{P} (x, y)
\]

By induction we check that the law of \(X_n \) is \(\mathcal{L}_0 \mathbb{P}^n \).

Let \(f : E \rightarrow \mathbb{R} \), positive or bounded

\[
\mathbb{E} \left[f (X_n) \mid X_0 = x \right] = \sum_{y \in E} f (y) \mathbb{P} (X_1 = y \mid X_0 = x) \\
= \sum_{y \in E} \mathbb{P}^n (x, y) f (y) \\
= (\mathbb{P}^n f) (x)
\]

\(\mathbb{P}^n f \): product of the matrix \(\mathbb{P}^n \) by the column vector \(f \)

\[
\mathbb{E} \left[f (X_n) \right] = \sum_{x \in E} \mathbb{P} (X_n = x) f (x) = \mathcal{L}_0 \mathbb{P}^n f
\]
Ex Suppose X_n is a H.M.C. (\mathbb{Z}, P)

Define $Y_n = X_{kn}$

is Y_n a H.M.C.? (\mathbb{Z}, P^k)

Ex Virus mutation

Suppose a virus can exist in N different strains, and in each generation either stays the same, or with prob. α mutates to another strain which is chosen at random (uniformly).

What is the prob. that the strain in the nth gen is the same as that in the 0th gen?

Answer

N-state M.C. $P_{ij} = 1 - \alpha$ for $i \neq j$

We need P^n_{11}. Can be simplified as a 2-state M.C.

![Diagram](attachment:image.png)
\[P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \]

\[\beta = \frac{\alpha}{N - 1} \]

\[P^n ? \]

\[P_{11}^{n+1} = P_{12}^{(n)} P + P_{11}^{(n')} (1 - \alpha) \]

\[P_{11}^{(n)} + P_{12}^{(n')} = 1 \]

\[P_{11}^{n+1} = \begin{cases} (1 - \alpha - \beta) P_{11}^n + \beta & P_{11}^n \neq 1 \\ \alpha & \text{if } \alpha + \beta > 0 \end{cases} \]

\[P_{11}^n = \begin{cases} \frac{\beta}{\alpha + \beta} + \frac{\alpha}{\alpha + \beta} (1 - \alpha - (\beta)^n) & \text{if } \alpha + \beta > 0 \\ 1 & \text{if } \alpha + \beta < 0 \end{cases} \]

answer \[\frac{1}{N} + (1 - \frac{1}{N}) \left(1 - \frac{\alpha N}{N-1}\right)^h \]
Transmission of a message

A message coded in a binary sequence is transmitted through a network. Each bit is transmitted with a prob of error.

\[P(0 \rightarrow 0) = 1 - a \]
\[P(0 \rightarrow 1) = a \]
\[P(1 \rightarrow 0) = b \]
\[P(1 \rightarrow 1) = 1 - b \]

\[\vdots \]

\[X_n: \text{The result of the transmission at the router} \]
\[\text{null bits: } X_n \]

Routers behave indep. from each other and errors on bits are indep.

Compute the critical size of the network beyond which the prob to receive an error message is \(> \varepsilon \).

\(p \): size of the message

Assume \(p = 1 \), \(X_n \) has transition matrix on \(\{0,1\} \)

\[P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix} \]
\[gn = P(X_n = 0) \]
\[g_{n+1} = (1 - a) \cdot gn + b \cdot (1 - gn) \]
\[g = \frac{a}{a+b} \quad \text{fix point} \]
\[gn - g = (1 - a - b)^n (g_0 - g) \]

The probability that the message is erroneous is thus:
\[\tau_n(0) = \frac{b}{a+b} \quad (1 - a - b)^n \quad \text{if } X_0 = 0 \]
\[\tau_n(1) = \frac{a}{a+b} + \frac{b}{a+b} \quad (1 - a - b)^n \quad \text{if } X_0 = 1 \]

Message of size \(p \):
\[X_n = (X_1, \ldots, X_n) \]

\[\tau_n : \text{prob that the message in } X_n \text{ is not on.} \]
\[\tau_n = \prod_{i=1}^{n} \tau_n(X_{n-i}) \leq \left[\alpha \cdot (1 - \alpha) (1 - a - b)^n \right]^p \]
\[\alpha = \inf \left(\frac{a}{a+b}, \frac{b}{a+b} \right) \]

\(\Rightarrow \) The size \(n \) of the network has to be chosen so that
\[h < n_c = \frac{1}{\log(1 - \alpha)} - \log \left(\left(\frac{1 - \epsilon}{\epsilon} \right)^{-\alpha} \right) \]
\[= \frac{\log(1 - \alpha) - \log (1 - a - b)}{- \log (1 - a - b)} \]
Gambler's ruin

Two players A and B play "head or tail."

$\Pr(H) = p \in (0,1)$

successive outcomes iid.

$X_n =$ fortune of A at time n

at each step $A \& B$ bet 1

$X_{n+1} = X_n + Z_n$

$Z_n = 1$ if $\Pr(p)$

$Z_n = -1$ if $1-p = q$

initial fortune of A: a

B: b

Game ends when a player is ruined

What is the prob. that A wins?

$c = a + b$

$T =$ first time n at which $X_n = 0$ or c

$u(0) = \Pr(X_T = c | X_0 = a)$

$u(i) = \Pr(X_T = c | X_0 = i)$

$u(i) = p \cdot u(i+1) + q \cdot u(i-1)$

boundary condition $u(0) = 0$, $u(c) =$

$u(i) = \frac{1 - (\frac{q}{p})^i}{1 - (\frac{q}{p})^c}$

$q/p = \frac{1}{2}$

$u(i) = \frac{i}{c}$
Irreducible and Aperiodic M.C.

Def. We say that a chain is irreducible if the probability, starting from an arbitrary point \(x \in E \) to reach an arbitrary point \(y \in E \) in \(n_{x,y} \) steps, is strictly positive, i.e.: \(\forall x, y \in E, \exists n_{x,y} \geq 1 \) (depending, a priori on \(x, y \)) / \(P^n(x,y) > 0 \)

\[R_h \ P^n(x,y) > 0 \iff \exists x_0 = x, x_1, \ldots, x_n = y / \prod_{k=1}^{n} P(x_{k-1}, x_k) > 0 \]

Def. We say that state \(i \) leads to state \(j \) \(i \rightarrow j \) if \(\exists n > 0 / P(X_{n+1} = j | X_n = i) > 0 \) (prop. indep. of \(m \) since M.C. is born)

Def. If \(i \rightarrow j \) and \(j \rightarrow i \), we say that the states \(i \) and \(j \) intercommunicate and write \(i \leftrightarrow j \)
Thm: A MC with state space \{1, 2, \ldots\} is said to be irreducible iff \(K_{ij} \neq 0 \) we have \(i \leftrightarrow j \).

(Otherwise, the MC is said to be reducible.)

Ex: \[P = \begin{bmatrix}
0.5 & 0.5 & 0 & 0 \\
0.3 & 0.7 & 0 & 0 \\
0 & 0 & 0.2 & 0.2 \\
0 & 0 & 0.8 & 0.2
\end{bmatrix} \]

\[
\begin{array}{c}
\overset{0.5}{\text{1}} \xrightarrow{0.5} \overset{0.7}{\text{2}} \\
\overset{0.3}{\text{1}} \xleftarrow{0.3} \overset{0.2}{\text{2}}
\end{array}
\]

\[
\begin{array}{c}
\overset{0.2}{\text{3}} \xrightarrow{0.9} \overset{0.2}{\text{4}} \\
\overset{0.9}{\text{3}} \xleftarrow{0.9} \overset{0.2}{\text{4}}
\end{array}
\]
Aperiodicity

For a finite or infinite set \(\{a_1, a_2, \ldots \} \) of positive integers we write \(\gcd(a_1, a_2, \ldots) \) the greatest common divisor of \(a_1, a_2, \ldots \)

The period \(d(i) \) of a state \(i \in E \) is defined as

\[
d(i) = \gcd \{ n \geq 1, (P^n)_{ii} > 0 \}
\]

If \(d(i) = 1 \) then we say that the state \(i \) is aperiodic.

Def. A Markov Chain is said to be aperiodic if all its states are aperiodic. Otherwise, the chain is said to be periodic.

Ex. A Markov Chain is shown below. The states 1 and 3 are aperiodic, but state 2 is periodic with period 2.
Def (Thm) an irreducible

We say that a MC is periodic of period \(d \geq 1 \) if we can decompose the state space \(E \) into a partition of \(d \) subsets \(C_1, \ldots, C_d = C_0 \) such that

\[
P(X_t \in C_k \mid X_0 \in C_{k-1}) = 1 \quad \forall k \in \{1, \ldots, d\}
\]

We say that a chain is aperiodic if its greatest period is 1.

Thm Suppose that we have an aperiodic M.C. \((X_n)_{n \geq 0}\) with state space \(E^d \) and transition matrix \(P \).

Then there exists \(N < \infty \) such that \((P^n)_{i,i} > 0 \) for all \(n > N \) and all \(i \in \{1, \ldots, k\} \).
proof. Lemma from number theory

Lemma. Let \(A = \{a_1, a_2, \ldots \} \) be a set of positive integers which is

(i) non-lattice, meaning that \(\gcd(a_1, a_2, \ldots) \neq 1 \)

and

(ii) closed under additions, meaning that if

\(a \in A \) and \(a' \in A \) then \(aa' \in A \)

Then there exists an integer \(N < \infty \) s.t. \(n \in A \)

\(\forall n \geq N \)

for \(i \in E, \ A_i = \{ n > 1 : (P^n)_i > 0 \} \)

MC aperiodic \(\Rightarrow \) i aperiodic

\(A_i \) non-lattice

\(A_i \) closed under additions

\(a, a' \in A_i \) \(\Rightarrow \)

\(P(X_{a} = 1 | X_0 = i) > 0 \)

\(P(X_{a'} = 1 | X_0 = i) > 0 \)

\(\Rightarrow \)

\(P(X_{a}a' = 1 | X_0 = i) > P(X_a = 1, X_{a'a'} = 1 | X_0 = i) \)

\(\Rightarrow \)

\(P(X_a = 1 | X_0 = i) P(X_{a'a'} = 1 | X_0 = i) > 0 \)
A subsequence and (1) and (2) of the lemma

\[\exists N_i < \infty \quad (P^n)_{ii} > 0 \quad \forall n \geq N_i \]

\[N = \max (N_1, \ldots, N_k) \]

Corollary

Let \((X_0, X_1, \ldots)\) be an irreducible and aperiodic M.C. with finite state space \(E = \{1, \ldots, k\}\) and transition matrix \(P\).

Then there exists an \(M < \infty\) s.t. \((P^n)_{ij} > 0\) \(\forall i, j \in \{1, \ldots, k\}\) and all \(n \geq M\)

Proof

\[\exists N < \infty \quad (P^n)_{ii} > 0 \quad \forall i \in E, \quad n \geq N \]

Let \((i, j) \in E \times E\)

Irreducibility \(\Rightarrow \exists n_{ij} / (P^{n_{ij}})_{ij} > 0\)

\[M_{ij} = \min_{m} m + n_{ij} \quad \text{for} \quad m \geq M_{ij} \]

\[P(X_{m+1} = j | X_m = i) \geq P(X_{m+1} = j, X_{m} = i | X_m = i) \]

\[P(X_{m-n_{ij}} = i | X_m = i) \quad P(X_{m} = j | X_{m-n_{ij}} = i) \]

\[\Rightarrow (P^m)_{ij} > 0 \quad \forall m \geq n_{ij} \]

\[N = \min_{i,j} M_{ij} \]