Learning methods for solving PDEs

ANNs

Model reduction and neural networks for parametric PDEs.

GPs

Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. H. Owhadi, SIREV, 2017

Time dependent: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations M Raissi, P Perdikaris, GE Karniadakis, SISC 2018

RBF collocation methods: R. Schaback and H. Wendland, 2006
Interplays with numerical approximation: Sard, Larkin, Diaconis, Suldin, Kimeldorf and Wahba

GPs: *More theoretically well-founded and with a long history of interplays with numerical approximation but were limited to linear/quasi-linear/time-dependent PDEs*
Generalization of GP methods to arbitrary nonlinear PDEs

Properties

- Provably convergent for forward problems
- Interpretable and amenable to numerical analysis
- Solve forward and inverse problems
- Inherit the complexity of SOA solvers for dense kernel matrices
- Could be used to develop a theoretical understanding of PINNs
A simple prototypical non-linear PDE

\[
-\Delta u^\dagger + \tau(u^\dagger) = f, \quad x \in \Omega,
\]

\[
u^\dagger = g, \quad x \in \partial\Omega,
\]

\(f: \Omega \to \mathbb{R}, \ g: \partial\Omega \to \mathbb{R}\) and \(\tau: \mathbb{R} \to \mathbb{R}\): given continuous functions.

\(\tau\): Such that the PDE has a unique strong solution

Generalizes to arbitrary non-linear PDEs
\[
\begin{cases}
-\Delta u^\dagger + \tau(u^\dagger) = f, & x \in \Omega, \\
u^\dagger = g, & x \in \partial\Omega,
\end{cases}
\]

The method

\[K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}: \text{Given kernel.}\]

\[X_1, \ldots, X_N: \text{Collocation points on } \Omega \text{ and } \partial\Omega\]

Approximate \(u^\dagger \) with the minimizer \(u \) of

\[
\begin{align*}
\text{Minimize} & \quad \|u\|^2_K \\
\text{subject to} & \quad -\Delta u(X_i) + \tau(u(X_i)) = f(X_i), \quad X_i \in \Omega, \\
\text{and} & \quad u(X_i) = g(X_i), \quad X_i \in \partial\Omega,
\end{align*}
\]
Theorem

Assume that

- K is chosen so that
 - $\mathcal{H} \subset H^s(\Omega)$ for some $s > s^*$, where $s^* = \frac{d}{2} + \text{order of PDE}$ (order of PDE = 2)
 - $u^\dagger \in \mathcal{H}$
 - Fill distance of $\{X_1, \ldots, X_N\}$ goes to zero as $N \to \infty$

Then, as $N \to \infty$

- $u \to u^\dagger$ pointwise in $\bar{\Omega}$
- $u \to u^\dagger$ in $H^t(\Omega)$ for $t < s$

\mathcal{H}: RKH space defined by kernel K
Implementation

Minimize $\|u\|_K^2$
subject to $-\Delta u(X_i) + \tau(u(X_i)) = f(X_i), \ X_i \in \Omega,$
and $u(X_i) = g(X_i), \ X_i \in \partial \Omega,$

\[\begin{aligned}
\min_{z^{(1)}, z^{(2)}} & \quad \min_u \|u\|_K^2 \\
\text{s.t.} & \quad u(X_i) = z_i^{(1)} \quad \text{and} \quad -\Delta u(X_i) = z_i^{(2)} \\
& \quad z_i^{(2)} + \tau(z_i^{(1)}) = f(X_i) \text{ for } X_i \in \Omega \\
& \quad z_i^{(1)} = g(X_i) \text{ for } X_i \in \partial \Omega
\end{aligned}\]

Reduction theorem

$z = (z^{(1)}, z^{(2)})$
$\phi = (\phi^{(1)}, \phi^{(2)})$
$
\phi_i^{(1)} = \delta_{X_i}$
$
\phi_i^{(2)} = \delta_{X_i} \circ \Delta$

$u(x) = K(x, \phi)K(\phi, \phi)^{-1}z$

\[\begin{aligned}
\min_{z^{(1)}, z^{(2)}} & \quad z^T K(\phi, \phi)^{-1}z \\
& \quad z_i^{(2)} + \tau(z_i^{(1)}) = f(X_i) \text{ for } X_i \in \Omega \\
& \quad z_i^{(1)} = g(X_i) \text{ for } X_i \in \partial \Omega
\end{aligned}\]

$(K(x, \phi))_i = \int K(x, y)\phi_i(y) \, dy$

$(K(\phi, \phi))_{i,j} = \int \phi_i(x)K(x, y)\phi_j(y) \, dx \, dy$
\[
\begin{aligned}
\min_{z(1), z(2)} & \quad z^T K(\phi, \phi)^{-1} z \\
& \quad z_i^{(2)} + \tau(z_i^{(1)}) = f(X_i) \text{ for } X_i \in \Omega \\
& \quad z_i^{(1)} = g(X_i) \text{ for } X_i \in \partial \Omega \\
\end{aligned}
\]

Eliminate \(z^{(2)}\)

\[
\begin{aligned}
\min_{z^{(1)}} & \quad (z_i^{(1)}, g(X_i), f(X_i) - \tau(z_i^{(1)}))^T K(\phi, \phi)^{-1} (z_i^{(1)}, g(X_i), f(X_i) - \tau(z_i^{(1)})) \\
\end{aligned}
\]

Gauss-Newton Iteration

\[
\begin{aligned}
 z_i^{(1), n+1} &= z_i^{(1), n} + \delta z_i^{(1), n} \\
\min_{\delta z^{(1)}} & \quad Z^T K(\phi, \phi)^{-1} Z \\
\end{aligned}
\]

\[
\begin{aligned}
 Z &= (z_i^{(1), n} + \delta z_i^{(1), n}, g(X_i), f(X_i) - \tau(z_i^{(1), n}) - \delta z_i^{(1), n} \nabla \tau(z_i^{(1), n})) \\
\end{aligned}
\]

Converges in 2 to 7 steps

Inherits the complexity of fast linear solvers for \(K(\phi, \phi)\)

[Schäfer, Katzfuss and O., 2020]: \(O(N \log^{2d}(\frac{N}{\varepsilon}))\) complexity
Gauss-Newton Iteration \longleftrightarrow Successive linearization of the PDE

\[
\begin{cases}
-\Delta u^\dagger + \tau(u^\dagger) = f, & x \in \Omega, \\
u^\dagger = g, & x \in \partial\Omega,
\end{cases}
\]

\[u^{n+1} = u^n + \delta u^n\]

Given u^n solve for δu^n

\[
\begin{cases}
-\Delta(u^n + \delta u^n) + \tau(u^n) + \delta u^n \nabla \tau(u^n) = f, & x \in \Omega, \\
u^n + \delta u^n = g, & x \in \partial\Omega,
\end{cases}
\]
Numerical experiments

\[K(x, x') = \exp \left(- \frac{|x - x'|^2}{\sigma^2} \right) \]

FD: Finite difference
\[\partial_t u + u \partial_s u - \nu \partial_s^2 u = 0, \quad \forall (s, t) \in [-1, 1] \times [0, \infty), \]
\[u(s, 0) = -\sin(\pi x), \]
\[u(-1, t) = u(1, t) = 0. \]

\[K((x, t), (x', t')) = \exp(-20|x - x'|^2 - 3|t - t'|^2) \]

<table>
<thead>
<tr>
<th>(N)</th>
<th>600</th>
<th>1200</th>
<th>2400</th>
<th>4800</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L^2) error</td>
<td>1.75e-02</td>
<td>7.90e-03</td>
<td>8.65e-04</td>
<td>9.76e-05</td>
</tr>
<tr>
<td>(L^\infty) error</td>
<td>6.61e-01</td>
<td>6.39e-02</td>
<td>5.50e-03</td>
<td>7.36e-04</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\| \nabla u(x) \|^2 &= f(x)^2 + \epsilon \Delta u(x), \quad \forall x \in \Omega, \\
u(x) &= 0, \quad \forall x \in \partial \Omega,
\end{align*}
\]

\[K(x, x') = \exp\left(-\frac{|x - x'|^2}{\sigma^2}\right)\]

<table>
<thead>
<tr>
<th></th>
<th>1200</th>
<th>1800</th>
<th>2400</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^2 error</td>
<td>3.7942e-04</td>
<td>1.3721e-04</td>
<td>1.2606e-04</td>
<td>1.1025e-04</td>
</tr>
<tr>
<td>L^∞ error</td>
<td>5.5768e-03</td>
<td>1.4820e-03</td>
<td>1.3982e-03</td>
<td>9.5978e-04</td>
</tr>
</tbody>
</table>

Collocation points

Loss function history

Contour of errors
Inverse Problem

\[
\begin{cases}
- \text{div} (\exp(a) \nabla u)(x) = f(x), & x \in \Omega, \\
 u(x) = 0, & x \in \partial \Omega.
\end{cases}
\]

\(a, u\): Unknown. \(u\) observed at pink points.
Problem: Recover \(a\) and \(u\).

Minimize \[\|u\|^2_K + \|a\|^2_1\]
subject to \[- \text{div} (\exp(a) \nabla u)(X_i) = f(X_i), & X_i \in \Omega, \]
and \[u(X_i) = Y_i, \quad (X_i, Y_i) \text{ is data point}, \]
and \[u(X_i) = 0, \quad X_i \in \partial \Omega, \]
Inverse Problem

\[
\begin{cases}
- \text{div} \left(\exp(a) \nabla u \right)(x) = f(x), & x \in \Omega, \\
u(x) = 0, & x \in \partial\Omega.
\end{cases}
\]

\(a, u\): Unknown. \(u\) observed at pink points.

Problem: Recover \(a\) and \(u\).