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We apply concentration-of-measure inequalities to the quantification of uncertainties in the performance
of engineering systems. Specifically, we envision uncertainty quantification in the context of certification,
i.e., as a tool for deciding whether a system is likely to perform safely and reliably within design speci-
fications. We show that concentration-of-measure inequalities rigorously bound probabilities of failure
and thus supply conservative certification criteria. In addition, they supply unambiguous quantitative
definitions of terms such as margins, epistemic and aleatoric uncertainties, verification and validation
measures, confidence factors, and others, as well as providing clear procedures for computing these quan-
tities by means of concerted simulation and experimental campaigns. We also investigate numerically
the tightness of concentration-of-measure inequalities with the aid of an imploding ring example. Our
numerical tests establish the robustness and viability of concentration-of-measure inequalities as a basis
for certification in that particular example of application.
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1. Introduction

This paper is concerned with the application of concentration-of-
measure inequalities to the quantification of uncertainties in the
performance of engineering systems. Specifically, we envision
uncertainty quantification (UQ) in the context of certification, i.e.,
as a tool for deciding whether a system is likely to perform safely
and reliably within design specifications.

The certification process is sometimes described in terms of
quantification of margins and uncertainties (QMU) (cf., e.g., [1–
3]). Thus, suppose that a system is required to perform at a certain
level, or threshold, for its safe operation. The system is designed so
that its performance under a worst-case scenario of potential oper-
ating conditions is somewhat higher than its threshold. A suitable
measure M of the distance between these two levels constitutes
the performance margin. However, because the systems of inter-
est—and the conditions they operate in—are subject to statistical
variation, performance measures are stochastic in nature. There-
fore, the precise values of the expected performance level and its
threshold are often uncertain. Sources of uncertainty include oper-
ation conditions such as loads and system characteristics such as
geometry and material behavior. If U denotes a suitable measure
of these uncertainties, the confidence factor

CF ¼ M
U

ð1Þ
ll rights reserved.
may be taken as a rational basis for certification. Thus, if CF is suf-
ficiently larger than 1, the system may be regarded as safe and reli-
able and a candidate for certification.

A first obvious strategy is to attempt certification solely by
means of experimental testing and statistical sampling. This ap-
proach is indeed the only approach possible when no a priori infor-
mation is available about the behavior of the system. However, the
number of tests required for purely empirical certification can be
prohibitively high, especially in systems for which testing is expen-
sive (cf., Section 2.5), which renders the empirical approach unfea-
sible in practice. The problem is compounded when systems
operate under extreme conditions outside the range of direct lab-
oratory testing. Examples include large space structures and
high-energy systems such as fusion reactors.

Under these conditions, modeling can provide a viable alterna-
tive to testing. Thus, complex systems can often be modeled
through the application of sound physical and engineering princi-
ples and the resulting models can be used to accurately predict
the performance of the system. In these cases, the central question
concerns how the availability of a model can be exploited in order
to achieve certification with the least number of tests. It is precisely
in this potential reduction in the number of tests required for certi-
fication that the benefit of model-based certification lies. Evidently,
the extent to which a model can reduce the amount of testing de-
pends on the predictiveness of the model. The assessment of model
predictiveness is accomplished through verification and validation,
i.e., through a careful assessment of numerical and modeling errors.

Compelling as this picture is, the challenge of rendering it in rig-
orous and precise mathematical terms—and of developing a set of
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computational tools enabling its efficient implementation—is quite
considerable. By rigorous UQ we specifically mean a set of mathe-
matically provable inequalities that provide rigorous upper bounds
for the probability of failure of the system. While verification and
validation (V and V) and UQ have been the subject of extensive re-
search in recent years (cf., e.g., [4,1,5,2,3]), a rigorous mathematical
and computational framework of the type just described does not
appear to had been devised to date. For instance, in the context of
QMU rigorous (in the sense just described) definitions of M and U—
and tractable means of computing them—are often left unspecified.
The problem is compounded when system certification requires
the quantification of uncertainties in a number of performance
measure simultaneously. In such cases, ad-hoc methods for aggre-
gating uncertainties, e.g., by root-mean squares, are often used
without justification. A clear connection between the confidence
factor CF and the probability of failure of the system is also often
lacking. In addition, precise quantitative measures of model pre-
dictiveness, the sequence of verification and validation tests re-
quired for computing such measures, and the precise manner in
which models aid rigorous certification are also often left unspec-
ified, which reduces the value of QMU and model-based certifica-
tion to that of a compelling but imprecise and heuristic
conceptual framework.

The purpose of this paper is to develop a rigorous theory of
uncertainty quantification and certification in which the requisite
probability-of-failure upper bounds are supplied by concentra-
tion-of-measure inequalities. Roughly speaking, the concentra-
tion-of-measure phenomenon is a consequence of the fact that
functions of a large number of variables, i.e., functions in high-
dimensional spaces, with small local oscillations with respect to
each variable are nearly constant. Moreover, fluctuations can be
controlled through elementary yet powerful and non-trivial quan-
titative inequalities called concentration-of-measure inequalities
(cf., [6] for a monograph, [7] for a survey). These tools have found
broad application in functional analysis, complexity theory, proba-
bility and statistics. However, the application of concentration-of-
measure inequalities to uncertainty quantification does not appear
to have been attempted to date.

In this paper we show how concentration-of-measure inequali-
ties supply: probability-of-failure upper bounds resulting in rigor-
ous and conservative certification; precise definitions and
quantitative measures of margins and uncertainties enabling such
certification; a precise relation between the confidence factor and
the probability of failure of the system; a rigorous framework for
model-based certification, including precise quantitative measures
of model predictiveness and the effect of unknown unknowns; and
the sequence of verification and validation tests required for assess-
ing model predictiveness. The manner in which concentration-of-
measure supplies these figures of merit is demonstrated in Section
2 by means of a sequence of representative scenarios of increasing
complexity. Section 3 illustrates the present approach to QMU in
a particular example of application, the implosion of a ring, using
the simplest variety of concentration-of-measure inequalities. Fi-
nally, the outlook of the approach is discussed in Section 4. A brief
account of the development of concentration-of-measure inequali-
ties in the field of probability and a representative sampling that
showcases the range of applicability of the inequalities is presented
in Appendix A for the convenience of the reader.

2. Concentration-of-measure inequalities applied to
uncertainty quantification and certification

The essential mathematical problem of QMU is as follows.
Consider a system with output performance measures
Y : X! E1 � � � � � EN on a given probability space ðX;U;PÞ. Here
and subsequently throughout this work we use standard notation
of probability theory (cf., e.g., Chapter 2 of [8] for an introduction).
In particular, E1; . . . ; EN denote Euclidean spaces endowed with the
standard metric and P is a probability measure. Suppose that the
safe operation of the system requires that Y 2 A for some open
admissible set A � E1 � � � � � EN . Ideally, we would then like the sup-
port of the probability measure associated to Y to be contained
within A, i.e.,

P½Y 2 A� ¼ 1: ð2Þ

Systems satisfying this condition can be certified with complete
certainty. However, this absolute guarantee of safe performance
may be unattainable, e.g., if P lacks compact support, or prohibi-
tively expensive. In these cases, we may relax condition (2) to

P½Y 2 Ac� 6 � ð3Þ

for some appropriate certification tolerance �, where
Ac ¼ E1 � � � � � EN n A is the inadmissible set. Inequality (3) expresses
the requirement that the probability of system failure be acceptably
small and gives rigorous mathematical expression to the QMU con-
ceptual view of certification.

A conservative certification criterion is obtained when the prob-
ability of failure P½Y 2 Ac� is bounded from above and the upper
bound is verified to be below the certification tolerance �. Evi-
dently, for an upper bound to be useful it must be tight, i.e., it must
be close to the actual probability of failure P½Y 2 Ac�. Therefore, the
essential mathematical and computational challenge is to obtain
tight upper bounds to the probability of failure of the system.

A first strategy that naturally suggests itself is to bound the
probability of failure empirically, i.e., solely by means of experi-
mental testing. Suppose that m tests are performed with outcomes
Y1; . . . ;Ym. With these data we can associate the empirical proba-
bility measure

lm ¼
1
m

Xm

i¼1

dYi : ð4Þ

Then, an application of Hoeffding’s inequality [9] gives, with prob-
ability 1� �0,

P½Y 2 Ac� 6 lm½A
c� þ 1

2m
log

1
�0

� �1
2

: ð5Þ

Hence, the inequality

lm½A
c� þ 1

2m
log

1
�0

� �1
2

6 � ð6Þ

supplies a conservative certification condition. We note that
inequality (5) can be improved by using Chernoff’s inequality in-
stead of Hoeffding’s inequality when the probability of failure
P½Y 2 Ac� is known.

The certification criterion (6) reveals that the number of exper-
iments required to certify a system based on statistical sampling
alone is of the order of 1

2 �
�2 log 1

�0. The number-of-tests requirement
is shown in Table 1 as a function of the probability-of-failure toler-
ance � with �0 ¼ �. It is clear from this table that the number of
tests required for the purely empirical certification of a system
can be prohibitively expensive if the tests are costly and the re-
quired probability of failure is low.

When empirical certification is not an option, the question that
naturally arises is how models can be employed to reduce the
number of tests required for certification. Thus, the goal of mod-
el-based certification is to achieve certification with a minimum of
testing. In order to frame this question in mathematical terms, sup-
pose that the behavior of the system is exactly described by an un-
known function Y ¼ GðX; ZÞ of random input variables ðX; ZÞ. For



Table 1
Number of tests required for certification as a function of the probability-of-failure
tolerance

Failure tolerance (�) Number of tests (m)

1 0
10�1 115
10�2 23,025
10�3 3,453,877
10�4 460,517,018
10�5 57,564,627,324
10�6 6,907,755,278,982
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definiteness, we shall assume that X and Z are independent and
range over known intervals, and that no additional statistical infor-
mation about the input parameters is available. These assumptions
can be readily relaxed, cf., Appendix A, but such extensions will not
be pursued here in the interest of simplicity. Suppose in addition
that the behavior of the system is modeled by means of a function
Y ¼ FðXÞ. Thus X collects the input variables that are accounted for
by the model, whereas Z collects those variables that are unac-
counted for, or unknown unknowns. Evidently, if an exact model
were available no testing would be required to achieve certifica-
tion. In general, models cannot be expected to be exact and the de-
gree of predictiveness of the models needs to be carefully assessed,
a process known as verification and validation.

The manner in which concentration-of-measure supplies prob-
ability-of-failure upper bounds with the aid of validated models is
summarized in this section through a sequence of representative
scenarios of increasing complexity.

2.1. Scenario 1: exact model, single performance measure whose mean
is known

We begin by assuming that the mean performance E½Y� is
known exactly and the model is perfect, i.e., there exists a random
vector X : X! v1 � � � � � vM and a known function
F : v1 � � � � � vM ! E1 � � � � � EN such that the relation Y ¼ FðXÞ de-
scribes the system exactly. These assumptions represent ideal con-
ditions in which all uncertainty regarding the response of the
system is aleatoric uncertainty, i.e., stems from the stochastic vari-
ability of the system, and there is no epistemic uncertainty, i.e., the
behavior of the system is known exactly, including its mean re-
sponse. We also begin by considering the case in which certifica-
tion depends on a single performance measure, i.e., N ¼ 1. Under
these assumptions, the admissible set is of the form A ¼ ½a;1Þ,
where a is the minimum threshold for safe system operation. Then,
if F is integrable (and that is the only assumption on F) and the in-
put parameters are independent McDiarmid’s inequality states
that

P½FðXÞ � E½FðXÞ� 6 �r� 6 exp �2
r2

D2
F

 !
; ð7Þ

where

D2
F :¼

XM

k¼1

sup
ðx1 ;...;xk�1 ;xkþ1 ;...xMÞ2v1����vk�1�vkþ1�����vM

sup
ðAk ;BkÞ2v2

k

j Fðx1; . . . ;Ak; . . . xMÞ � Fðx1; . . . ; Bk; . . . xMÞj2
ð8Þ

is the verification diameter of the system. Bound (7) can be re-writ-
ten in the form

P½Y 2 Ac� 6 exp �2
ðE½Y � � aÞ2þ

D2
F

 !
; ð9Þ
where we write xþ :¼maxð0; xÞ, whence it follows that the
inequality

ðE½Y � � aÞþ
DF

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1
�

rs
ð10Þ

supplies a conservative certification criterion.
Comparison of (10) and (1) affords the identification:

M ¼ ðE½Y� � aÞþ; ð11aÞ
U ¼ DF : ð11bÞ

Thus, in the absence of epistemic uncertainty, i.e., for systems for
which an exact model is available and whose mean performance
is exactly known, the margin M is the difference between the mean
performance and the threshold, or zero if this difference is negative,
and the uncertainty U equals the verification diameter of the system.
With these identifications, the certification criterion can be ex-
pressed in the form

CF ¼ M
U

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1
�

rs
: ð12Þ

This inequality establishes a clear correspondence between the
probability-of-failure tolerance � and the confidence factor CF. This
correspondence is shown in tabular form in Table 2. Thus, concen-
tration-of-measure inequalities supply precise definitions of margin
measures, uncertainty measures and minimum confidence factors
that guarantee the safe operation of the system to within a pre-
specified probability-of-failure tolerance.

Several additional aspects of the certification method just de-
scribed are noteworthy. Firstly, the only information about the
model that is required for certification is the mean performance
and the diameter of the system. In particular, the response function
FðXÞ need not be interpolated or otherwise represented, and can
effectively be treated as a black box. Secondly, only ranges of input
parameters, and not their detailed probability distribution func-
tions, need be known for certification. Thirdly, the present scenario
provides an extreme example of how the availability of a high-
fidelity model helps to reduce the number of tests required for cer-
tification: when an exact model is available, the need for experi-
mental testing is eliminated altogether.

It is also interesting to note that the verification diameter (8),
which provides a rigorous measure of the aleatoric uncertainty in
the response of the system, represents the largest deviation in sys-
tem performance that is recorded when each input parameter is al-
lowed to vary in turn between pairs of values spanning its entire
range. Evidently, the computation of the verification diameter of
a system entails an optimization over input-parameter space seek-
ing to identify those large deviations in the input parameters that
result in the largest deviations in the output parameters. It bears
emphasis that consideration of large deviations is essential and
that, in particular, linearized sensitivity analysis is not sufficient
for rigorous certification in general. Specific optimization algo-
rithms for the computation of verification diameters are discussed
in Section 3.

It should be noted that we use the term verification in a some-
what expanded sense relative to other conventional uses of the
term (cf., e.g., [4,5]). Thus, a common use of the term verification
is to signify the process of assessing how well a numerical model
approximates the underlying physical laws governing the system,
often expressed as a system of partial differential equations. How-
ever, in the present context the term verification naturally refers to
the process of quantifying all aleatoric uncertainties, whether aris-
ing from numerical errors, from the statistical variability of the in-
put parameters, the intrinsic stochasticity of the model, or from
other sources. Thus, verification aims to quantify how precisely a



Table 2
Minimum confidence factor CF required to stay within a pre-specified probability-of-failure tolerance �

Failure tolerance (�) 1 10�1 10�2 10�3 10�4 10�5 10�6

Confidence factor (CF) 0 1.07298 1.51743 1.85846 2.14597 2.39926 2.62826
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model can predict the response of the system. A distinguishing
characteristic of verification is that it is achieved solely by exercis-
ing the model and without reference to experimental data. The
concentration-of-measure framework renders verification, often a
conceptually appealing but ambiguous and imprecise term, in pre-
cise quantitative terms. Thus, as already noted, verification is rigor-
ously quantified by the verification diameter, in the sense that once
the verification diameter of the system is known, the system can be
certified rigorously and conservatively.

For completeness and in order to illustrate the assumptions re-
quired for (7) to hold, we include a simple version of McDiarmid’s
inequality [10] (where the constant 2 in the exponential has been
replaced by 1

2), also known as bounded differences inequality, and a
sketch of its proof. The sharpening of inequality (14) to (7) is tech-
nically involved and we refer to [10] for a complete account. Inde-
pendence is not a necessary condition for McDiarmid’s inequality
and we refer to [11] an extension of that inequality to centering se-
quences (for instance to martingales).

Theorem 2.1. Assume that the random variables X1; . . . ;XM are
independent. Then

P½FðXÞ � E½F�P r� 6 exp �1
2

r2

D2
F

 !
ð13Þ

and

P½FðXÞ � E½F� 6 �r� 6 exp �1
2

r2

D2
F

 !
: ð14Þ

Proof. Here we adapt the proof of Corollary 1.17 in [6]. By Cheby-
shev’s inequality we have

P½FðXÞ � E½F�P r� 6 e�krE½expðkðF � E½F�ÞÞ� ð15Þ

for all k P 0. In addition,

E½expðkðF � E½F�ÞÞ� ¼ E½E½expðkðF � E½F jFn�1�ÞÞ
jFn�1� expðkðE½F jFn�1� � E½F�ÞÞ�; ð16Þ

where Fk denotes the r-algebra generated by X1; . . . ;Xk. We recall
that, for every bounded function f of zero mean with respect to a
measure m and all k P 0, Jensen’s inequality givesZ

ekf dm 6
Z Z

ekðf ðxÞ�f ðyÞÞ dmðxÞdmðyÞ 6
X1
i¼0

ðDf kÞ2i

ð2iÞ 6 expðD2
f k

2=2Þ

ð17Þ

with Df :¼ supx;y j f ðxÞ � f ðyÞ j. Applying inequality (17) to the inte-
gration with respect to the law of Xn we obtain

E½expðkðF � E½F jFn�1�ÞÞ jFn�1� 6 expðD2
nk

2=2Þ; ð18Þ

where

Dn :¼ sup
x1 ;...;xn�1 ;x;y

j Fðx1; . . . ; xn�1; xÞ � Fðx1; . . . ; xn�1; yÞ j : ð19Þ

It follows that

E½expðkðF � E½F�ÞÞ� ¼ expðD2
nk

2=2ÞE expðkðE½F jFn�1� � E½F�ÞÞ½ �
ð20Þ

and, by induction,
E exp kðF � E½F�Þð Þ½ � ¼ expðD2
Fk

2=2Þ: ð21Þ

Combining this inequality with Eq. (15) and taking k ¼ r=D2
F finally

gives

P½FðXÞ � E½F�P r� 6 exp �1
2

r2

D2
F

 !
: ð22Þ

Inequality 14 is obtained by replacing F by �F. h

We additionally observe that Hoeffding’s inequality [9]

P
1
M

XM

i¼1

Xi �
1
M

XM

i¼1

E½Xi�P r

" #

6 exp �2M
r2

ð
PM
i¼1
ðbi � aiÞ2=MÞ

0
BBB@

1
CCCA ð23Þ

follows from McDiarmid’s inequality as a special case when the
spaces Ei are equal to intervals ðai; biÞ and

FðXÞ ¼ 1
M

XM

i¼1

Xi: ð24Þ
2.2. Scenario 2: exact model, multiple performance measures whose
mean is known

The preceding framework can be extended to the case in which
certification depends on more than one performance measure. To
this end, suppose that A is an arbitrary subset of RN , i.e., N P 1
and Ei ¼ R; i ¼ 1; . . . ;N, and that the mean performance E½Y � is
known and belongs to the interior of A. Then, the following concen-
tration-of-measure inequality is deduced from McDiarmid’s
inequality

P½Y 2Ac�6 inf
s;r2RN :E½Y�þ

QN

i¼1
ð�si ;riÞ�A

XN

i¼1

exp �2
r2

i

D2
Fi

 !
þexp �2

s2
i

D2
Fi

 !" #
;

ð25Þ

where DFi
is the verification diameter of the response function Fi

and the infimum is taken over all hyperrectangles contained in A.
This inequality follows simply from McDiarmid’s inequality by
observing that, for all s; r 2 RN (s :¼ ðs1; . . . ; sNÞ) such that
E½Y� þ

QN
i¼1ð�si; riÞ � A, one has

Ac � [N
i¼1fYi � E½Yi�P rig [ fYi � E½Yi� 6 �sig; ð26Þ

whence it follows that

P½Y 2 Ac� 6
XN

i¼1

ðP½Yi � E½Yi�P ri� þ P½Yi � E½Yi� 6 �si�Þ: ð27Þ

As in the preceding scenario, the inequality

inf
s;r2RN :E½Y �þ

QN

i¼1
ð�si ;riÞ�A

XN

i¼1

exp �2
r2

i

D2
Fi

 !
þ exp �2

s2
i

D2
Fi

 !" #
6 �

ð28Þ

now supplies a conservative certification criterion. It follows that in
the case of multiple performance measures certification can be
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achieved by the computation of the verification diameters of each of
the components of the response function.

Suppose, for example, that A ¼
QN

i¼1ðai;þ1Þ, where ai is the
threshold of the ith performance measure, and suppose that
ai 6 E½Yi�; i ¼ 1; . . . ;N. Then, the certification inequality (28) re-
duces to

XN

i¼1

exp �2
ðE½Yi� � aiÞ2þ

D2
Fi

 !
6 �: ð29Þ

By analogy to the case of a single performance measure we can now
introduce the margins and uncertainty measures

Mi ¼ ðE½Yi� � aiÞþ; ð30aÞ
Ui ¼ DFi

ð30bÞ

for each performance measure in turn. Then, (29) can be rewritten
in the form

CF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 exp �2ðCFiÞ2

� �r
0
BB@

1
CCA

vuuuuut P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1
�

rs
; ð31Þ

where we write

CFi ¼
Mi

Ui
: ð32Þ

Evidently, the certification criterion (31) reduces to (12) in the case
of a single performance measure. It is interesting to note that, in the
case of multiple performance measures, the confidence factor CF
follows as an aggregate of the confidence factors CFi of each of
the performance measures according to the composition rule (31).
However, it should be carefully noted that neither margins nor
uncertainties can be aggregated independently of each other to de-
fine an overall margin and an overall uncertainty of the system. The
confidence-factor aggregation relation is shown in Table 3 for a sys-
tem characterized by two performance measures. As expected, the
aggregate confidence factor is smaller than each of the confidence
factors corresponding to the individual performance measures.
Thus, lack of confidence in individual performance measures com-
pounds and the overall confidence in the system takes a hit with
the addition of every new performance measure. However, because
the individual confidence factors enter the aggregation relation (31)
through exponentials, it follows that the aggregate confidence fac-
tor—and the certification process itself—is dominated by those per-
formance measures having the smallest individual confidence
factors. Conversely, performance measures having large confidence
factors have negligible effect on the overall confidence factor of the
system and can be safely removed from consideration in the certi-
fication process.

2.3. Scenario 3: exact model, single performance measure whose mean
is unknown

In the foregoing we have assumed that the mean performance
E½Y� of the system is known a priori. However, in most situations
Table 3
Aggregate confidence factor for a system characterized by two performance measures
with confidence factors CF1 (rows) and CF2 (columns)

CFi 1.0 1.2 1.4 1.6 1.8 2.0

1.0 0.808348 0.909127 0.965192 0.989139 0.997179 0.999381
1.2 0.909127 1.045670 1.135196 1.178736 1.194371 1.198758
1.4 0.965192 1.135196 1.270207 1.352168 1.386639 1.397003
1.6 0.989139 1.178736 1.352168 1.487759 1.563896 1.591443
1.8 0.997179 1.194371 1.386639 1.563896 1.701007 1.772316
2.0 0.999381 1.198758 1.397003 1.591443 1.772316 1.911394
of practical interest such information is not available and the mean
performance must be estimated instead. Suppose that, to this end,
we perform m evaluations of the model FðXÞ based on an unbiased
sampling of the input parameters, resulting in predicted perfor-
mances Y1;Y2; . . . ;Ym. We then define the estimated mean perfor-
mance corresponding to these calculations as

hYi ¼ 1
m

Xm

i¼1

Yi: ð33Þ

Start by additionally assuming that there is one single performance
measure, N ¼ 1, and that the safe operation of the system requires
that Y P a for some threshold a, i.e., A ¼ ½a;1Þ. The probability
P½Y 2 Ac� can now only be determined to within confidence inter-
vals reflecting the randomness of the estimated mean hYi. Under
these conditions, we obtain the following inequality

P P½Y 2 Ac�P exp �2
½hYi � a� a�2þ

D2
F

 !" #
6 �0; ð34Þ

where �0 is a pre-specified estimation tolerance and

a ¼ DFm�
1
2ð� log �0Þ

1
2: ð35Þ

Inequality (34) follows simply from an application of McDiarmid’s
inequality to hYi, with the result

P½E½Y� � hYi 6 �a� 6 �0 ð36Þ

whence it follows that, with P probability 1� �0,

Ac � fY � E½Y� 6 aþ a� hYig: ð37Þ

Next we observe that (34) simply states that, with probability 1� �0,

P½Y 2 Ac� 6 exp �2
½hYi � a� a�2þ

D2
F

 !
ð38Þ

and the certification criterion (3) now becomes

½hYi � a� a�þ
DF

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1
�

rs
: ð39Þ

This certification criterion is again of the form (12) with margin and
uncertainty measure

M ¼ ½hYi � a� a�þ; ð40aÞ
U ¼ DF : ð40bÞ

Comparison of (11b) and (40b) shows that the estimation of the
mean performance of the system effectively reduces the margin in
the amount a. Evidently, this margin hit can be reduced to an arbi-
trarily small value by carrying out a sufficiently large number of
model evaluations. The certification criterion (40) again shows that,
as in the case of known mean performance, in the absence of episte-
mic uncertainty, certification can be rigorously achieved from the
sole knowledge of the verification diameter of the system and an
estimate of its mean performance.

2.4. Scenario 4: exact model, multiple performance measures whose
means are unknown

For completeness, we proceed to record the extension of the
preceding case to multiple performance measures, N P 1, and
arbitrary A in RN . In this case, with probability 1� �0,

P½Y 2 Ac� 6 inf
s;r2RN :E½Y �þ

QN

i¼1
ð�si�ai ;riþaiÞ�A

�
XN

i¼1

exp �2
r2

i

D2
Fi

 !
þ exp �2

s2
i

D2
Fi

 ! !
; ð41Þ
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where a 2 RN and

ai ¼ DFi

log 2N
�0

2m

� �1
2

: ð42Þ

Inequality (41) again follows from McDiarmid’s inequality by
observing that

P½j E½Yi� � hYii jP ai� 6
�0

N
: ð43Þ

Hence, j E½Yi� � hYii j6 ai for all i with probability 1� �0, with the re-
sult that for all s; r 2 RN such that hYi þ

QN
i¼1ð�si � ai; ri þ aiÞ � A,

fY 2 Acg � [N
i¼1fYi � E½Yi�P sig [ fE½Yi� � Yi P rig ð44Þ

with probability 1� �0, and the certification criterion finally
becomes

inf
s;r2RN :hYiþ

QN

i¼1
ð�si�ai ;riþaiÞ�A

XN

i¼1

exp �2
r2

i

D2
Fi

 !
þ exp �2

s2
i

D2
Fi

 ! !
6 �:

ð45Þ

For example, suppose, as in scenario 2, that A ¼
QN

i¼1ðai;þ1Þ, where
ai is the threshold of the ith performance measure, and suppose that
ai þ ai 6 hYii; i ¼ 1; . . . ;N. Then, the certification inequality (45) re-
duces to

XN

i¼1

exp �2
ðhYii � ai � aiÞ2þ

D2
Fi

 !
6 �; ð46Þ

where now

ai ¼ DFi

log N
�0

2m

� �1
2

ð47Þ

in view of the one-side form of the admissible intervals. By analogy
to the case of a single performance measure we can now introduce
the margins and uncertainty measures

Mi ¼ ðhYii � ai � aiÞþ; ð48aÞ
Ui ¼ DFi

ð48bÞ

for each performance measure in turn. Then, (46) can be rewritten
in the form (31) with the individual performance measure confi-
dence factor defined as in (32). As in the case of a single perfor-
mance measure, we observe that the need to estimate the mean
performance has the effect of reducing the individual performance
measure margins in the amounts ai. These are controllable margin
hits that can be reduced to any desired extent by carrying out a suf-
ficiently large number of model evaluations. Again, in the absence
of epistemic uncertainty certification can be rigorously achieved
from the sole knowledge of the verification diameters of the indi-
vidual performance measures and estimates of their mean
performance.

2.5. Scenario 5: inexact model

In practice F stands for a numerical or analytical model of a
physical system whose output is the random vector Y. The model
accounts for some of the input parameters X that determine the
performance of the system. If the model were perfect then, for all
X; FðXÞ would exactly equal the outcome Y of an experiment per-
formed with an identical set of input parameters. In general, Y
and FðXÞ are not equal owing to

(i) imperfections in the model,
(ii) the existence of additional unknown random input parame-

ters, or unknown unknowns, not accounted for in the model.
These two sources of error and epistemic uncertainty can be
analyzed by supposing that the exact response of the physical sys-
tem is governed by a function GðX; ZÞ, generally unknown, of the
random variables X that are accounted for by the model and addi-
tional unknown unknowns Z. Even if no unknown unknowns exist
and the model accounts for all input parameters of the system, in
general GðX; ZÞ–FðXÞ owing to the limited fidelity of the model
FðXÞ. Evidently, these sources of error and epistemic uncertainty,
namely, the existence of unknown unknowns and the limited fidel-
ity of the model, must be carefully assessed as part of the certifica-
tion of the system.

To this end, begin by considering the case of a single perfor-
mance measure, N ¼ 1, and by noting that

fY 6 ag � fFðXÞ 6 aþ hg [ fGðX; ZÞ � FðXÞ 6 �hg; ð49Þ

where G� F may be regarded as a modeling-error function and h is
an arbitrary number, leading to the estimate

P½Y 6 a� 6 P½FðXÞ 6 aþ h� þ P½GðX; ZÞ � FðXÞ 6 �h� ð50Þ

and to the conservative certification criterion

P½FðXÞ 6 aþ h� þ P½GðX; ZÞ � FðXÞ 6 �h� 6 �: ð51Þ

Ideally h should be chosen to minimize the sum of the probabilities
on the left hand side of Eq. (51).

We have seen in previous sections how to obtain a bound for
P½FðXÞ 6 aþ h�, i.e., for the probability of failure predicted by the
model (with an additional margin h). Certification now additionally
requires a bound on P½GðX; ZÞ � FðXÞ 6 �h�, i.e., the probability that
the predicted and measured performance differ significantly. This
probability measures the deleterious effect on predictiveness of
all model imperfections, whether resulting from the limited fidel-
ity of the model or from unknown unknowns, and may therefore
be regarded as a measure of epistemic uncertainty. As is evident
from (51), the epistemic uncertainty has the effect of decreasing
the effective probability-of-failure tolerance. In particular, certifi-
cation is not possible if the model is not sufficiently faithful, i.e.,
if P½GðX; ZÞ � FðXÞ 6 �h�P �.

The epistemic uncertainty can again be rigorously bounded by
means of concentration-of-measure inequalities. Thus, a direct
application of McDiarmid’s inequality to G� F gives the concentra-
tion-of-measure bound

P½GðX; ZÞ � FðXÞ 6 �h� 6 exp �2
ðE½G� F� þ hÞ2þ

D2
G�F

 !
; ð52Þ

where the validation diameter

D2
G�F :¼

XM

k¼1

sup
ðx1 ;...;xk�1 ;xkþ1 ;...xMÞ2E1����Ek�1�Ekþ1�����EM

sup
z2EMþ1

sup
ðAk ;BkÞ2E2

k

j Fðx1; . . . ; xk�1;Ak; xkþ1; . . . xMÞ � Gðx1; . . . ; xk�1;Ak; xkþ1; . . . xM ; zÞ
� Fðx1; . . . ; xk�1;Bk; xkþ1; . . . xMÞ þ Gðx1; . . . ; xk�1;Bk; xkþ1; . . . xM ; zÞj2

þ sup
ðx;zÞ2E1�...�EMþ1 ;z02EMþ1

j Gðx; zÞ � Gðx; z0Þj2

ð53Þ

supplies a measure of the epistemic uncertainty of the system. In
particular, the validation diameter measures the extent to which
the predictions of the model deviate from observation.

In practice E½G� F� and E½F� are not known and must instead be
estimated. let hG� Fi and hFi be the empirical means of G� F and F,
respectively, estimated from m nominally identical model evalua-
tions and experiments. Take aF :¼ DFm�

1
2ð� log �0Þ

1
2 and

aG�F :¼ DG�Fm�
1
2ð� log �0Þ

1
2. Then we have seen that, with probabil-

ity 1� 2�0 for all h 2 ½0; a�,
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P½FðXÞ 6 aþ h� 6 exp �2
ðhFi � a� h� aFÞ2þ

D2
F

 !
ð54Þ

and

P½GðX; ZÞ � FðXÞ 6 �h� 6 exp �2
ðhG� Fi þ h� aG�FÞ2þ

D2
G�F

 !
: ð55Þ

It therefore follows that the inequality

inf
h

exp �2
ðhFi � a� h� aF �Þ2þ

D2
F

 !

þ exp �2
ðhG� Fi þ h� aG�FÞ2þ

D2
G�F

 !
6 � ð56Þ

supplies a conservative certification criterion. A near optimal choice
for h is given by matching the expressions in the exponentials, with
the result

h ¼ ðhFi � a� aFÞDG�F þ ðaG�F � hG� FiÞDF

DF þ DG�F
; ð57Þ

whence the certification criterion becomes

CF ¼ M
U

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
2
�

rs
ð58Þ

with

M ¼ ðhFi � a� aF � aG�F þ hG� FiÞþ; ð59aÞ
U ¼ DF þ DG�F � UA þ UE: ð59bÞ

It is interesting to note that the total uncertainty U is indeed the
sum of an aleatoric uncertainty UA, measured by the verification
diameter DF , and an epistemic uncertainty UE, measured by the val-
idation diameter DG�F . Generalizations to the cases of multiple per-
formance measures, N > 1, estimated mean performance and
arbitrary admissible set follow along similar lines as those pre-
sented in the preceding scenarios.

We also observe that the effect of epistemic uncertainty,
whether due to lack of fidelity of the model or the existence of un-
known unknowns, is to decrease the margin M by aG�F þ hG� Fi
and increase the total uncertainty U by DG�F . It should also be care-
fully noted that the determination of the validation diameter DF�G

requires the simultaneous and coordinated execution of the model
F and experiments G for equal known parameters X, in order to as-
sess the fidelity of the model, and the repetition of experiments for
equal known parameters X, in order to assess the effect of the un-
known unknowns. Since experiments are often costly and time
consuming, the value and practicality of model-based certification
thus depends critically on the ability to quantify epistemic uncer-
tainties by means a sufficiently small number of experiments.
However, for a sufficiently predictive model the function G� F in-
volved in the evaluation of validation diameter DG�F can be ex-
pected to exhibit much less variation than either F or G, thus
enabling the computation of DG�F by means of a rapidly converging
iterative scheme requiring a small number of model evaluations
and experiments.

Thus, the precise manner in which a predictive model cuts
down on the number of experiments required for certification is
by restricting the need of testing to the specific purpose of valida-
tion, presumably a much less testing-intensive task than purely
empirical certification of the system. Evidently, the requisite num-
ber of experiments depends critically on the quality of the model,
as well as on the method of optimization used to determine the
epistemic uncertainties. An extreme case is furnished by a perfect
model that accounts for all input parameters, in which case the
quantification of the total uncertainty requires no experiments.
In general, the purpose and benefit of model-based certification
is to reduce the number of experiments required for certification
through the formulation of a sufficiently predictive model. Herein
lies the promise, as well as the challenge, of model-based
certification.
3. Numerical tests

In this section we apply, by way of demonstration, the concen-
tration-of-measure approach to the problem of predicting the state
of maximum compression of an imploding ring. The behavior of
the ring in the high-energy regime is strongly nonlinear and
dynamical and the calculation of performance measures requires
the solution of an initial value problem in time. Because the system
undergoes multiple bifurcations and generally traverses a rough
energy landscape, the performance measures are expected to de-
pend sensitively on initial conditions and on the parameters of
the system. In addition, in the high-energy regime the shape of
the ring at maximum compression is expected to be highly crum-
pled and irregular. Thus, while straightforward in its definition, the
example of an imploding ring does pose a non-trivial and illumi-
nating test of the theory.

That the certification criterion (Eq. (39)) is indeed conservative,
i.e., that if Eq. (39) is satisfied then the probability-of-failure is in-
deed less than �with probability 1� �0, has been rigorously proven
mathematically. However, several practical questions remain to be
ascertained. A first question concerns whether the bounds fur-
nished by concentration-of-measure are tight enough to supply a
practical means of certification. A second question concerns the
means of calculation of the aleatoric and epistemic uncertainties,
as measured by their corresponding verification and validation
diameters, including the relative efficiencies of optimization algo-
rithms and the number of system evaluations and experimental
tests required for the computation of the uncertainty measures.
The imploding ring example presented in this section sheds useful
light on these and other related questions.

3.1. Test case description

We consider a ring described by means of a bead model consist-
ing of n point masses interacting through two- and three-body
potentials. The ring starts from an equilibrium circular configura-
tion and is imparted an inward radial velocity (Fig. 1). The objec-
tive of the analysis is to characterize the state of the ring at the
point of maximum compression.

The configuration of the ring at time t is characterized by the
coordinates xaðtÞ; a ¼ 1; . . . ; n, of all the beads. The total energy is
assumed to be of the form

EðxÞ ¼ EextðxÞ þ EbenðxÞ ¼
X

bonds

/ext þ
X

masses

/ben; ð60Þ

where for notational convenience we collect in the array
x ¼ fxa; a ¼ 1; . . . ;ng the coordinates of all the beads, /ext is a
two-body potential giving the extensional energy of a bond, /ben

is a three-body potential giving the bending energy of a pair of
bonds incident on a bead, and Eext and E ben are the total extensional
and bending energies of the ring respectively. In calculations, we
adopt the simple two-body potential

/ext ¼ C
2

log2 r
a0

� �
; ð61Þ

where r is the length of the bond and a0 and C are the equilibrium
length and the extensional stiffness of the bond, respectively, and
the simple three-body potential
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Fig. 1. Schematic of ring implosion and explosion test.
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/ben ¼ D
2

r1r2 cos a� a1a2 cos a0

r1r2 cos aþ a1a2 cos a0

� �2

; ð62Þ

where r1 and r2 are the lengths of the two bonds incident on a
bead, a1 and a2 are their respective equilibrium lengths, D is the
bond-pair bending stiffness, a is the angle subtended by the bonds
and a0 is the corresponding equilibrium angle. The two-body force
diverges strongly as r ! 0, which prevents bond collapse. By con-
trast, the two-body force goes through a maximum at r ¼ ea0, and
the three-body force resulting from the extension of the bonds at
constant angle likewise goes through a maximum at r ¼ 2a0,
which allows for bond breaking in tension. The three-body poten-
tial diverges when a! p� a0, with bonds otherwise unstretched,
causing the bond angles to remain in the interval
ð�pþ a0;p� a0Þ. The three-body potential is otherwise compliant
about the equilibrium angle a0, which allows for the development
of fine waviness and renders the behavior of the system difficult to
predict.

The resulting equations of motion of the ring are

M€xðtÞ þ f ðxðtÞÞ ¼ 0; ð63Þ

where we use a superposed dot to denote differentiation with re-
spect to time, the diagonal matrix M collects the masses of the
beads, and

f ðxÞ ¼ oE
ox
ðxÞ ð64Þ

is the interaction force array. In order to approximate the trajectory
of the ring we discretize the equations of motion, Eq. (63), in time
by means of the standard explicit Newmark algorithm (cf., e.g., [12])

xnþ1 ¼ xn þ Dtvn þ
1
2

Dt2an; ð65aÞ

vnþ1 ¼ vn þ
Dt
2
ðan þ anþ1Þ; ð65bÞ

anþ1 ¼ �M�1f ðxnþ1Þ; ð65cÞ

where Dt is the increment of time, and ðxn; vn; anÞ denote the coor-
dinates, velocities and accelerations of the ring at time tn ¼ nDt.
Eq. (65c) are explicit and can be used to advance the solution in time
from the initial conditions. We specifically assume that the ring is
initially at rest and in an equilibrium configuration in the form of
a circle of radius R. In addition, we assume a initial radial velocity
profile of the sinusoidal form

VðhÞ ¼ V0 þ DV sinðkhÞ; ð66Þ

where h is the polar angle around the ring, V0 represents the mean
initial radial velocity, DV the amplitude of the fluctuation, and k is
the wave number of the fluctuation.

The initial time step Dt is chosen to be of the order of one
tenth of the linearly stable time step for explicit integration. In
calculations we make use of a Richardson extrapolation time-step
selection scheme to ensure that the total energy remains ostensi-
bly constant. Specifically, the state of the ring is advanced twice
from time tn to tnþ1 by a single update with the current time step
Dtn; and two consecutive updates with time step Dtn=2. If the en-
ergy error estimate at time tnþ1 obtained by Richardson extrapo-
lation is within a prescribed tolerance we set Dtnþ1 ¼ Dtn and
proceed. In addition, the Richardson extrapolation of the two tra-
jectories is used as the state of the ring at tnþ1. If the energy error
estimate exceeds the prescribed tolerance the entire process is re-
peated with Dtn halved. The iteration stops if the time step de-
creases below a minimum value, in which case the calculation
is discarded.

A typical trajectory of the ring is shown in Fig. 2. As may be ob-
served in the figure, the ring buckles early on and subsequently
undergoes extensive crumpling, with the amplitude of the result-
ing crumpling increasing monotonically up to the point of maxi-
mum compression.

Suppose that the objective of the analysis is to predict the bend-
ing energy Eben at the point of maximum compression of the trajec-
tory. A natural measure of the extent of compression of the ring is
supplied by the extensional energy Eext. Likewise, the bending en-
ergy Eben provides a natural measure of the degree of crumpling of
the ring in compression. Therefore, an appropriate performance
measure is given by the value of the bending energy E ben of the
ring at the time the extensional energy Eext attains its first maxi-
mum. Thus, simulations stop when Eext attains its first maximum
in time, at which point the value of Eben is recorded as the single
performance measure Y of interest. We shall additionally assume
that the proper operation of the system requires Y to be above a
certain threshold a. Thus, the system fails when the bending en-
ergy achieved at the point of maximum compression falls short
of the threshold value.

The calculations described earlier implicitly define a response
function Y ¼ FðXÞ that returns the performance measure Y as a
function of the parameters X of the system. These parameters in-
clude material constants, geometry, loading, initial conditions
and numerical parameters such as the time step used for numerical
integration. For definiteness, we shall regard all parameters to be
certain, and therefore treat them as fixed constants, with the
exception of the bending stiffnesses D of the bond-pairs in the ring,
which we assume to be uncertain. Specifically, we divide the cir-
cumference of the ring into M segments of equal length. Each of
the beads in a particular section i ¼ 1; . . . ;M is assigned a variable
value Xi for the bending stiffness within a certain range. In order to
investigate the effect of the range of the inputs on the probability-
of-failure estimates we have considered the bending stiffness
ranges [0.95,1.05], [0.99,1.01], [0.995,1.005], and [0.999,1.001].
In addition, in order to examine the corresponding effect of the
nonlinearity of the model we have considered the mean initial
velocities V0 ¼ 3; 3� 10�1; 3� 10�2, and 3� 10�3. The remaining
values of the parameters used in calculations are tabulated in
Table 4.



Fig. 2. Ring implosion test. Crumpling of circular ring resulting from implosion (left to right, top to bottom).
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3.2. Uncertainty quantification analysis

The fundamental calculations to be carried out for purposes of
uncertainty quantification are the calculation of the estimated
mean performance hYi, Eq. (33), the verification diameter DF of
the response function, Eq. (8), and the validation diameter DG�F ,
Eq. (53). In lieu of experimental data, G is taken as the response
function of a higher resolution ring model discretized with 768
beads, with F then representing a coarse ring discretized with
256 beads obtained by coarse-graining G. As in the case of actual
experimental data, the evaluations of G are expensive, which
places a premium on optimization methods that require the least
number of evaluations of G. The extensional and bending energies
of the coarse-grained model are taken to be of the same form (61)
and (62), respectively, with effective axial and bending stiffness
coefficients determined so that the energies of the two configura-
tions shown in Fig. 3, corresponding to uniform compression or
extension of the ring, are identical. In addition, we require the ki-
netic energies of the coarse and fine models to be identical for uni-
form velocity around the ring. Relations consistent with these
constraints are

CF ¼
X

CG; ð67aÞ
DF ¼

X
DG; ð67bÞ

mF ¼
X

mG: ð67cÞ
Table 4
Values of fixed parameters used in imploding ring calculations

Parameter Value

Number of beads (n) 256
Extensional stiffness (C) 1.0
Individual bead mass density (m) 1.0
Ring radius (R) 0.25
Initial time step (Dt) 6:14� 10�4

Initial velocity fluctuation (DV) V0=3:0
Initial velocity wave number (k) 4
Minimum time step 1:0� 10�6

Richardson extrapolation energy tolerance 1:0� 10�3
here CF , DF and mF denote the axial stiffness, bending stiffness and
bead in the coarse-grained model, CG, DG and mG denote the axial
stiffness, bending stiffness and bead mass in the exact model, and
the sum extends to the beads in the fine model represented by each
bead in the coarse model. We note that a ¼ a0, i.e., the bond angles
remain unchanged, uniformly throughout the ring in the two con-
figurations shown in Fig. 3, leading to the simple scaling (67). For
large deviations from a perfect circular configuration, the coarse-
grained model F deviates significantly from the exact model G, espe-
cially as a result of the strong nonlinear dependence of the bending
energy on the bond-pair angle and of the inability of the coarse-
grained geometry to resolve fine wrinkles in the deformed configu-
ration of the exact model. It bears emphasis that the upscaling mod-
el just described is not proposed as an accurate method of coarse-
graining but, contrariwise, it is intended as a rough approximation
for purposes of ascertaining the uncertainties introduced by model-
ing assumptions.

In addition, in order to introduce unknown unknowns of the
type that are likely to be encountered in practice, i.e., arising from
fine unresolved length scales, we introduce nodal mass perturba-
tions in fine model G that are subgrid relative to the coarse model
F, i.e., preserve the aggregate masses (67c) of all beads in F. This
constraint is satisfied by adding a mass Z to the beads of G explic-
itly accounted for in F, and subtracting masses Z=2 to the remain-
ing beads in G. This distribution of mass over the fine model is
indeed undetectable on the level of resolution of the coarse model.
In this manner, the added mass Z becomes sole unknown unknown
of the system.

The estimation of the mean performance hYi can be carried out
simply by means of Monte Carlo sampling. The computation of the
diameters DF and DG�F requires an optimization over parameter
space. Owing to the roughness of the energy function landscape
of the ring and the lack of explicit derivatives of the response func-
tion, global optimization methods such as genetic algorithms and
simulated annealing naturally suggest themselves in the computa-
tion of DF . In calculations we employ the quasi-Newton method
and genetic algorithms implemented in Sandia National Laborato-
ries’ DAKOTA Version 4.0 software package. By contrast, the com-
putation of DG�F requires costly experimental tests and global
optimization algorithms are often not viable due to their slow con-
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Fig. 3. Ring configurations considered in the definition of the coarse-grained model: (a) exact model and (b) coarse-grained model.
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vergence. The expectation, however, is that for a sufficiently high-
fidelity model the function G� F exhibits much less variation than
either F or G, and that, therefore, the computation of DG�F can be
carried out by means of rapidly converging iterative schemes such
as a quasi-Newton iteration.

3.3. Implosion tests

3.3.1. Perfect model
We begin by supposing that the model F is perfect. Fig. 4 depicts

the dependence of the distribution in performance on the number
of random inputs. The distributions are calculated directly by
Monte Carlo sampling, with the sampling carried out in two ways:
assuming a uniform distribution of the inputs over their intervals
of variation, referred to as ‘uniform distribution’ in the figure;
and assuming that the inputs are at the end points of their intervals
of variation, referred to as ‘worst case’ in the figure. As expected,
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Fig. 4. Ring implosion test. Monte Carlo calculations (103 samples per system) of the dist
inputs of the system. (a) Histogram of the performance measure. (b) Standard deviation
and extreme point sampling, labeled ‘worst case’. The ranges of variation of the rand
concentration-of-measure phenomenon.
uniform sampling results in a lower probability of failure than
worst-case sampling. All Monte Carlo calculations presented in
the sequel are carried out using worst-case sampling. The standard
deviation of the distribution is found to scale as M�0:43 with the
number of random variable inputs M, Fig. 4b. A marked concentra-
tion of the performance histogram as the number of inputs is in-
creased is clearly evident in the figure, which vividly
demonstrates the concentration-of-measure phenomenon on
which the present approach is predicated.

The dependence of the verification diameter DF of the response
function on the number M of input parameters is shown in Fig. 5.
For linear F one has the scaling DF � M�1

2, and hence the power-
law behavior (DF � M�0:4 in the quasi-Newton calculations,
DF � M�0:43 in the genetic algorithm calculations) evident in
Fig. 5 owes to the lack of regularity of the response function
FðXÞ. This scaling behavior serves to illustrate one of the principal
strengths of the concentration-of-measure approach, namely, that
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the uncertainty bounds become sharper as the number of random
variables increases. Therefore, concentration-of-measure bounds
are particularly attractive in the context of certification of large
complex systems with many random inputs. It is also interesting
to note from Fig. 5 that both the genetic algorithm and quasi-New-
ton results exhibit ostensibly identical behavior.

Figs. 6 and 7 show the minimum design margins required in or-
der to guarantee that the concentration-of-measure bounds on the
probability of failure are less than � ¼ 10�3, 10�2 and 10�1. The re-
sults shown in Fig. 6 correspond to a perfect model whose mean
performance is exactly known, termed scenario 1 in Section 2.1,
whereas the results shown in Fig. 7 correspond to a perfect model
whose mean performance is estimated empirically, termed sce-
nario 3 in Section 2.3. The initial implosion velocity is V0 ¼ 3 in
all cases. This initial velocity causes the ring to crumple extensively
with the result that the behavior of the ring becomes exceedingly
nonlinear. The figures show the dependence of the required margin
on the number of random inputs for four input ranges:
D 2 ½0:95;1:05�; ½0:99;1:01�; ½0:995;1:005� and [0.999,1.001]. The
figures also show a comparison of the margins resulting from ale-
atoric diameters DF computed by a genetic algorithm and a quasi-
Newton iteration.

A number of features of the results presented in Figs. 6 and 7
immediately come to prominence. Interestingly, despite the extre-
mely nonlinear behavior of the system the margins required to
guarantee its safe performance take modest values which, presum-
ably, should be attainable by practical designs. The modest range
and good behavior of those design margins illustrates the feasibil-
ity and practicality of concentration-of-measure inequalities as a
basis for the certification of complex systems. A second feature
of interest is the steady decrease of the required design margins
with the number of random inputs, a decrease that is in keeping
with the expected behavior of concentration-of-measure inequali-
ties. Thus, the concentration-of-measure approach to certification
pursued in the present work, which is based on the simple Hoeff-
ding inequality, is particularly effective for systems with a large
number of uncorrelated or weakly correlated random inputs.
Extensions of concentration-of-measure inequalities to correlated
inputs are summarized in Appendix A but will not be pursued here
in the interest of simplicity. A final feature of interest, which is evi-
dent from a comparison of Figs. 6 and 7, concerns the small in-
crease of the required design margins that results from
estimating the mean performance of the system empirically. This
small effect suggests that in practice mean performances can be
safely estimated empirically and that the mean performance of
the system need not be known exactly.

3.3.2. Inexact model
Next we investigate the effect of modeling uncertainties,

including unknown unknowns. The precise manner in which the
exact model is coarse-grained and unknown unknowns are intro-
duced has been described in Section 3.1. The determination of
the residual probability-of-failure tolerance requires the estima-
tion of the mean deviation hGi � Fii between predicted and mea-
sured performance measures and the computation of the
validation diameters DGi�Fi

. Again we note that this determination
requires the simultaneous execution of nominally identical calcu-
lations and experiments, a process that gives precise form to the
notion of validation.

As stated in Section 2.5, in the context of certification, models
are useful precisely because, for sufficiently predictive models,
the objective function required to compute the validation diame-
ter, Eq. (53), may be expected to exhibit much less variation than
the response function itself, with the result that the evaluation of
the validation diameter can be based on rapidly convergent itera-
tive procedures, which in turn can greatly reduce the number of
experimental tests required for certification. This working assump-
tion may be tested in the case of the imploding ring example. Fig. 8
shows plots of the number of iterations to convergence using a
quasi-Newton iteration and a genetic algorithm as function of
the number of random input parameters. As may be seen in the fig-
ure, for a small number of input parameters the quasi-Newton iter-
ation converges more rapidly than the genetic algorithm and the
number of iterations to convergence is manageably small. As the
complexity of the system increases, the performance gap between
the genetic algorithm and the quasi-Newton iteration narrow and,
for a large number of input parameters the genetic algorithm re-
quires fewer iterations to convergence.

In a certification context, the effect of the limited model fidel-
ity is an effective reduction in the probability-of-failure tolerance,
cf., Section 2.5. Thus, the computed probability of failure must
now be compared against a reduced tolerance that accounts for
modeling errors. Fig. 9 shows that, for the particular choice of
upscaling model used in the calculations, the validation diameter
DF�G is greatly in excess of the verification diameter DF . Thus, the
epistemic or modeling uncertainty UE completely overshadows
aleatoric uncertainty UA resulting from the intrinsic variability
of the inputs and any stochastic nature of the system. The reason
for the large epistemic uncertainty is clearly illustrated in Fig. 10,
which shows that fine crumpling of the ring occurs in the late
stages of compression, Fig. 10a. This localized crumpling greatly
contributes to the bending energy of the ring, i.e., to the chosen
measure of performance. However, the localized crumpling can-
not be resolved by the coarse model and is completely sup-
pressed, Fig. 10b, with the result that the bending energy of the
ring is greatly underestimated.

In order to compensate for the large epistemic uncertainty, the
certification of the system requires larger margins than otherwise
required in the case of the perfect model, cf., Fig. 11. This is partic-
ularly so for large numbers of random input parameters owing to
the lack of concentration exhibited by the inexact model, a behav-
ior that is in sharp contrast to the perfect model which, as noted
earlier, exhibits strong concentration with increasing system size.
The behavior of the system is not significantly altered by the intro-
duction of unknown unknowns, cf., Fig. 12. Remarkably, despite
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the large level of epistemic uncertainty and the introduction of un-
known unknowns the minimum margins required for certification
remain within relatively modest values attainable by practical de-
signs. Thus, while the concentration advantage may be diminished,
concentration-of-measure inequalities remain a viable avenue for
certification in the context of inexact models and unknown
unknowns.

4. Summary and discussion

Certification is a process that seeks to establish whether the
probability of failure of a system is below an acceptable tolerance.
Often, certification is expressed in a language of quantification of
margins and uncertainties (QMU), with the understanding that a
system is certified if its performance uncertainty is less than its
performance margin. Appealing as the QMU conceptual framework
is, the precise quantitative definition of uncertainty measures, the
precise means by which the uncertainty measures can be deter-
mined in practice, be it experimentally, by computer simulation
or a combination of both, and the precise manner in which mitigat-
ing and controlling uncertainties guarantees the safe operation of a
system, are often left unspecified.

We have developed a method of certification predicated upon
the use of concentration-of-measure inequalities as a means of
bounding performance uncertainties. These uncertainty bounds
are mathematically rigorous and, therefore, can be taken as a basis
for formulating conservative certification criteria. In addition, the
approach is unambiguous and supplies precise quantitative defini-
tions for a number of terms of art that are often loosely used in ad-
hoc certification methodologies, including the following:

(i) Margins: When the mean performance of the system is
known, the margin in a performance measure is simply the
difference between the mean performance and its threshold
for safe operation, Eq. (11a). When the mean performance of
the system is estimated by way of a model, the margin is the
difference between the mean performance and an increased
threshold, Eq. (40a). This threshold increase accounts for
uncertainties in the estimation of the mean performance
and effectively results in a net loss of margin.
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(ii) Uncertainty: The total uncertainty of the system follows as
the sum of an aleatoric uncertainty and an epistemic uncer-
tainty, Eq. (59b). The aleatoric uncertainty measures the
spread in predicted performance arising from numerical
errors, from the statistical variability of the input parame-
ters, the intrinsic stochasticity of the model, or from other
sources. The epistemic uncertainty measures the deviation
between predicted and observed performance due to the
limited fidelity of the model and existence of unknown
unknowns.

(iii) Aleatoric uncertainty: The aleatoric uncertainty in a perfor-
mance measure is quantified by its verification diameter
(8), i.e., the largest deviation in performance that is com-
puted when each input parameter is allowed to vary in turn
between pairs of values spanning its entire range. The alea-
toric uncertainty is computed directly from the model with-
out reference to experimental data. It bears emphasis that
classical linearized sensitivity analysis is not sufficient to
quantify aleatoric uncertainties in general. Instead, worst-
case scenario large deviations in the system input parame-
ters, resulting in likewise large deviations in system perfor-
mance, must systematically be identified and taken into
account. Finally, we note that aleatoric uncertainties can
be determined on the sole basis of input parameter ranges
without precise knowledge of their probability density
functions.

(iv) Epistemic uncertainty: The epistemic uncertainty in a perfor-
mance measure is quantified by its validation diameter (53),
i.e., the largest deviation in the difference between com-
puted and measured performance that is recorded when
each input parameter is allowed to vary in turn between
pairs of values spanning its entire range. The determination
of the validation diameter is an optimization problem in
which the evaluation of the objective function requires the
execution of nominally identical calculations and experi-
ments. The algorithm employed in the solution of this opti-
mization problem, be it a stochastic algorithm such as
simulated annealing or a genetic algorithm or an iterative
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algorithm such as a quasi-Newton iteration, determines the
precise sequence of calculations and experiments to be per-
formed. It should be noted that, in executing nominally iden-
tical calculations and experiments, unknown–unknown
input parameters are assigned random values within their
respective ranges, which adds to the computed modeling
uncertainties and systematically and automatically accounts
for the effect of unknown unknowns.

(v) Confidence factor: With the preceding definitions, the confi-
dence factor is simply the quotient of margin to total uncer-
tainty, Eq. (10). However, it should be carefully noted that
what is specifically asserted through this definition is the
mathematical fact that concentration-of-measure inequali-
ties rigorously guarantee that a system whose confidence
factor is above a well-defined threshold will operate safely
within a pre-specified probability-of-failure tolerance. This
stands in contrast to QMU methodologies based on ad-hoc
definitions of margins, uncertainties and confidence factors
which, while eminently reasonable and intuitive appealing,
may lack a similar mathematical guarantee and, therefore,
fail to provide a sound basis for certification.

(vi) Aggregation of uncertainties: In cases in which the safe oper-
ation of a system requires multiple performance measures to
be above their respective thresholds, certification can still be
expressed in terms of an overall confidence factor for the
system. In the concentration-of-measure approach to certifi-
cation, the overall confidence factor follows as a well-
defined function of the individual confidence factors of each
of the performance measures, Eq. (31). It bears emphasis
that neither margins nor uncertainties can be aggregated
in separation of each other. Instead, individual performance
measure confidence factors, which naturally weigh individ-
ual margins against their corresponding uncertainties, are
to be compounded into an overall confidence factor for the
system. In particular, ad-hoc formulae for aggregating uncer-
tainties, such as root mean square (RMS) formulae, fail to
provide a sound basis for certification in general.

It bears emphasis that, in a certification context, the purpose
and utility of devising models of the highest possible fidelity is to
minimize the number of—presumably costly—tests that are re-
quired for certification. Predictive Science may then be regarded
as the art of formulating such models. Some of the benefits of
the concentration-of-measure QMU framework towards the goal
of achieving predictive science are worth noting carefully.

The computation of the verification and validation diameters of
system requires a global optimization over parameter space. Glo-
bal optimization algorithms such as simulated annealing and ge-
netic algorithms exhibit a very high degree of concurrency, since
at every step of the algorithms large populations of replicas of
the model can be evaluated independently. This concurrent evalu-
ation can be accomplished by running a large number of indepen-
dent jobs on relatively small processor counts (�500–1000).
Bottlenecks should be rare in this mode and exceedingly high effi-
ciencies are expected. Petascale computing capacity presently un-
der development will enable the running of vast numbers of such
jobs simultaneously. Thus, concentration-of-measure uncertainty
analysis lends itself ideally to—and provides a potentially impor-
tant use of—petascale computing.

The calculation of aleatoric and epistemic uncertainties, as mea-
sured by the verification and validation diameters of the system,
entails a systematic exploration of parameter space and thus iden-
tifies where the critical large-perturbation sensitivities of the sys-
tem and modeling errors reside. Thus, one important outcome of
uncertainty quantification through the computation of the verifica-
tion and validation diameters is the identification of bad actors, i.e.,
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the components of the model, be they numerical, physics models
or otherwise, responsible for the highest system uncertainties.
Those model components can then be targeted for refinement
through the addition of higher-fidelity physics laws, higher-accu-
racy numerical algorithms, or by other means. In this manner,
QMU systematically guides model development and provides a ra-
tional basis for allocating modeling and experimental priorities
and resources. Such systematic and prioritized model development
is an integral and indispensable part of predictive science.

In closing, we proceed to enumerate some of the present limita-
tions of the proposed approach and possible extensions and
enhancements thereof. For simplicity, in this paper we have con-
sidered input parameters that are independent and supposed that
all that is known about the variability in the input parameters is
that they lie within certain intervals. However, the concentra-
tion-of-measure phenomenon is not limited to the case of indepen-
dent random inputs and it is possible to devise concentration-of-
measure inequalities that account for correlations between inputs
(cf., e.g., Theorems A3 and A4). It is also possible to devise concen-
tration-of-measure inequalities that take as input probability den-
sity functions of the input variables, and take the resulting
inequalities as a basis for formulating conservative certification
criteria (cf., e.g., Theorem A4).

An additional concern is whether the concentration-of-measure
inequalities supply a sufficiently tight upper bound on the proba-
bility of failure. The simplest concentration-of-measure inequali-
ties, namely, those based on Hoeffding’s inequality, can
significantly overestimate the probability of failure. There are a
number of alternative concentration-of-measure inequalities, such
as Chernoff’s inequality, that provide tighter upper bounds on the
probability of failure. Another possibility is to exploit special char-
acteristics of the system. For instance, a case that often arises in
practice concerns systems that are composed of coupled compo-
nents or subsystems. Each subsystem can then be modeled sepa-
rately and an integrated model of the entire system can
subsequently be obtained by modeling the coupling between the
subsystems. Hierarchies of models in which the subsystems can
themselves be recursively decomposed into finer subsystems are
also encountered in practice. In these cases, concentration inequal-
ities can be applied recursively in order to bound uncertainties in
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Fig. 12. Minimum design margins required in order to guarantee probabilities of failure less than � ¼ 10�3; 10�2 and 10�1. Inexact model and estimated mean performance.
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the integrated system. The uncertainties in the subsystems can be
computed through experiments tailored to each subsystem and
through numerical simulations based on subsystem models, pre-
sumably an easier task than testing and modeling the integrated
system itself. The resulting bounds on the subsystem uncertainties
exhibit Gaussian tails. The uncertainty of subsystems higher in the
hierarchy can then be controlled by means of powerful concentra-
tion inequalities for Gaussian random variables. We recall that
concentration inequalities having independent Gaussian random
variables as input parameters return back Gaussian tail estimates.
In this manner, uncertainties can be propagated recursively up the
system hierarchy using concentration inequalities for Gaussian
random variables.

It should be carefully noted that the present approach requires
the determination of the epistemic uncertainties, as measured by
the validation diameter, through the execution of a sequence of
identical simulations and experiments. While this aspect of the
method may be regarded as a strength—it supplies precise guide-
lines for model validation and leads to rigorous and conservative
certification—it also limits the applicability of the method to sys-
tems for which integral tests can be conducted on demand. This
raises the question of whether it is possible to extend the present
approach—and, more generally, whether rigorous certification is
possible at all—when only historical integral data is available
and the possibility of acquiring new integral data does not exist.
From a mathematical standpoint, the main difficulty is that in
general there is no guarantee that historical integral data samples
parameter space adequately, specially when certifying new de-
signs, and that performance uncertainties are not underestimated
as a result. The situation improves significantly if component
testing is possible. Thus, if the system consists of a number of
components and interfaces between the components, and if each
component and interface can be tested, then it is possible to de-
rive rigorous uncertainty bounds, leading to conservative certifi-
cation, by methods similar to those outlined in the preceding
paragraph.

Finally, we remark on the likely range of applicability of concen-
tration-of-measure inequalities relative to other competing ap-
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proaches. In cases in which the probability of failure is large, sam-
pling methods such as Monte Carlo or Quasi-Monte Carlo require a
relatively small number of samples and are likely to enjoy a compet-
itive advantage. Sampling methods are also advantageous when
large data sets are available or are inexpensive to obtain. However,
methods based on direct sampling become impractical if the proba-
bility of failure is small, i.e., if failure is a rare event, and if sampling is
costly. By way of contrast, the effort required for the computation of
the verification and validation diameters is independent of the size
of the probability of failure and concentration-of-measure inequal-
ities can conveniently be applied—and enjoy a competitive advan-
tage-when probabilities of failure are small. Furthermore,
concentration-of-measure inequalities are just about the only avail-
able certification tools for systems with a large number of inputs
whose probability density function is not fully known.
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Appendix A. A brief review of concentration-of-measure
inequalities

The concentration-of-measure phenomenon refers to the prop-
erty that functions of a large number of variables, i.e., functions
over high-dimensional spaces, with small local oscillations in each
variable are almost constant. Moreover, the fluctuations can be
controlled through powerful inequalities called concentration-of-
measure inequalities. These inequalities have found a wide range
of application in functional analysis, complexity theory, and prob-
ability and statistics but remain largely unknown outside the spe-
cialized mathematical community where they are currently being
developed. In this appendix we collect basic facts and background
on the concentration-of-measure phenomenon for the convenience
of the reader. We refer the interested reader to [6] for a monograph
and to [7] for a survey.

Recognition of the concentration-of-measure phenomenon as
such may be traced back to an observation by Lévy [13] that func-
tions on high dimensional spheres with small local oscillations, i.e.,
whose modulus of continuity can be controlled, are strongly con-
centrated around their mean value with respect to the uniform
Lebesgue measure on the hypersphere. The study of this phenom-
enon was pioneered in the early seventies by Milman in his work
on the asymptotic geometry of Banach spaces [14–17]. For an iso-
perimetric interpretation of the concentration-of-measure phe-
nomenon and powerful applications to geometry we refer to
[18–20]. For early probabilistic results in the context of sums of
independent random variables we refer to [9] (Hoeffding’s inequal-
ity), [21] (Chernoff bound) and to [22,23] for quantitative inequal-
ities pertaining to the Glivenko–Cantelli [24,25] convergence of
empirical distributions. Far-reaching extensions, that in particular
provide dimension-free concentration-of-measure inequalities in
product spaces, have more recently been advanced by Talagrand,
cf. [26–32]. For a selection of relevant articles in probability and
statistics we refer to [33–40].

A brief compendium of representative concentration-of-mea-
sure inequalities is collected in the following. Whereas only the
simplest McDiarmid concentration-of-measure inequalities is used
in this paper, the more advanced inequalities described below sup-
ply avenues for extension of the present QMU methodology to sys-
tems including correlated inputs, inputs with known probability
distributions, unbounded inputs and other cases of interest.
McDiarmid’s inequality. McDiarmid’s inequality is perhaps the
simplest example of concentration-of-measure inequality. Let
X1; . . . ;XM be M random variables with values in spaces
E1; . . . ; EM . Let F be a-one dimensional function of X1; . . . ;XM . Write

D2
F :¼

XM

i¼1

sup
ðx1 ;...;xi�1 ;xiþ1 ;...xMÞ2E1����Ei�1�Eiþ1�����EM

sup
ðAi ;BiÞ2E2

i

j Fðx1; . . . ; xi�1;Ai; xiþ1; . . . xMÞ � Fðx1; . . . ; xi�1;Bi; xiþ1; . . . xMÞj2

ðA:1Þ

we refer to DF as the diameter of F. In Eq. (A.1) the suprema are ta-
ken with respect to variables in the spaces E1; . . . ; EM . Let P and E be
the measure of probability and expectation associated with the ran-
dom variables X1; . . . ;XM . Write X :¼ ðX1; . . . ;XMÞ. The following the-
orem [10], also known as the bounded-differences inequality, bounds
the fluctuations of FðXÞ away from its mean without a priori knowl-
edge of the probability distribution of the random variables
X1; . . . ;XM .

Theorem A1 (McDiarmid [10]). Let the random variables
X1; . . . ;XM are independent. Then

P½FðXÞ � E½F�P r� 6 exp �2
r2

D2
F

 !
: ðA:2Þ

Observe that if the spaces Ei ¼ ðai; biÞ and

FðXÞ ¼ 1
M

XM

i¼1

Xi: ðA:3Þ

Hoeffding’s inequality [9]

P
1
M

XM

i¼1

Xi �
1
M

XM

i¼1
E½Xi�P r

" #

6 exp �2M
r2

PM
i¼1
ðbi � aiÞ2=M

� �
0
BBB@

1
CCCA ðA:4Þ

is recovered as a special case.
Convex-distance inequality. The bounded-differences inequality

is a special case of the more powerful convex-distance inequality
[30]. In particular, the convex-distance inequality applies in cases
where the bounded-differences inequality fails. Assume that
X1; . . . ;XM are independent variables, each taking values in a mea-
surable set E. Write X ¼ ðX1; . . . ;XMÞ and P½A� :¼ P½X 2 A�. Let
A � EM be an arbitrary measurable subset of E. For a 2 ½0;1�M , we
define the weighted Hamming distance from the point x 2 EM to
A as

daðx;AÞ :¼ inf
z2A

X
i:zi–xi

j ai j : ðA:5Þ

Writing kak2 :¼
PM

i¼1a2
i we define the convex distance of X from the

set A as

dTðx;AÞ :¼ sup
a2½0;1�M ;kak¼1

daðx;AÞ: ðA:6Þ

Then we have the following

Theorem A2. For any subset A � EM with P½X 2 A�P 1
2 and t > 0,

minfP½A�;P½dTðX;AÞP t�g 6 exp � t2

4

� �
: ðA:7Þ

The convex-distance inequality originates in a remarkable series of
papers by Talagrand [27,30,41]. The preceding statement of the
inequality is taken from [42].
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Concentration inequalities with correlated random variables. The
concentration-of-measure phenomenon is not limited to the case
of independent random inputs and also arises when the inputs
are correlated. Suppose, for definiteness, that Ei ¼ ½0;1� for all i.
Let f ðX1; . . . ;XMÞ be the probability density of the inputs and de-
note by f ðXj; . . . ;XM j ðX1; . . . ;Xi�1;XiÞ ¼ ðx1; . . . ; xi�1; xiÞÞ the the
law of Xj; . . . ;XM conditioned on ðX1; . . . ;Xi�1;XiÞ ¼ ðx1; . . . ; xi�1; xiÞ.
A matrix C measuring the correlations between pairs of random
variables Xi may then be defined as follows: Cij :¼ 0 if i > j;
Cii :¼ 1; and, for i < j,

Cji ¼ sup
xi ;zi2½0;1�2

sup
ðx1 ;...;xi�1Þ2½0;1�i�1

kf ðXj; . . . ;XM j ðX1; . . . ;Xi�1;XiÞ ¼ ðx1; . . . ; xi�1; xiÞÞ
� f ðXj; . . . ;XM j ðX1; . . . ;Xi�1;XiÞ ¼ ðx1; . . . ; xi�1; ziÞÞkTV;

ðA:8Þ

where k � kTV denotes the total variation norm over probability mea-
sures. For instance, if ðXiÞ16i6M is a Markov Chain on ½0;1� with uni-
formly contracting transition kernels, i.e.,

a :¼ sup
i;xi�1 ;zi�1

kf ðXi j Xi�1 ¼ xiÞ � f ðXi j Xi�1 ¼ ziÞkTV < 1; ðA:9Þ

then

kCk 6 1

1� a1
2
: ðA:10Þ

Write kCk for the operator norm of the matrix C. Then we have the
following.

Theorem A3. Let F be 1-Lipschitz over ½0;1�M. Then

P½j F � E½F� jP r� 6 2 exp � r2

2kCk2

" #
: ðA:11Þ

We refer to [43] for a proof of the following theorem, and to
[44,45,37,46] for related results.

Concentration inequalities with functions with unbounded oscilla-
tions. Concentration-of-measure inequalities are not limited to
functions with bounded differences or inputs taking their values
on compact spaces. General concentration-of-measure inequalities
can be obtained by controlling the Lipschitz regularity of the out-
put function and the tail of the random variables Xi at infinity. This
control can be achieved by means of analytical inequalities called
logarithmic Sobolev inequalities [47]. Let f be a non-negative mea-
surable function f over a measure space ðE;B;lÞ such thatR

f lnð1þ f Þdl <1. We define the entropy of f as

Entlðf Þ :¼
Z

f ln f dl�
Z

f dl ln
Z

f dl
� �

: ðA:12Þ

We refer to Section 5 of [6] for the following theorem and to refer-
ences therein.

Theorem A4. Let l be a probability measure on the Borel sets of a
metric space ðE; dÞ such that for some C > 0 and all locally Lipschitz
function f on E

Entlðf 2Þ 6 2C
Z
j rf j2 dl ðA:13Þ

with

j rf j ðxÞ :¼ lim sup
y!x

j f ðxÞ � f ðyÞ j
j x� y j : ðA:14Þ

Then for every 1-Lipschitz integrable function F : E! R and for every
r P 0

l Y P
Z

F dlþ r
� �� �

6 exp � r2

2C

� �
: ðA:15Þ
Eq. (A.13) is called logarithmic Sobolev inequality with constant C.
The application of Theorem A4 to product of metric spaces ðEi;diÞ
follows from the observation that if the measures li satisfy the log-
arithmic Sobolev inequality

Entli
ðf 2Þ 6 2Ci

Z
j rif j2 dli ðA:16Þ

for every locally Lipschitz function f on Ei, where j rif j is the gen-
eralized modulus of gradient on Ei defined as in Eq. (A.14), then the
product measure l ¼ l1 � � � � � lM satisfies the logarithmic
inequality (see Corollary 5.7 of [6])

Entlðf 2Þ 6 2 max
16i6M

Ci

Z
j rf j2 dl ðA:17Þ

with j rf j2 ¼
PM

i¼1 j rif j2, for every locally Lipschitz function f on
E ¼ E1 � � � � � EM . The particular application to Gaussian distribu-
tions follows simply from the observation that a normal centered
Gaussian distribution on Rn satisfies the logarithmic Sobolev
inequality with constant 2.

Concentration inequalities for empirical processes. Concentration
inequalities can also be used to obtain powerful and very quantita-
tive estimates for empirical processes defined by sampling,
[27,30,41,35]. Let Y1; . . . ; YN be independent random variables,
not necessarily identically distributed, in some measurable space
ðE;BÞ. Let F be some countable family of real-valued measurable
functions on ðE;BÞ such that kfk1 6 b <1 for every f 2F. Let

Z :¼ sup
f2F

XN

i¼1

f ðYiÞ
					

					 ðA:18Þ

or

Z :¼ sup
f2F

XN

i¼1

ðf ðYiÞ � E½f ðYiÞ��
					

					: ðA:19Þ

Let, in addition,

r2 :¼ sup
f2F

XN

i¼1

Var½f ðYiÞ�: ðA:20Þ

Then we have the following [35].

Theorem A5. For any positive real number � and x,

P Z P ð1þ �ÞE½Z� þ r
ffiffiffiffiffiffiffiffiffi
2jx
p

þ jð�Þbx
h i

6 expð�xÞ ðA:21Þ

with j ¼ 4;jð�Þ ¼ 2:5þ 32��1. Moreover,

P Z 6 ð1� �ÞE½Z� � r
ffiffiffiffiffiffiffiffiffiffi
2j0x
p

� j0ð�Þx
h i

6 expð�xÞ ðA:22Þ

with j0 ¼ 5:4 and j0ð�Þ ¼ 2:5þ 43:2��1.

In the particular case in which the random variables Yi are identi-
cally distributed, Theorem A5 furnishes powerful estimates for the
empirical process

lN :¼ 1
N

XN

i¼1

dYi
ðA:23Þ

by observing that

Z ¼ sup
f2F

N j lNðf Þ � lðf Þ j : ðA:24Þ
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[18] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct.
Anal. 13 (1) (2003) 178–215.

[19] M. Gromov, CAT(j)-spaces: construction and concentration, Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 280 (Geom. i Topol. 7):
100–140 (2001) 299–300.

[20] M. Gromov, V.D. Milman, Brunn theorem and a concentration of volume
phenomena for symmetric convex bodies, in: Israel Seminar on Geometrical
Aspects of Functional Analysis (1983/84), pages V, 12. Tel Aviv Univ., Tel Aviv,
1984.

[21] Herman Chernoff, A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations, Ann. Math. Stat. 23 (1952) 493–507.

[22] N.V. Smirnov, Approximate laws of distribution of random variables from
empirical data, Uspehi Matem. Nauk 10 (1944) 179–206.

[23] A. Dvoretzky, J. Kiefer, J. Wolfowitz, Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator, Ann.
Math. Stat. 27 (1956) 642–669.
[24] F. Cantelli, Sulla probabilita come limita della frequenza, Rend. Accad. Lincei
26 (1) (1933).

[25] V. Glivenko, Sulla determinazione empirica delle leggi di probabilita, Giornale
dell’Istituta Italiano degli Attuari 4 (1933).

[26] Michel Talagrand, Concentration and influences, Israel J. Math. 111 (1999)
275–284.

[27] Michel Talagrand, New concentration inequalities in product spaces, Invent.
Math. 126 (3) (1996) 505–563.

[28] Michel Talagrand, Nouvelles inégalités de concentration à q points, C. R. Acad.
Sci. Paris Sér. I Math. 321 (11) (1995) 1505–1507.

[29] Michel Talagrand, Nouvelles inégalités de concentration ‘‘convexifiées”, C. R.
Acad. Sci. Paris Sér. I Math. 321 (10) (1995) 1367–1370.

[30] Michel Talagrand, Concentration of measure and isoperimetric inequalities in
product spaces, Inst. Hautes Études Sci. Publ. Math. 81 (1995) 73–205.

[31] Michel Talagrand, A new isoperimetric inequality and the concentration of
measure phenomenon, in: Geometric Aspects of functional analysis (1989–
1990), vol. 1469 of Lecture Notes in Math., Springer, Berlin, 1991, pp. 94–
124.

[32] T. WanSoo, Rhee and Michel Talagrand. A concentration inequality for the K-
median problem, Math. Oper. Res. 14 (2) (1989) 189–202.

[33] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration
inequalities using the entropy method, Ann. Probab. 31 (3) (2003) 1583–1614.

[34] Pascal Massart, Some applications of concentration inequalities to statistics,
Ann. Fac. Sci. Toulouse Math. (6), 9(2):245–303, 2000. Probability theory.

[35] Pascal Massart, About the constants in Talagrand’s concentration inequalities
for empirical processes, Ann. Probab. 28 (2) (2000) 863–884.

[36] Stéphane Boucheron, Gábor Lugosi, Pascal Massart, A sharp concentration
inequality with applications, Random Structures Algorithms 16 (3) (2000)
277–292.

[37] Michel Ledoux, Concentration of measure and logarithmic Sobolev
inequalities, in: Séminaire de Probabilités, XXXIII, vol. 1709 of Lecture Notes
in Math., Springer, Berlin, 1999, pp. 120–216.

[38] S. Bobkov, M. Ledoux, Poincaré’s inequalities and Talagrand’s concentration
phenomenon for the exponential distribution, Probab. Theory Related Fields
107 (3) (1997) 383–400.

[39] M. Ledoux, A heat semigroup approach to concentration on the sphere and on
a compact Riemannian manifold, Geom. Funct. Anal. 2 (2) (1992) 221–224.

[40] M. Ledoux, A remark on hypercontractivity and the concentration of measure
phenomenon in a compact Riemannian manifold, Israel J. Math. 69 (3) (1990)
361–370.

[41] Michel Talagrand, A new look at independence, Ann. Probab. 24 (1) (1996) 1–
34.

[42] Gábor Lugosi, Concentration-of-measure inequalities, Lecture notes, 2006,
<http://www.econ.upf.edu/~lugosi/anu.pdf>.

[43] Paul-Marie Samson, Concentration of measure inequalities for Markov chains
and U-mixing processes, Ann. Probab. 28 (1) (2000) 416–461.

[44] K. Marton, A measure concentration inequality for contracting Markov chains,
Geom. Funct. Anal. 6 (3) (1996) 556–571.

[45] Katalin Marton, Measure concentration for a class of random processes,
Probab. Theory Related Fields 110 (3) (1998) 427–439.

[46] C. Houdré, P. Tetali, Concentration of measure for products of Markov kernels
and graph products via functional inequalities, Combin. Probab. Comput. 10
(1) (2001) 1–28.

[47] Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (4) (1975)
1061–1083.

http://math.berkeley.edu/~evans/SDE.course.pdf
http://www.econ.upf.edu/~lugosi/anu.pdf

	Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities
	Introduction
	Concentration-of-measure inequalities applied to uncertainty quantification and certification
	Scenario 1: exact model, single performance measure whose mean is known
	Scenario 2: exact model, multiple performance measures whose mean is known
	Scenario 3: exact model, single performance measure whose mean is unknown
	Scenario 4: exact model, multiple performance measures whose means are unknown
	Scenario 5: inexact model

	Numerical tests
	Test case description
	Uncertainty quantification analysis
	Implosion tests
	Perfect model
	Inexact model


	Summary and discussion
	Acknowledgements
	A brief review of concentration-of-measure inequalities
	References


