Abstract—Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence on fossil fuel and greenhouse gas emission. However, a fleet of EVs with different EV battery charging rate constraints, that is distributed across a smart power grid network requires a coordinated charging schedule to minimize the power generation and EV charging costs. In this paper, we study a joint optimal power flow (OPF) and EV charging problem that augments the OPF problem with charging EVs over time. While the OPF problem is generally nonconvex and nonsmooth, it is shown recently that the OPF problem can be solved optimally for most practical power grid networks using its convex dual problem. Building on this strong duality result, we study a nested optimization approach to decompose the joint OPF and EV charging problem. We characterize the optimal offline EV charging schedule to be a valley-filling profile, which allows us to develop an optimal offline algorithm with computational complexity that is significantly lower than centralized interior point solvers. Furthermore, we propose a decentralized online algorithm that dynamically tracks the valley-filling profile. Our algorithms are evaluated on the IEEE 14 bus system, and the simulations show that the online algorithm performs almost near optimality (<1% relative difference from the offline optimal solution) under different settings.

I. INTRODUCTION

Electric vehicles (EVs) are getting more popular as a long-term vehicular technology to reduce the dependence on fossil fuel and the emission of greenhouse gases. However, with an increase in EV penetration, uncoordinated charging can lead to additional power losses and unacceptable voltage variation that overload the power grid. One way to tackle this problem is to adopt a “smart grid” solution, which allows EVs to communicate with the utility that coordinates their charging activities. Besides preventing grid overload, it has been shown that a coordinated EV charging can improve frequency regulation [1], smooth out the generation intermittency from renewable sources, and increase the efficiency in electricity usage [2], [3]. In this setting, we consider two types of load connected to the power grid network:

- **Price-inelastic load**: The exact power requested by this type of load must be provided. This corresponds to standard loads in a conventional grid such as lighting and heating.
- **Price-elastic load**: The power delivered to this type of load can vary depending on the current cost and a deadline. An example is the charging and recharging of EV batteries in a smart grid.

Considering these two types of loads, the two key problems that we study are: What is the optimal charging schedule for EVs to minimize the total power generation cost and EV charging cost? How to find a near optimal online algorithm if the future price-inelastic load is uncertain (due to the realistic causality constraint)? To formulate these problems, we leverage the well-known optimal power flow (OPF) problem and consider its time-dependent extension.

The solution of the OPF problem optimizes the operation of a power grid, and in general is NP-hard and nonconvex. However, the authors of [4] and [5] recently show that most practical power grid configurations surprisingly exhibit a useful property that guarantees zero duality gap between the OPF problem and its convex dual relaxation, thus making efficient polynomial time algorithm for the OPF problem possible.

To incorporate the time-varying electricity demand and price elastic load, we extend the OPF problem to a time-dependent OPF charging problem that spans over a scheduling period. It consists of a finite number of OPF subproblems coupled with one another by the constraint associated with the price-elastic load, e.g. the EV charging constraints. If a power grid configuration has zero duality gap for the OPF problem, then it has implications on how its time-dependent extension can be solved.

In this paper, we leverage the zero duality gap result in [4] to develop both offline and online algorithms that solve the joint OPF-EV charging optimization problem. To this end, we propose a nested optimization method that decomposes the joint OPF-EV charging problem into separable subproblems, and then solve the decoupled problem using a nonsmooth separable programming approach. The main contribution of the paper are as follows:

1. For time invariant EV charging cost, we characterize the offline optimal solution to be valley-filling. The valley-filling characterization holds true for all network configurations that guarantee the zero duality gap condition in the OPF problem.
2. We propose an offline algorithm that can solve the joint OPF-EV charging problem with a computational complexity lower than centralized interior point solvers.
3. To account for the causality constraint from the price-inelastic load, we propose an online algorithm that dynamically tracks this valley-filling characteristic. The online algorithm can be easily implemented in a decen-
We consider a discrete-time model where the time-slot interval matches the timescale at which the power grid adjusts its power generation. Without loss of generality, the goal is to optimize the operation of the power grid over a time-interval of interest \(t \in \{0, 1, \ldots, T\} \). Thus \(T \) is the scheduling period duration. In practice, \(T \) could be a day and a slot \(t \) could be in the order of minutes. In addition, we assume that the loads are fixed over each time interval \([t, t + 1]\).

A. EV battery model

Suppose that each bus \(k \in \mathcal{N} \) can connect to a price-inelastic load and a price-elastic EV battery. Furthermore, we assume that each EV battery can absorb or inject only active power at an adjustable rate via a smart outlet. In the following, we consider that each bus is connected to only one EV battery. However, our results can be generalized to the case when multiple EV batteries are co-located at the same bus.

Each smart outlet has a charging rate limit at each time \(t \) \([7]\), hence for \(k \in \mathcal{N} \) and \(t \in \{1, 2, \ldots, T - 1\} \),

\[
(\bar{x}[t])_k \leq (\hat{p}[t])_k \leq (\bar{p}[t])_k,
\]

and set \((\bar{x}[t])_k = (\bar{p}[t])_k = 0\) if no EV is connected to bus \(k \) at time \(t \). Let \(B_k, s_k(0) \), and \(\eta_k \) denote the battery capacity, initial state of charge (SOC), and charging efficiency, respectively. By the deadline \(T \), the EV should be fully charged, hence \(\eta_k \sum_{t=1}^{T-1} (\hat{p}[t])_k \Delta t = B_k (1 - s_k(0)) \). Let \(C_k := B_k (1 - s_k(0)) / (\eta_k \Delta t) \), then the EV charging constraint is the following, for all \(k \in \mathcal{N} \)

\[
\sum_{t=1}^{T-1} (\hat{p}[t])_k = c_k.
\]

B. The joint OPF-EV charging problem

Using the EV battery model, we study the following time-dependent joint OPF-EV optimization problem:

\[
\min_{\{W[t], \hat{p}[t]\}} \sum_{t=1}^{T-1} \sum_{k \in \mathcal{N}} f_k((\hat{p}[t])_k) + \sum_{t=1}^{T-1} \sum_{k \in \mathcal{N}} \alpha_k((\hat{p}[t])_k)
\]

s.t.

\[
\begin{align*}
 P_k^\min & \leq (\hat{p}[t])_k & \leq P_k^\max, \\
 Q_k^\min & \leq (q[t])_k & \leq Q_k^\max, \\
 (V_k^\min)^2 \leq W[t]_{kk} & \leq (V_k^\max)^2, \\
 (W[t]_{ll} - W[t]_{lm}) Y_{lm} & \leq S_{lm}^{\max}, \\
 \text{Trace}\{W[t]Y^{*} e_k e_k^{*}\} & = (p[t])_k - ((\hat{p}[t])_k) + (\tilde{q}[t])_k, \\
 W[t] & \geq 0, \\
 \text{rank}(W[t]) & = 1, \\
 \sum_{t=1}^{T-1} \hat{p}[t] & = c, \\
 \bar{r}[t] & \leq \hat{p}[t] \leq \bar{r}[t].
\end{align*}
\]

In the above, the physical limits \(P_k^\min, P_k^\max, Q_k^\min, Q_k^\max, V_k^\min, V_k^\max \) and \(S_{lm}^{\max} \) are given. Note that \(f_k(\cdot) \) is the power generation cost function at bus \(k \), and (3b)–(3h) are standard OPF constraints on power balance, voltage, and thermal limit of transmission lines. In addition, (3i) and (3j) are the EV charging constraints. We can set \(P_k^\min = P_k^\max = Q_k^\max = V_k^\min = 0 \) if there is no generator at bus \(k \). In (3a), we assume that the EV charging cost \(\alpha_k \) is time invariant.

C. Decoupling power dispatching from EV scheduling

While the optimization variables in the joint OPF-EV charging problem (3) are \(W[t] \) and \(\hat{p}[t] \), if the optimal charging decision, \(\hat{p}[t] \) is also known, then all the remaining variables \(W[t] \) become separable in \(t \). Hence, solving the joint OPF-EV charging problem at time \(t \) is the same as solving the OPF problem with the demand given by \(\hat{p}[t] + \tilde{p}[t] \):

\[
F(\hat{p}[t] + \tilde{p}[t]) := \min_{W[t]} \left(\sum_{k \in \mathcal{N}} f_k((\hat{p}[t])_k) \right)
\]

s.t. (3b), (3c), \ldots, (3h).

Since the convex dual problem of the OPF can be efficiently solved [4], we can decouple the power dispatching, i.e., finding
\(W[t] \), from the EV scheduling, i.e., finding \(\hat{p}[t] \), and focus on the following EV scheduling problem:

\[
\min_{\hat{p}[t]} \sum_{t=1}^{T-1} F(\hat{p}[t] + \tilde{p}[t]) + \alpha^T \hat{p}[t] \\
\text{s.t.} \quad \bar{r}[t] \leq \hat{p}[t] \leq \bar{r}[t] \quad \forall t \in [1, T-1],
\]

where \(F(\hat{p}[t] + \tilde{p}[t]) \) returns the optimal value of the OPF problem for a total load demand \((\hat{p}[t] + \tilde{p}[t])\).

III. VALLEY-FILLING ALGORITHMS

A. Optimal Offline Algorithm for EV Scheduling Problem

The following result is a direct consequence of the convexity of the decoupled function in (4).

Theorem 1. If the zero duality gap condition holds in (4), then \(F: \mathbb{R}^{|\mathcal{N}|} \to \mathbb{R} \) is a convex function.

By convexity of \(F \), and suppose that the charging rate constraints are inactive, we can apply Jensen’s inequality and get the following result:

Lemma 1. If \(\forall t, \bar{r}[t] = -\infty, \bar{r}[t] = \infty \), then the EV scheduling problem (5) has an optimal solution \(\hat{p}[1] + \tilde{p}[1] = \hat{p}[2] + \tilde{p}[2] = \ldots = \hat{p}[T-1] + \tilde{p}[T-1] = \hat{p}_E + \tilde{p}_t \), where \(\hat{p}_E = \left(\sum_{t=1}^{T-1} \hat{p}[t] \right) / (T-1) \) and \(\tilde{p}_t = \left(\sum_{t=1}^{T-1} \tilde{p}[t] \right) / (T-1) \).

When the charging rate limits are inactive, the optimal solution is a flat profile, i.e., \(\forall t, \hat{p}[t] + \tilde{p}[t] \) is constant. Next, we consider the case where the charging rate constraints can be active. The optimal solution will then no longer be flat, but valley-filling as defined in the following:

Definition 1. A charging profile is valley-filling, if there exists a unique vector \(\alpha \) such that \(\hat{p}[t] = \left[\alpha - (\hat{p}[t] + \tilde{p}[t]) \right]_+ \), \(\forall t \), where \([x]_+ = \max(l, \min(x, 0)) \).

In the definition, a can be seen as a valley level that \(\hat{p}[t] + \tilde{p}[t] \) tries to reach unless \(\hat{p}[t] \) is constrained by its charging rate limits. A similar definition of valley-filling for EV scheduling can be found in [8]. Interestingly, the valley-filling characterization is reminiscent of the water-filling notion for power allocation to maximize capacity in information theory [9].

The following theorem can be proved by using a substitution argument, i.e., if there is an optimal charging profile that is not valley-filling, then by convexity of \(F \), we can always construct a valley-filling profile with the same or lower objective value.

Theorem 2. For a general convex function \(F(\cdot) \), a valley-filling profile is optimal to the EV Scheduling problem (5).

Corollary 1. A valley-filling profile is a minimizer for any convex function \(F(\cdot) \). For example, let \(F(\hat{p}[t] + \tilde{p}[t]) = (\sum_{k \in \mathcal{N}} ((\hat{p}[t])_k + (\tilde{p}[t])_k))^2 \), we can see that the valley-filling profile is also minimizing the \(l_2 \) norm of the aggregate load. Furthermore, as the total load over time \(\sum_{t=0}^{T-1} \sum_{k \in \mathcal{N}} ((\hat{p}[t])_k + (\tilde{p}[t])_k) \) is a constant, a valley-filling profile is also a load variance minimizing profile.

Next, we show the uniqueness of the valley level \(\alpha \). Note that a must satisfy the following for \(j = 1, \ldots, |\mathcal{N}| \):

\[
\min_{\hat{p}[t]} \{ (\hat{p}[t])_j + (\tilde{r}[t])_j \} \leq a_j \leq \max\{ (\hat{p}[t])_j + (\tilde{r}[t])_j \},
\]

If we look at (6b) component-wise, it is a continuous and strictly increasing function of \(a_j \) for \(a_j \) in the box constraint (6a). Since (6b) is continuous and strictly increasing, we can find a unique \(\alpha \) via the bisection method for the offline case. This is presented in the following algorithm with \(\varepsilon \) as an error tolerance level. We determine \(\alpha \) in a component-wise manner. Each iteration of the while loop in the bisection algorithm will halve the search space for \(a_j \), and therefore the computational complexity of the bisection algorithm is low.

Algorithm 1 Valley Level Bisection

1: \(\forall j, u_j \leftarrow \max\{ (\hat{p}[t])_j + (\tilde{r}[t])_j \}; \)
2: \(l_j \leftarrow \min\{ (\hat{p}[t])_j + (\tilde{r}[t])_j \}; \)
3: for \(j = 1 \rightarrow |\mathcal{N}| \) do
4: \(m_j \leftarrow \frac{1}{2}(u_j + l_j); \)
5: \(\text{if } (\sum_{t=0}^{T-1} m_j - (\hat{p}[t])_j)^2 > c_j \) then
6: \(u_j \leftarrow m_j; \)
7: \(\text{else} \)
8: \(l_j \leftarrow m_j; \)
9: \(\alpha \leftarrow m. \)

Remark 1. Once \(\alpha \) is determined, solving \(\hat{p}[t] \) can be done in \(O(1) \) time. Thus, the joint OPF-EV charging problem (3) reduces from a semidefinite program (SDP) with \(O(|\mathcal{N}| + |\mathcal{L}|)(T-1) \) variables to \((T-1) \) SDPs each with \(O(|\mathcal{N}| + |\mathcal{L}|) \) variables. Since the complexity of SDP interior point algorithms grows superlinearly with respect to the number of variables [10], [11], this decomposition leads to a lower computational complexity.

The offline algorithm for the EV Scheduling problem (5) is shown in the following.

Algorithm 2 Offline EV Scheduling

1: Calculate the valley level \(\alpha \) using Algorithm 1;
2: for \(t = 1 \rightarrow T - 1 \) do
3: \(\hat{p}[t] \leftarrow [\alpha - \hat{p}[t] + \tilde{p}[t]]; \)
4: Solve the OPF problem with the active load demand set to \((\hat{p}[t] + \tilde{p}[t]); \)
B. Online Algorithm for EV Scheduling Problem

Under a causality constraint, we do not assume any knowledge of \(\hat{p}[t] \) until time \(t \). Therefore, we cannot use the previous bisection algorithm to find \(a \) in an online fashion. Instead, we propose an algorithm that estimates the valley level, which is denoted by \(a'[t] \) and adjusts it dynamically in an online fashion. This is illustrated in Algorithm 3.

Algorithm 3 Online EV Scheduling

1. \(a'[1] \leftarrow p_E + \hat{p}_1; \) (\(\hat{p}_1 \) is an estimation of \(p_1 \))
2. for \(t = 1 \rightarrow T - 1 \) do
3. \(\hat{p}[t] \leftarrow [a'[t] - \hat{p}(t)_{\hat{p}[t]}]; \)
4. for \(j = 1 \rightarrow |N| \) do
5. if \((\sum_{k=1}^{t}(\hat{p}[k])_j > c_j - \sum_{l=t+1}^{T-1}(\bar{p}[l])_j - \sum_{k=1}^{t-1}(\hat{p}[k])_j) \) then
6. \(\hat{p}[t] \leftarrow c_j - \sum_{l=t+1}^{T-1}(\bar{p}[l])_j - \sum_{k=1}^{t-1}(\hat{p}[k])_j; \)
7. if \((\sum_{k=1}^{t}(\hat{p}[k])_j < c_j - \sum_{l=t+1}^{T-1}(\bar{p}[l])_j) \) then
8. \(\hat{p}[t] \leftarrow c_j - \sum_{l=t+1}^{T-1}(\bar{p}[l])_j - \sum_{k=1}^{t-1}(\hat{p}[k])_j; \)
9. if \((t < T - 1) \) then
10. \((a'[t + 1])_j \leftarrow (a'[t])_j + \frac{c_j - \sum_{l=t+1}^{T-1}(\bar{p}[l])_j - \sum_{k=1}^{t-1}(\hat{p}[k])_j}{T - 1}; \)
11. Solve the OPF problem with the active load demand set to \((\hat{p}[t] + \hat{p}[t]); \)

For Algorithm 3, line 1 initializes the first estimation of \(a \). From Lemma 1, the ideal valley level is indeed \((p_E + \hat{p}_1) \) if the charging rate constraints are not active. We know the value of \(p_E \), which is just the charging target \(c \) divided by time \((T - 1) \), but the value of \(\hat{p}_1 \) has to be estimated, possibly by learning from historical record of the price-inelastic load. Line 3 follows the valley-filling characterization outlined in the previous section. However, as the valley level estimation is not perfect, we need to take extra steps from line 5 to line 8 to ensure the feasibility of the solution. The rationale for line 5 to 6 is to ensure that the charging profile \((\hat{p}[1], \ldots, \hat{p}[T - 1]) \) will not overcharge the EV batteries at any point in time. Roughly speaking, it means that “if from this instance on, even charging at the minimal rate will eventually overcharge the EV batteries, then slow down the current charging rate.” Line 7 to 8 are based on similar rationale and this prevents undercharging. Lastly, the estimation of the valley level is updated from line 9 to 10.

Remark 2. Algorithm 3 can be efficiently implemented in a decentralized manner: at the beginning of iteration \(t \), the utility broadcasts the estimated valley level \(a'[t] \), and each EV runs line 3 to line 8 and replies with its charging power. The utility collects \(\hat{p}[t] \) and runs line 9 to line 10 to calculate the next estimated valley level \(a'[t + 1] \).

The following result demonstrates the feasibility of the output from Algorithm 3.

Theorem 3. If the charging rate constraints \((\bar{p}[1], \ldots, \bar{p}[T - 1]) \) and \((\bar{p}[1], \ldots, \bar{p}[T - 1]) \) permit a feasible solution, then \((\hat{p}[1], \ldots, \hat{p}[T - 1]) \) obtained from Algorithm 3 is a feasible solution to (5).
Consider the IEEE 14-bus system depicted in Fig. 2, where the circuit specifications and the physical limits are given in the library of the toolbox MATPOWER [13]. The system has five generators connected to buses 1, 2, 3, 6, and 8. Assume that each of the non-generator bus 4, 5, 7, 9, 10, 11, 12, 13, and 14 is connected to an EV load. Enumerate the batteries of these vehicles as 1, 2, . . . , 9. Consider that all the batteries are plugged in at time t = 1 and must be fully charged by time T = 25, the charging rate of each battery can be controlled only at the discrete time instants 1, 2, . . . , 24.

Aside from the elastic EV loads, suppose that each bus k ∈ {1, 2, . . . , 14} is connected to a price-inelastic load as well, which varies at the discrete times 1, 2, . . . , 24 according to

\[
(p[t])_k = \frac{l(t) \times P_k}{\sum_{t=1}^{24} l(t)}, \quad t = 1, 2, \ldots, 24,
\]

where \((P_1, \ldots, P_{14})\) is equal to the load profile given in the library of the toolbox MATPOWER for the IEEE 14-bus system, \(l(t)\) follows the average residential load in the service area of SCE at different times of the day (cf. SCE website [12]), and \(\sum_{t=1}^{24} l(t)\) is the total load of each bus k for the time horizon [1, 24]. The goal is to optimize the controllable parameters of the power grid network such as the active power supplied by a generator or the charging rate of a battery, which can be modiﬁed only at the time instants 1, 2, . . . , 24. To this end, we aim to minimize the following cost function:

\[
\sum_{t=1}^{24} \sum_{k \in \mathcal{N}} (\hat{p}[t])_k + \sum_{t=1}^{24} \sum_{k \in \mathcal{N}} \alpha(\hat{p}[t])_k,
\]

This cost function has the following features:

- The generation cost is the total active power generated by all the generators over the time horizon [1, 24].
- The pricing vector of each battery is assumed to be independent of its bus number and invariant over time, and we let \(\alpha = 2\) in the following.

IV. Numerical Results

In this case, we vary the EV load to be from 10% to 100% of the price-inelastic load, and compute the percentage difference given by \((p_{\text{online}} - p_{\text{offline}}^*)/p_{\text{offline}}^* \times 100\). where \(p_{\text{offline}}^*\) is the optimal value of (8) obtained using Algorithm 2 and \(p_{\text{online}}^*\) is the result from the Algorithm 3. Fig. 3 shows the simulation results using three different 24-hour load proﬁles taken randomly from the SCE residential load data [12]. Firstly, Algorithm 3 is able to produce charging proﬁles that almost optimally solve the joint OPF-EV charging problem (3). From the three randomly chosen load proﬁle, the worst performance is less than 0.016% different from the optimal value. Secondly, we can see all three plots go up initially and eventually decrease. This is because at the beginning, the EV load is relatively insigniﬁcant, and thus Algorithm 2 and 3 perform almost the same as there is little to optimize. As the EV load becomes more signiﬁcant, the performance gap grows because Algorithm 3 lacks perfect knowledge. However, a higher EV penetration will also lead to larger room for optimization. Hence, the performance gap decreases and eventually approaches zero as the EV penetration increases.

B. Effect of online estimation

In this example, the EV charging proﬁle of a working example is illustrated. The price-inelastic load variation is based on the residential load proﬁle from 15:00 on Aug. 27th to 14:00 on Aug. 28th (taken from the SCE website [12]). The EV penetration level is set to 50%, and we assume that there is 10% error in over estimating the initial valley level for...
Algorithm 3, i.e., $\alpha'[1] = 1.1 \times a$. Fig. 4a and Fig. 4b show the charging profile of one of the EVs produced by Algorithm 2 and Algorithm 3 respectively in this setting. We can make several observations from Fig. 4a and Fig. 4b:

1) An over-estimation of the initial valley level $\alpha'[1]$ causes Algorithm 3 to charge the EV batteries faster than optimum. As a result, the EV battery at bus 7 is fully charged two time slots before the deadline.

2) The result of the Algorithm 3 is still very close to the optimal value, as the percentage difference $(p_{\text{online}} - p_{\text{offline}})/p_{\text{offline}} \times 100\% = 0.0627\%$. Hence, in terms of power loss minimization, Algorithm 3 performs nearly optimally at this setting.

![Comparison of EV charging profile](image)

(a) Offline solution for EV at bus 7
(b) Online solution for EV at bus 7

Fig. 4: Comparison of EV charging profile for Algorithm 2 and Algorithm 3, $p_{\text{offline}} = 79.5348\text{pu}$, $p_{\text{online}} = 79.5847\text{pu}$.

C. Runtime comparisons

In this section, we compare the computational time of the SDP optimization approach that uses interior point algorithm to solve (3) in [15] with that of Algorithms 2 and 3. The simulation is run on the IEEE 14 bus system for $T = 6, 12, 24, 48$ respectively. The computational time measured is the average of running the respective algorithm for ten times.

<table>
<thead>
<tr>
<th>T</th>
<th>SDP Optimization</th>
<th>Algorithm 2</th>
<th>Algorithm 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.0 s</td>
<td>5.8 s</td>
<td>5.9 s</td>
</tr>
<tr>
<td>12</td>
<td>13.1 s</td>
<td>11.6 s</td>
<td>11.6 s</td>
</tr>
<tr>
<td>24</td>
<td>31.8 s</td>
<td>22.9 s</td>
<td>22.8 s</td>
</tr>
<tr>
<td>48</td>
<td>84.0 s</td>
<td>45.9 s</td>
<td>45.7 s</td>
</tr>
<tr>
<td>96</td>
<td>262.6 s</td>
<td>87.5 s</td>
<td>87.4 s</td>
</tr>
</tbody>
</table>

From Table II, we see that the time complexity of Algorithm 2 and Algorithm 3 are comparable. Also, both Algorithm 2 and Algorithm 3 have lower time complexity as compared to the SDP optimization method in [15], and the saving in computational time from using Algorithm 2 and Algorithm 3 is more significant as T increases. This demonstrates the advantage of the decoupling approach to solve the joint OPF-EV charging problem.

V. CONCLUSION

We studied a time-dependent OPF charging problem that optimized jointly the operation of the power grid and the charging activity of electric vehicles. We proved that this problem is convex with respect to the total electricity demand, characterized the valley-filling charging profile to be optimal under constant electricity price, and proposed a decentralized online algorithm that followed this characterization. At each iteration of the online algorithm, each electric vehicle calculated its own charging rate according to the valley level broadcast by the utility, and the utility guided their charging rate by updating the valley level. Simulation results showed that the online algorithm performed almost optimally in minimizing power loss, and the optimal value of the online algorithm approached to that of the offline solution as the penetration of EVs increases.

In this paper, the online algorithm considers a time invariant pricing scheme. That is, the nodal electricity price remains constant throughout the scheduling period. However, when there are renewable sources, electricity prices can vary in real time. In addition, electric vehicles may require charging at different times in a more dynamical setting. Incorporating real-time pricing, modeling vehicle arrivals as random events and accounting for the additional uncertainties with these extensions are interesting directions for future research.

VI. ACKNOWLEDGEMENT

The authors gratefully acknowledge helpful discussions with Steven H. Low at Caltech.

REFERENCES

1We used MATLAB version 7.6.0.324 (R2008a). The programs were run on an Intel Xeon CPU 2.80GHz machine running on Windows 7 OS.