i CS 11 C track: lecture 8

= Last week: hash tables, C preprocessor

= This week:
= Other integral types: short, long, unsigned
= bitwise operators
» switch

« 'fun" assignment: virtual machine

i Integral types (1)

= Usually use int to represent integers

= But many other integral (integer-like) types

exist:
short

long

char

unsigned int
unsigned short
unsigned long
unsigned char

i Integral types (2)

= Two basic things that can vary:
= unsigned VS. signed (default)

= length: char, short, int, long
= Note that char is an integral type
= Can always treat char as an 8-bit integer
= Two basic questions:
= Why use unsigned types?
= When should we use shorter/longer integral types?

i Integral types (2)

= Why use unsigned types?

= may be used for something that can't be negative
= €.g. a length
= gives you 2x the range due to last bit
= may want to use it as an array of bits
= SO Sign is irrelevant
= C has lots of bitwise operators

i Integral types (3)

= When should we use shorter/longer integral
types?

= to save space when we know range is limited
= when we know the exact number of bits we need

= char always 8 bits

= short usually 16 bits

= int usually 32 bits (but sometimes 64)
= long usually 32 bits (but sometimes 64)

= guaranteed: length(char) < length(short)
<= length (int) <= length(1ong)

i Integral types (4)

= unsigned by itself means unsigned int

= Similarly it's legal to say
= short int

= unsigned short int
= long int
= unsigned long int
= but usually we shorten by leaving off the int

i Bitwise operators (1)

= You don't need to know this for this lab!

= But a well-rounded C programmer should know
this anyway...

= There are several "bitwise operators" that do
logical operations on integral types bit-by-bit
= OR (|) (note difference from logical or: | |)
= AND (&) (note difference from logical and: &&)
= XOR(*)
= NOT (~) (note difference from logical not: !)

i Bitwise operators (2)

= bitwise OR (|) and AND (&) work bit-by-
bit

= 01110001 | 10101010 ="7
= 11111011

= 01110001 & 10101010 =7
= 00100000

= NOTE: They don't do short-circuit evaluation
like logical OR (] |) and AND (&&) do

= because that wouldn't make sense

i Bitwise operators (3)

= bitwise XOR (#) also works bit-by-bit
= 01110001 ~ 10101010 ="
= 11011011

= Bit is set if one of the operand's bits is 1
and the other is 0 (not both 1s or both
0s)

i Bitwise operators (4)

= bitwise NOT (~) also works bit-by-bit

m ~10101010 =7
= 01010101 (duh)

s Substitute O for 1 and 1 for O

i Bitwise operators (5)

= WO other bitwise operators:
= bitwise left shift (<<)
= bitwise right shift (>>)
= 00001111 << 2 ="7
= 00111100
= 00111100 >> 2 ="7
= 00001111

= Can use to multiply/divide by powers of 2

i switch (1)

= Minor language feature: switch

= Used to choose from multiple integer-valued
possibilities
s Cleaner than a series of if/else if/else

statements

switch (2)

= Common coding pattern:
void do_stuff(int 1) {
if (i == 0) {
printf ("zero\n") ;
} else if (i == 1) {
printf ("one\n") ;
} else {

printf ("something else\n");

switch (3)

void do stuff(int i) ({
switch (1) {

case O:
printf ("zero\n") ;
break;

case 1:
printf ("one\n") ;
break;

default:
printf ("something else\n");
break;

i switch (3)

= switch statements more convenient than
if/else if/else for many integer-valued
Cases
= but not as general -- can only be used on integral
types (int, char, etc.)
= Lab 8 code contains one switch statement that
you don't have to write
= but you should understand it anyway

switch (4)

switch (1) {

case 0: /* Start here if i == 0 */
printf ("zero\n") ;
break; /* Exit switch here. */
/* other cases: 1, 2, 42 etc. */

default: /* if no case matches i */
printf ("no match\n") ;
break;

i switch (5) -- fallthrough

switch (1) {
case 0: /* Start here if i == 0 */
printf ("zero\n") ;
/* oops, forgot the break */
case 1: /* "fall through" from case 0 */
printf ("one\n") ;
break;

}
= Now, if i is O then prints "zero" and also "one"!

= Sometimes this is desired, but usually just a bug

i Lab 8: Virtual machine (1)

= Where have you heard the term "virtual
machine" before?

= Java virtual machine
= A "virtual microprocessor”

= You define simple instructions for a
mythical computer's assembly language

= Program interprets them

i Virtual machine (2)

= Our virtual machine is very simple
= Only data type will be int

s All instructions will act on ints

= Instructions include
= arithmetic
= control flow
= Memory access
= printing

i Virtual machine (3)

= First need to define data structures for
our virtual microprocessor:
= instruction memory to hold instructions of
program
= registers to hold temporary results of
computations

= Stack to hold results that are being operated
on directly

i Virtual machine (4)

= Instruction memory contains 216 locations
m = 65536
= Each location is a single byte (unsigned char)
= How many bits do we need to represent all
possible locations in instruction memory?
| 16
= Can use an unsigned short for this
= Called the "instruction pointer” or IP
= chQn't' confuse with C's pointers! Not the same
ing!

= It's just an index into the instruction memory

i Virtual machine (5)

= 16 registers (temporary storage locations)

= How many bits do we need to represent all
possible locations in registers?

= 4
= Can use an unsigned char for this
= Registers are just an array of 16 ints

i Virtual machine (6)

= Stack which is 256 deep

= How many bits do we need to represent
all possible locations in stack?
= 8

= Can use an unsigned char for this

=« called the "stack pointer" or SP

= also not a pointer in the C sense, just an
index

= Stack is just an array of 256 ints

i Push and pop (1)

= Stack has two operations: push and pop

= push puts a new value onto the stack

= pop removes a value from the stack

= Have to adjust stack pointer (SP) after push
and pop

= Stack pointer "points to" first UNUSED element
of stack

= starts at zero for empty stack

= Top filled element in stack is "top of stack"
(TOS)

i Push and pop (2)

Stack starts off
empty;

SP points to first
unused location

sP—»

stack

i Push and pop (3)

push 10 onto
stack

SpP —»

TOS 10

stack

i Push and pop (4)

push 20 onto

—
SP stack

TOS 20

10

stack

i Push and pop (5)

pop stack;

20 still there,

overwritten next

push

TOS 10

stack

i Push and pop (6)

push 30 onto

—_—
SP stack;

TOS 30 old value (20)
gets overwritten

10

stack

i Push and pop (7)

pop twice;
stack is now
30 "empty"” again
Sp —> 10

stack

i VM instruction set (1)

= VM instructions are often called
"bytecode”

= because they fit into a byte (8 bits)
= represented as an unsigned char
= Our VM has 14 different instructions

= some take operands (some number of bytes)
= Some don't

i VM instruction set (2)

= Instructions:
=« NOP (0x00) — does nothing ("No OPeration")

= PUSH (0x01) — PUSH <n> pushes the integer
<n> onto the stack

= POP (0x02) — removes the top element on the
stack

= LOAD (0x03) — LOAD <r> pushes contents of
register <r> to the top of the stack

= STORE (0x04) — STORE <r> pops top of stack
and puts contents into register <r>

Sp —>

stack

42
0 1
registers
load 0

i Load (2)

Sp —»

TOS

42

stack

42
0 1
registers
load O;
42 pushed onto
stack

Sp —»

42

stack

42
0 1
registers
store 1

i Store (2)

SP—»

42

stack

42 42
0 1
registers
store 1;

topmost element
of stack copied
into register 1;
stack popped

i VM instruction set (3)

= Control flow instructions:
= JMP (0x05) — JMP <i> sets the instruction
pointer (IP) to <i> ("jump")
= JZ (0x06) — JZ <i> sets IP to <i> only if the

top value on the stack (TOS) is zero; also
pops stack ("jump if zero")

= JNZ (0x07) — INZ <i> sets IP to <i> only if
the TOS is not zero; also pops stack ("jump
if nonzero")

i VM instruction set (4)

= Arithmetic instructions:

= ADD (0x08) — pops the top two entries in the
stack, adds them, pushes result back

= SUB (0x09) — pops the top two entries in the
stack, subtracts them, pushes result back

=« Watch order! Should be S2 — S1 on TOS
= MUL (0x0a) and DIV (0x0b) defined similarly

Sp —»

TOS

31

42

stack

sub
(before)

SP —>

TOS

31

11

stack

sub
(after)

i VM instruction set (5)

s Other instructions:

= PRINT (0x0c) — prints the TOS to stdout and
pop TOS

= STOP (0x0d) — terminates the virtual program

i Example program (1)

= Program to generate factorial of 10 (10!)

= Which means...?
s I0X9X8x7x6x5x4x3x2x1
= = 3628800

= But we'll write a program in our virtual
machine's language

i Example program (2)

= Register 0 will contain the count
= Register 1 will contain the running total
= Register 0 will start off at 10

= each step, will decrease by 1

= Register 1 will start off at 1
= each step, will be multiplied by register 0 contents

= Continue until register 0 has 0
= result is in register 1

i Example program (3)

/* Initialize the registers. */

push 10
store 0

push 1 /* Initialize result. */
store 1

/* continued on next slide... */

Sp —»

TOS

10

stack

1
registers

i store O

10

SpP—

10

stack

1
registers

10

SpP —

TOS

stack

1
registers

i store 1

SpP—

stack

10 1
0 1
registers

i Example program (4)

/* Put counter wvalue on stack.

* If it's 0, we're done; register 1
* contains the final value. */

1 load O /* Load current count. */
jz 2 /* if 0, jump to 2 */

/* 1,2 are "labels"; represent the

* Jocation of instructions which are
targets of jmp, jz, jnz operations. */

i Example program (5)

/* result = result * count */
load 1
load O
mul
store 1
/* count = count - 1 */
load O
push 1
sub
store 0

i load 1

sp —>

TOS

stack

10 1
0 1
registers

i load O

SP—>

TOS

10

stack

10 1
0 1
registers

sp —»

TOS

10

10

stack

10 1
0 1
registers

i store 1

10

SP—»

10

stack

10 10
0 1
registers

i load O

SP—»

10

TOS

10

stack

10 10
0 1
registers

i push 1

SpP—

TOS

10

stack

10 10
0 1
registers

i sub

SP—»

TOS

stack

10 10
0 1
registers

i store O

o 10
0 1
registers
etc. ...
1
SP— 9

stack

i Repeating...

= Registers start off as 10, 1
= Then become 9, 10

= 8, 10*%9

= /, 10*9*8

= 0, 10!

= ... and we're done.

i Example program (6)

/* Go back and loop until done. */
Jmp 1

/* When we get here, we're done. */

2 load 1
print
stop

/* End of program. */

i Lab 8

= Program is given to you
= You need to write the byte-code interpreter

= Most of code is supplied; have to fill in the guts
of the instruction-processing code

= Looks complicated but actually is pretty easy

= Watch out for error checking e.g.
= popping an empty stack
= pushing to a full stack
= accessing non-existent register or instruction

i Lab 8 -- error checking

= One subtlety with stack pushes

= If stack pointer is at 255, and you push onto
stack, what is the new stack pointer value?
= 0
= (256 is too large for an unsigned char)

= But this is clearly incorrect
= How to detect "stack overflow"?

= Solution: don't allow overflow!
= If stack pointer is 255, a push is invalid

i Finally...

= Hope you enjoyed the course!

= If so, consider taking

= other CS 11 tracks
« (C++, Java, advanced C++/Java)

= CS 11 project track

=« CS 24

« CS 2 for larger-scale software projects
= CS 3 for larger-scale software projects in C

