
CS 11 C track: lecture 8

n Last week: hash tables, C preprocessor

n This week:
n Other integral types: short, long, unsigned

n bitwise operators

n switch

n "fun" assignment: virtual machine

Integral types (1)
n Usually use int to represent integers
n But many other integral (integer-like) types

exist:
n short
n long
n char
n unsigned int
n unsigned short
n unsigned long
n unsigned char

Integral types (2)
n Two basic things that can vary:

n unsigned vs. signed (default)
n length: char, short, int, long

n Note that char is an integral type
n can always treat char as an 8-bit integer

n Two basic questions:
n Why use unsigned types?
n When should we use shorter/longer integral types?

Integral types (2)
n Why use unsigned types?

n may be used for something that can't be negative
n e.g. a length
n gives you 2x the range due to last bit

n may want to use it as an array of bits
n so sign is irrelevant
n C has lots of bitwise operators

Integral types (3)
n When should we use shorter/longer integral

types?
n to save space when we know range is limited
n when we know the exact number of bits we need

n char always 8 bits
n short usually 16 bits
n int usually 32 bits (but sometimes 64)
n long usually 32 bits (but sometimes 64)
n guaranteed: length(char) < length(short)

<= length (int) <= length(long)

Integral types (4)

n unsigned by itself means unsigned int
n Similarly it's legal to say

n short int
n unsigned short int
n long int
n unsigned long int

n but usually we shorten by leaving off the int

Bitwise operators (1)
n You don't need to know this for this lab!
n But a well-rounded C programmer should know

this anyway...
n There are several "bitwise operators" that do

logical operations on integral types bit-by-bit
n OR (|) (note difference from logical or: ||)
n AND (&) (note difference from logical and: &&)
n XOR (^)
n NOT (~) (note difference from logical not: !)

Bitwise operators (2)
n bitwise OR (|) and AND (&) work bit-by-

bit
n 01110001 | 10101010 = ?

n 11111011
n 01110001 & 10101010 = ?

n 00100000
n NOTE: They don't do short-circuit evaluation

like logical OR (||) and AND (&&) do
n because that wouldn't make sense

Bitwise operators (3)
n bitwise XOR (^) also works bit-by-bit
n 01110001 ^ 10101010 = ?

n 11011011
n Bit is set if one of the operand's bits is 1

and the other is 0 (not both 1s or both
0s)

Bitwise operators (4)
n bitwise NOT (~) also works bit-by-bit
n ~10101010 = ?

n 01010101 (duh)
n Substitute 0 for 1 and 1 for 0

Bitwise operators (5)

n Two other bitwise operators:
n bitwise left shift (<<)
n bitwise right shift (>>)

n 00001111 << 2 = ?
n 00111100

n 00111100 >> 2 = ?
n 00001111

n Can use to multiply/divide by powers of 2

switch (1)

n Minor language feature: switch

n Used to choose from multiple integer-valued
possibilities

n Cleaner than a series of if/else if/else
statements

switch (2)

n Common coding pattern:
void do_stuff(int i) {

if (i == 0) {

printf("zero\n");
} else if (i == 1) {

printf("one\n");
} else {

printf("something else\n");

}
}

switch (3)
void do_stuff(int i) {

switch (i) {
case 0:

printf("zero\n");
break;

case 1:
printf("one\n");
break;

default:
printf("something else\n");
break;

}
}

switch (3)
n switch statements more convenient than
if/else if/else for many integer-valued
cases
n but not as general -- can only be used on integral

types (int, char, etc.)

n Lab 8 code contains one switch statement that
you don't have to write
n but you should understand it anyway

switch (4)
switch (i) {

case 0: /* Start here if i == 0 */
printf("zero\n");
break; /* Exit switch here. */

... /* other cases: 1, 2, 42 etc. */
default: /* if no case matches i */

printf("no match\n");
break;

}

switch (5) -- fallthrough
switch (i) {

case 0: /* Start here if i == 0 */
printf("zero\n");
/* oops, forgot the break */

case 1: /* "fall through" from case 0 */
printf("one\n");
break;

}

n Now, if i is 0 then prints "zero" and also "one"!
n Sometimes this is desired, but usually just a bug

Lab 8: Virtual machine (1)

n Where have you heard the term "virtual
machine" before?
n Java virtual machine

n A "virtual microprocessor"
n You define simple instructions for a

mythical computer's assembly language
n Program interprets them

Virtual machine (2)

n Our virtual machine is very simple
n Only data type will be int
n All instructions will act on ints
n Instructions include

n arithmetic
n control flow
n memory access
n printing

Virtual machine (3)

n First need to define data structures for
our virtual microprocessor:
n instruction memory to hold instructions of

program
n registers to hold temporary results of

computations
n stack to hold results that are being operated

on directly

Virtual machine (4)
n Instruction memory contains 216 locations

n = 65536
n Each location is a single byte (unsigned char)
n How many bits do we need to represent all

possible locations in instruction memory?
n 16

n Can use an unsigned short for this
n Called the "instruction pointer" or IP

n Don't confuse with C's pointers! Not the same
thing!
n It's just an index into the instruction memory

Virtual machine (5)

n 16 registers (temporary storage locations)
n How many bits do we need to represent all

possible locations in registers?
n 4

n Can use an unsigned char for this
n Registers are just an array of 16 ints

Virtual machine (6)
n Stack which is 256 deep
n How many bits do we need to represent

all possible locations in stack?
n 8

n Can use an unsigned char for this
n called the "stack pointer" or SP
n also not a pointer in the C sense, just an

index
n Stack is just an array of 256 ints

Push and pop (1)
n Stack has two operations: push and pop
n push puts a new value onto the stack
n pop removes a value from the stack
n Have to adjust stack pointer (SP) after push

and pop
n Stack pointer "points to" first UNUSED element

of stack
n starts at zero for empty stack

n Top filled element in stack is "top of stack"
(TOS)

Push and pop (2)

SP

Stack starts off
empty;

SP points to first
unused location

stack

Push and pop (3)

SP

push 10 onto
stack

10

stack

TOS

Push and pop (4)

SP push 20 onto
stack

10

20

stack

TOS

Push and pop (5)

SP

pop stack;
20 still there,

but will be
overwritten next

push
10

20

stack

TOS

Push and pop (6)

SP push 30 onto
stack;

old value (20)
gets overwritten

10

30

stack

TOS

Push and pop (7)

SP

pop twice;
stack is now

"empty" again

10

30

stack

VM instruction set (1)

n VM instructions are often called
"bytecode"
n because they fit into a byte (8 bits)
n represented as an unsigned char

n Our VM has 14 different instructions
n some take operands (some number of bytes)
n some don't

VM instruction set (2)
n Instructions:

n NOP (0x00) – does nothing ("No OPeration")
n PUSH (0x01) – PUSH <n> pushes the integer

<n> onto the stack
n POP (0x02) – removes the top element on the

stack
n LOAD (0x03) – LOAD <r> pushes contents of

register <r> to the top of the stack
n STORE (0x04) – STORE <r> pops top of stack

and puts contents into register <r>

Load (1)

SP

load 0

registers

....42

stack

0 1

Load (2)

SP
load 0;

42 pushed onto
stack

registers

....42

42

stack

0 1

TOS

Store (1)

SP
store 1

registers

....42

42

stack

0 1

Store (2)

SP

store 1;
topmost element
of stack copied
into register 1;
stack popped

registers

....42

42

42

stack

0 1

VM instruction set (3)
n Control flow instructions:

n JMP (0x05) – JMP <i> sets the instruction
pointer (IP) to <i> ("jump")

n JZ (0x06) – JZ <i> sets IP to <i> only if the
top value on the stack (TOS) is zero; also
pops stack ("jump if zero")

n JNZ (0x07) – JNZ <i> sets IP to <i> only if
the TOS is not zero; also pops stack ("jump
if nonzero")

VM instruction set (4)

n Arithmetic instructions:
n ADD (0x08) – pops the top two entries in the

stack, adds them, pushes result back
n SUB (0x09) – pops the top two entries in the

stack, subtracts them, pushes result back
n Watch order! Should be S2 – S1 on TOS

n MUL (0x0a) and DIV (0x0b) defined similarly

Sub (1)

SP

sub
(before)

42

31

stack

TOS

Sub (2)

SP
sub
(after)

11

31

stack

TOS

VM instruction set (5)

n Other instructions:
n PRINT (0x0c) – prints the TOS to stdout and

pop TOS
n STOP (0x0d) – terminates the virtual program

Example program (1)

n Program to generate factorial of 10 (10!)
n Which means...?

n 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1
n = 3628800

n But we'll write a program in our virtual
machine's language

Example program (2)

n Register 0 will contain the count
n Register 1 will contain the running total
n Register 0 will start off at 10

n each step, will decrease by 1
n Register 1 will start off at 1

n each step, will be multiplied by register 0 contents
n Continue until register 0 has 0

n result is in register 1

Example program (3)

/* Initialize the registers. */

push 10
store 0
push 1 /* Initialize result. */
store 1

/* continued on next slide... */

push 10

SP

registers

....

10

stack

0 1

TOS

store 0

SP

registers

....

10

stack

10

0 1

push 1

SP

registers

....

1

stack

10

0 1

TOS

store 1

SP

registers

....

1

stack

10 1

0 1

Example program (4)
/* Put counter value on stack.
* If it's 0, we're done; register 1
* contains the final value. */

1 load 0 /* Load current count. */
jz 2 /* if 0, jump to 2 */

/* 1,2 are "labels"; represent the
* location of instructions which are
targets of jmp, jz, jnz operations. */

Example program (5)
/* result = result * count */
load 1
load 0
mul
store 1

/* count = count - 1 */
load 0
push 1
sub
store 0

load 1

SP

registers

....

1

stack

10 1

0 1

TOS

load 0

SP
registers

....

1

stack

10 1

10

0 1

TOS

mul

SP

registers

....

10

stack

10 1

10

0 1

TOS

store 1

SP

registers

....

10

stack

10 10

10

0 1

load 0

SP

registers

....

10

stack

10 10

10

0 1

TOS

push 1

SP
registers

....

10

stack

10 10

1

0 1

TOS

sub

SP

registers

....

9

stack

10 10

1

0 1

TOS

store 0

SP

registers

....

9

stack

9 10

1
etc. ...

0 1

Repeating...
n Registers start off as 10, 1
n Then become 9, 10
n 8, 10*9
n 7, 10*9*8
n ...
n 0, 10!
n ... and we're done.

Example program (6)
/* Go back and loop until done. */

jmp 1

/* When we get here, we're done. */

2 load 1
print
stop

/* End of program. */

Lab 8
n Program is given to you
n You need to write the byte-code interpreter
n Most of code is supplied; have to fill in the guts

of the instruction-processing code
n Looks complicated but actually is pretty easy
n Watch out for error checking e.g.

n popping an empty stack
n pushing to a full stack
n accessing non-existent register or instruction

Lab 8 -- error checking
n One subtlety with stack pushes
n If stack pointer is at 255, and you push onto

stack, what is the new stack pointer value?
n 0
n (256 is too large for an unsigned char)

n But this is clearly incorrect
n How to detect "stack overflow"?
n Solution: don't allow overflow!

n If stack pointer is 255, a push is invalid

Finally...
n Hope you enjoyed the course!
n If so, consider taking

n other CS 11 tracks
n (C++, Java, advanced C++/Java)

n CS 11 project track
n CS 24
n CS 2 for larger-scale software projects
n CS 3 for larger-scale software projects in C

