
CS 11 C track: lecture 7

n  Last week: structs, typedef, linked lists

n  This week:

n  hash tables

n  more on the C preprocessor

n  extern

n  const

Hash tables (1)

n  Data structures we've seen so far:

n  arrays

n  structs

n  linked lists

Hash tables (2)

n  Hash tables are a new data structure

n  Like an array indexed with strings e.g.

n  height["Jim"] = 6; /* not C code */

n  Very fast lookup (O(1) i.e. constant time)

n  Flexible: can add/delete elements easily

Hash tables (3)

n  Want to associate a string (key) with a value

n  Generate an integer hash value from the string key

n  different keys should generate different hash values

n  Use hash value as index into an array of linked lists

n  array length is large (128 in lab 7)

n  array values start off as NULL pointers (empty lists)

n  no linked list should ever get larger than a few elements

Hash tables (4)

. . .

“Jim” 119 (hash value)

6

height

“Jim”key
value
next (NULL)

Note on hash table structure

n  A hash table is an array of linked lists

n  The linked lists all start off as empty lists

n  Empty lists are represented as the NULL pointer

n  So: the array of linked lists is actually an array of pointers to

linked lists (pointers to nodes in a linked list)

n  If you use an array of nodes, your program is broken!

Hash tables (5)

n  Generating the hash value from the string
n  Many ways to do it
n  We choose a particularly simple (and lame) way
n  Treat the string as an array of chars
n  Treat each char as a small integer (0 - 127)

n  C allows this
n  Sum up the values of all the characters
n  Take the sum mod 128 (the array length)
n  Gives an integer in the range 0-127

n  that's our index into the array

Hash tables (6)

n  Three things we can do with a hash table:

n  Look up the value corresponding to a particular key

n  Change the value corresponding to an existing key in

the table

n  Add a new key/value pair to the table

Hash tables (7)

n  How to find the value given the key
n  compute hash value to get array index

n  find array location

n  if NULL, not there (return "not found" value)

n  if not NULL, search for key in linked list

n  if found, return node value

n  if not found, not there (return "not found" value)

Hash tables (8)

n  How to change the value corresponding to a given key
(or add a new key/value pair):
n  compute hash value to get array index
n  find array location
n  if NULL, add node with key/value pair
n  if not NULL, search for key in linked list

n  if found, change node value
n  if not found, add new node to list

n  (anywhere in list!)

Hash tables (9)

n  Adding nodes to linked list
n  nodes in linked list not in any order

n  so can add to any place in list

n  most people try to add to the end of the list

n  actually easier to add to beginning of list

n  either way, have to set some pointer values to
different values

Hash tables (10)

n  Hash table itself is not the array of linked lists
n  It's a struct which contains that array

n  Easy to make mistakes with this

n  Think of it as a box containing the array

n  Why use a struct if all it contains is one array?
n  Practice in handling more complex data structures

n  Real hash tables would have more fields e.g. length of
array to permit resizing of the array

Lab 7

n  Pretty routine application of hash tables

n  One likely problem involving a memory

leak

n  May be hard to figure out where to free

memory

C preprocessor: #ifdef (1)

n  Sometimes want to conditionally compile code

n  If some condition met, compile this code

n  else do nothing, or do something else

n  Examples:

n  debugging code

n  compiling on different platforms

C preprocessor: #ifdef (2)

n  Debugging code:

#define DEBUG

 int value = 10;

#ifdef DEBUG

 printf("value = %d\n", value);

#endif

C preprocessor: #ifdef (3)

n  Can leave out #define and choose at compile time:

% gcc -DDEBUG foo.c -o foo

n  -D option means to Define DEBUG

n  This makes the debugging code compile

n  Otherwise it won’t compile

n  Usually best to do it this way

C preprocessor: #else

n  Also use #ifdef/#else for portability e.g.:

#ifdef WINDOWS

#include <windows.h>

#else

#include <X11/X.h>

#endif

C preprocessor: #ifndef (1)

n  #ifndef includes code if something is not

defined

n  assert is defined using #ifndef e.g.

assert(i == 0); /* expands to: */

#ifndef NDEBUG

 if (!(i == 0)) { abort(); }

#endif

C preprocessor: #ifndef (2)

n  Recall: to switch off assertions, define NDEBUG:

% gcc -DNDEBUG foo.c -o foo

n  Then all assertions are removed from code during

compilation

n  Useful after code has been debugged

C preprocessor: #if (1)

n  Can also test integer values with #if/#elif/... :

#if REVISION == 1

/* revision 1 code */

#elif REVISION == 2

/* revision 2 code */

#else

/* generic code */

#endif

C preprocessor: #if (2)

n  Use #if 0 to comment out large blocks of

code:

#if 0

/* This doesn’t get compiled. */

#endif

n  Useful because can't nest /* */ comments

C preprocessor: include guards (1)

n  Multiple inclusion of header files can cause

problems

n  e.g. multiple declarations of struct types

n  Difficult to prevent

n  one include file includes another, etc.

n  Need mechanism to prevent this

C preprocessor: include guards (2)

/* header file "foo.h": */

#ifndef FOO_H

#define FOO_H

/* contents of file */

#endif /* FOO_H */

n  contents of foo.h only included once

extern (1)

n  Sometimes many files need to share

some data e.g. global variable

n  Can only define in one place

n  Put extern declaration in header file

n  Means: this is defined somewhere else

extern (2)

/* In header file "foo.h": */

extern int max_value;

/* In file "foo.c": */

/* global variable: */

int max_value = 1000000;

const
n  We’ve seen this:

#define SOME_CONSTANT 100

n  A better alternative is this:

const int SOME_CONSTANT = 100;

n  Why is this better?

n  get type checking on SOME_CONSTANT

Next week

n  Most of C language has been covered

n  Virtual machines (!)

n  More integer types: short, long, unsigned

n  Wrapping up

