i CS 11 C track: lecture 6

= Last week: pointer arithmetic

= This week:
= The gdb program
m struct
» typedef

= linked lists

i gdb for debugging (1)

= gdb: the Gnu DeBugger

= http://courses.cms.caltech.edu/cs11/material

/c/mike/misc/gdb.html

= Use when program crashes

= €.g. from a segmentation violation

= or when want to walk through execution

of program line-by-line

i gdb for debugging (2)

= Before using gdb:

= Must compi

= This puts al

executable

e C code with additional flag: -g

the source code into the binary

= [hen can execute as: gdb myprogram

= Brings up an interpreted environment

i gdb for debugging (3)

gdb> run
= Program runs...

= If all is well, program exits successfully,

returning you to prompt

= If there is (e.q.) a crash, gdb will tell you

and abort the program

i gdb for debugging (4)

= If your program needs command-line

arguments, e.g. myprogram 1 2 3,

then you should do this in gdb:
gdb> run 1 2 3

= This will run myprogram with the

command-line arguments 1, 2, and 3

i gdb — basic commands (1)

= Stack backtrace ("where")
= Your program crashes

= Where was the last line in the program that

was executed before the crash?

= [hat's what the where command tells you

gdb — basic commands (2)

gdb> where last call ~ last call in your code

|#0 0x4006cb26 in free () from /lib/libc.so.6 I

#1 0x4006cal0d in free () from /lib/libc.so.6

#2 0x8048951 in board updater (array=0x8049bdo0,
ncells=2) at 1dCA2.c:148

#3 0x80486be in main (argc=3, argv=0xbffff7b4d) at
1dCA2.c:44

#4 0x40035a52 in _ libc start main () from
/lib/libc.so.6

stack backtrace

i gdb — basic commands (3)

= Look for topmost location in stack backtrace that

corresponds to your code

= Watch out for

= freeing memory you didn't allocate
= accessing arrays beyond their maximum elements

= dereferencing pointers that don't point to part of a
malloc () ed block

i gdb — basic commands (4)

= break, continue, next, step commands

= break causes execution to stop on a given line

gdb> break foo.c: 100 (setting a breakpoint)
= continue resumes execution from that point
= next executes the next line, then stops

= step executes the next statement

= goes into functions if necessary (next doesn't)

i gdb — basic commands (5)

= print and display commands
= print prints the value of any program expression

gdb> print 1

Sl 100

= display prints a particular value every time
execution stops

gdb> display i

i gdb — printing arrays (1)

= print will print arrays as well

int arr[] = { 1, 2, 3 };

gdb> print arr

$1 = {1, 2, 3}

= N.B. the $1 is just a name for the result
print $1

$2 = {1, 2, 3}

i gdb — printing arrays (2)

= print has problems with dynamically-allocated arrays
int *arr;
arr = (int *)malloc (3 * sizeof(int));

arr[0] = 1, arr[l] = 2; arr[2] = 3;

gdb> print arr
$1 = (int *) 0x8094610

= Not very useful...

i gdb — printing arrays (3)

= Can print this array by using @ (gdb special syntax)
int *arr;
arr = (int *)malloc (3 * sizeof(int));

arr[0] = 1, arr[l] = 2; arr[2] = 3;

gdb> print *arr@3
$2 = {1, 2, 3}

i gdb — abbreviations

= Common gdb commands have abbreviations
p (same as print)

c (same as continue)

n (Same as next)

s (same as step)

= More convenient to use when interactively

debugging

i structs (1)

= Way to package primitive data objects into an

aggregate data object

s struct declaration:

struct point {
int x;
int y;
double dist; /* from origin */

}; /* MUST have semicolon! */

i structs (2)

= struct declaration usually done outside of
function, like a function prototype

s Create/initialize struct like this:

struct point p;
p.x = 0; /* "dot syntax" */
O .

P.Y = Uy,
p.dist = sqrt(p.x*p.x + p.y*p.Vy);

structs (3)

= Using a struct:
void foo(void) {
struct point p;
p.x = 10; p.y = -3;
p.dist = sqrt(p.x*p.x + p.y*p.y);
/* do stuff with p */

i structs (4)

= Usingmalloc () with structs:

struct point *make point(void) {

struct point *p;

P

(struct point *)
malloc (sizeof (struct point));
return p;

} /* free struct elsewhere */

i structs (5)

= Using pointers to structs :

void init point(struct point *p) {
(*p) .x = (*p).y = O;
(*p) .dist = 0.0;
/* syntactic sugar: */
p->x = p->y = 0;
p->dist = 0.0;

i structs (6)

= structs can contain arrays or other structs

= Usually use pointers to structs instead of just

plain structs

struct foo {
int x;
struct point pl; /* Unusual */
struct point *p2; /* Typical */
};

i structs (7)

s structs can be "recursive":

‘struct node| {

int value;

‘struct node| *next;

};

= but can't have struct node next inside
declaration (why?)

i typedef (1)

= Typing struct point all the time is tedious

= Use a typedef (type alias):

original type new name

typedef‘struct point“Point}

typedef int Length;
= Original type comes first

= New name is at the end

typedef (2)

= Type component of typedef can also be a struct
typedef struct { /* no name for struct */
int x;
int y;
double dist;
} Point;
Point pl, p2; /* no "struct" */

= N.B. This is an anonymous struct

i typedef (3)

= Recursively defined structs:
typedef struct node {
int value;
struct node *next;

} node;

i typedef (4)

s Read this as:

typedef
struct node {
int value;

struct node *next;

node;

i Linked lists

s node IS the linked list struct!
= Set next pointer to next node in list
s [f next IS NULL, then at end of list

= Linked lists are just chains of nodes

i Creating a linked list (1)

node *list, *n, *prev;

i Linked list (diagram)

list

n

prev

i Creating a linked list (2)

n = (node *)malloc(sizeof (node)) ;

list = n; /* list points to first node */
n->value = 10;

prev = n; /* pointer to previous node */

i Linked list (diagram)

list

n

prev

i Linked list (diagram)

list

n ——p (node)

prev

i Linked list (diagram)

list ’\

n ——p (node)

i Linked list (diagram)

list —
value: 10

n——-yp (node)
next:

prev

i Linked list (diagram)

list —
value: 10

n ——p (node)

next:
prev-_//’

i Creating a linked list (3)

n = (node *)malloc(sizeof (node)) ;
prev->next = n; /* connect nodes */
prev = n;

n->value = 20;

/* ... continued on next slide ... */

i Linked list (diagram)

list —
value: 10

n ——p (node)

next:
prev-_//’

i Linked list (diagram)

list —
value: 10

n ——p (node)

next:
prev-_//’

(node)

i Linked list (diagram)

list —
value: 10
n) (node)
next:
prevy/
K; (node)

i Linked list (diagram)

list —
value: 10

n) (node)

next:—
prev _/ /

K\} (node)

i Linked list (diagram)

list —
value: 10

n) (node)

next:—
prev /
i K\} (node)

i Linked list (diagram)

list —
value: 10

n) (node)

next: —
prev 20 /
\ value: (node)
next:

Creating a linked list (4)

/* Continued... */

n = (node *) malloc(sizeof (node)) ;
prev->next = n;

prev = n;

n->value = 30;

n->next = NULL; /* End of list marker. */

i Linked list (diagram)

list —
value: 10

n) (node)

next: —
prev 20 /
\ value: (node)
next:

i Linked list (diagram)

list——\\‘
n)

aul®

value: 10
(node)
next: — /
lue: 2
value 0 (node)
next:

(node)

i Linked list (diagram)

list ’\

n

prev

value: 10
(node)
next: — /
lue: 2
value 0 (node)
next:

(node)

i Linked list (diagram)

list ’\

n

prev

value: 10
(node)
next: — /
lue: 2
value 0 (node)
next:

.

(node)

i Linked list (diagram)

list ’\

n

prev

value: 10
(node)
next: — /
lue: 2
value 0 (node)
next:

.

(node)

i Linked list (diagram)

list ’\

n

prev

value: 10

(node)

next: —

value: 20

.

(node)

next:

value: 30

next:

.

(node)

i Linked list (diagram)

list ’\

n

prev

value: 10

(node)

next: —

value: 20

.

(node)

next:

value: 30
next: NULL

.

(node)

i Linked list (final diagram)

list ’\

value: 10
(node)

next: — /

lue: 2
value 0 (node)

next: /

1 : 30
value (node)
next: NULL

i Creating a linked list (5)

s Can also create linked lists from the end back
to the front

= Actually easier to do it that way when possible
= example: lab 6 command-line arguments

= End-of-list is represented as NULL pointer
= add nodes to previous list (or to NULL)

i Creating a linked list (6)

list = NULL; /* Empty list. */

node *n = (node *) malloc(sizeof (node)) ;
n->value = 30;

n->next = list;

list = n; /* now l-node list */

i Linked list (diagram)

list—— NULL

i Linked list (diagram)

ne—e—p (node)

list—— NULL

i Linked list (diagram)

n value: 30 (node)

list—— NULL

i Linked list (diagram)

n value: 30 (node)

next: NULL

list—— NULL

i Linked list (diagram)

n—-

:|_;|_S'[_-,S>

value: 30
next: NULL

(node)

i Linked list (diagram)

list—p
n—m—»p

value: 30
next: NULL

(node)

i Creating a linked list (7)

node *n = (node *) malloc(sizeof (node)) ;
20;

n->next = list;

list = n; /* now 2-node list */

n->value

i Linked list (diagram)

list—p
n—m—»p

value: 30
next: NULL

(node)

i Linked list (diagram)

n ———p

list —»

value: 30
next: NULL

(node)

(node)

i Linked list (diagram)

n ———p

list —»

value:

20

value:

30

next: NULL

(node)

(node)

i Linked list (diagram)

value: 20 (node)
n —y next:— ’7
list —p value: 30 (node)
next: NULL

i Linked list (diagram)

list —» value: 20 (node)
n ——p next :— ’7
value: 30 (node)
next: NULL

i Creating a linked list (8)

node *n = (node *) malloc(sizeof (node)) ;
10;

n->next = list;

list = n; /* now 3-node list */

n->value

i Linked list (diagram)

list —» value: 20 (node)
n ——p next :— ’7
value: 30 (node)
next: NULL

i Linked list (diagram)

n———

list —»

(node)

value: 20

(node)

next:—

"

value: 30
next: NULL

(node)

i Linked list (diagram)

n———

list —»

value: 10

(node)

value: 20

(node)

next:—

"

value: 30
next: NULL

(node)

i Linked list (diagram)

n———

list —»

value: 10

(node)

next:

v

value: 20

(node)

next:—

"

value: 30
next: NULL

(node)

i Linked list (diagram)

n—»

list —p

value: 10

(node)

next:

v

value: 20

(node)

next:—

"

value: 30
next: NULL

(node)

i Linked list (final diagram)

. value: 10 (node)
list—p
next: /
value: 20 (node)
next:— ’7
value: 30 (node)
next: NULL

i Checking malloc ()

= Previous code simplified to fit on slide
= Actually should check every malloc call for

failure
n = (node *)malloc(sizeof (node));
if (n == NULL)
{
fprintf (stderr,

"Error: out of memory.\n");
exit(1l);

i [terating through a linked list

= Standard idiom for going through linked lists:

node *n;

/* Set all node values to zero. */

for (n = list; n !'= NULL; n = n->next) {
n->value = 0;

}

= You should be able to figure out how this works

i Lab 6

s [his week's lab:

= New sorting algorithm: "quicksort”
= More efficient than ME sort, bubblesort
= Use on linked lists, not arrays

= Memory management will be a challenge!

i Next time

= Hash tables

= More "fun" with pointers ;-)

