
CS 11 C track: lecture 5
n Last week: pointers

n This week:
n Pointer arithmetic

n Arrays and pointers

n Dynamic memory allocation

n The stack and the heap

Pointers (from last week)
n Address: location where data stored

n Pointer: variable that holds an address

int i = 10;

int *j = &i;

int k = 2 * (*j); /* dereference j */

Pointer arithmetic (1)
n Can add/subtract integers to/from pointers

int arr[] = { 1, 2, 3, 4, 5 };

int *p = arr; /* (*p) == ? */

p++; /* (*p) == ? */

p += 2; /* (*p) == ? */

p -= 3; /* (*p) == ? */

Pointer arithmetic (2)

1 2 43 5

arr

p

int arr[] = { 1, 2, 3, 4, 5 };
int *p = arr; /* (*p) == ? */

Pointer arithmetic (3)

1 2 43 5

arr

p

p++; /* (*p) == ? */

Pointer arithmetic (4)

1 2 43 5

arr

p

p += 2; /* (*p) == ? */

Pointer arithmetic (5)

1 2 43 5

arr

p

p -= 3; /* (*p) == ? */

Let's try that using
addresses only...

Pointer arithmetic (6)

Pointer arithmetic (7)

arr

p

int arr[] = { 1, 2, 3, 4, 5 };
int *p = arr; /* (*p) == ? */

1 2 43 5

0x1234

0x1234

0x1234

Pointer arithmetic (8)

arr

p

p++; /* (*p) == ? */

1 2 43 5

0x1234

0x1234

0x1238 (assume 4 byte integers)

Pointer arithmetic (9)

arr

p

p += 2; /* (*p) == ? */

1 2 43 5

0x1234

0x1234

0x1240
(0x1240 = 0x1234 + 0x0c;

 0x0c == 12 decimal or 3x4)

Pointer arithmetic (10)

arr

p

p-= 3; /* (*p) == ? */

1 2 43 5

0x1234

0x1234

0x1234

Pointer arithmetic (11)
n Get size of a type using the sizeof

operator:
printf("size of integer: %d\n",
 sizeof(int));
printf("size of (int *): %d\n",
 sizeof(int *));

n N.B. sizeof is not a function
n takes a type name as an argument!

Pointer arithmetic (12)
n N.B. pointer arithmetic doesn't add/

subtract address directly but in multiples
of the size of the type in bytes

int arr[] = { 1, 2, 3, 4, 5 };
int *p = arr;
p++; /* means: p = p + sizeof(int);*/

Pointer arithmetic (13)

arr

p

p++; /* (*p) == ? */

1 2 43 5

0x1234

0x1234

0x1238
(j = 0x1234 + sizeof(int) = 0x1238,

not 0x1235)

Arrays and pointers (1)
n Arrays are pointers in disguise!

n Arrays: "syntactic sugar" for pointers

int arr[] = {1, 2, 3, 4, 5};
printf("arr[3] = %d\n", arr[3]);
printf("arr[3] = %d\n", *(arr + 3));

n arr[3] and *(arr + 3) are identical!
n arr is identical to &arr[0]

Arrays and pointers (2)
n Can use pointer arithmetic wherever we

use array operations; consider this:

int i;
double array[1000];
for (i = 1; i < 999; i++) {
 array[i] = (array[i-1] +
 array[i] + array[i+1]) / 3.0;
}

Arrays and pointers (3)
n Exactly the same as:

int i;
double array[1000];
for (i = 1; i < 999; i++) {
 (array+i) = ((array+i-1) +
 *(array+i) + *(array+i+1)) / 3.0;
}

Arrays and pointers (4)

n When you say *(array + i), you have
to add i to array and dereference

n For large values of i, this is relatively slow
n Incrementing pointers by 1 is faster than

adding a large number to a pointer
n Can use this fact to optimize the preceding

code in an interesting way

Arrays and pointers (5)

double array[1000];
double *p1, *p2, *p3;
p1=array; p2=array+1; p3=array+2;
for (i = 1; i < 999; i++) {
 *p2 = (*p1 + *p2 + *p3) / 3.0;
 p1++; p2++; p3++;
}

Arrays and pointers (6)

...
array

p1

p2

p3

Add *p1, *p2, *p3
together, divide by 3,

put result into *p2

Arrays and pointers (7)

...
array

p1

p2

p3

Increment *p1, *p2, *p3
by 1 each, continue

Arrays and pointers (8)

n We replaced 3 pointer additions with
three pointer increments, which are
usually faster

n Even more significant for 2-d arrays

Dynamic memory allocation (1)
n Recall that we can't do this:
int n = 10;
int arr[n]; /* not legal C */
n However, often want to allocate an array

where size of array not known in advance
n This is known as "dynamic memory

allocation"
n dynamic as opposed to "static" (size known at

compile time)

Dynamic memory allocation (2)

n Let's say we want to allocate memory for
e.g. arrays "on the fly"

n Later will have to deallocate memory
n Three new library functions for this:

n void *malloc(int size)
n void *calloc(int nitems, int size)
n void free(void *ptr)

n All found in <stdlib.h> header file

void *

n What does void * mean?
n It's a "pointer to anything"
n Actual type either doesn't matter or will be

given later by a type cast
n malloc/calloc return void *
n free takes a void * argument

Using malloc() (1)

n malloc()stands for "memory allocator"
n malloc() takes one argument: the size of the

chunk of memory to be allocated in bytes
n recall: a byte == 8 bits
n an int is 32 bits or 4 bytes

n malloc() returns the address of the chunk of
memory that was allocated

Using malloc() (2)

n malloc()is often used to dynamically allocate
arrays

n For instance, to dynamically allocate an array of
10 ints:

int *arr;
arr = (int *) malloc(10 * sizeof(int));
/* now arr has the address
 of an array of 10 ints */

Using calloc() (1)

n calloc()is a variant of malloc()
n calloc() takes two arguments: the number of

"things" to be allocated and the size of each
"thing" (in bytes)

n calloc() returns the address of the chunk of
memory that was allocated

n calloc() also sets all the values in the allocated
memory to zeros (malloc() doesn't)

Using calloc() (2)

n calloc()is also used to dynamically allocate
arrays

n For instance, to dynamically allocate an array of
10 ints:

int *arr;
arr = (int *) calloc(10, sizeof(int));
/* now arr has the address
 of an array of 10 ints, all 0s */

malloc/calloc return value (1)

n malloc and calloc both return the address of
the newly-allocated block of memory

n However, they are not guaranteed to succeed!
n maybe there is no more memory available

n If they fail, they return NULL
n You must always check for NULL when using
malloc or calloc
n We sometimes leave it out here for brevity

malloc/calloc return value (2)

n bad:
int *arr = (int *) malloc(10 * sizeof(int));
/* code that uses arr... */

n good:
int *arr = (int *) malloc(10 * sizeof(int));
if (arr == NULL) {
 fprintf(stderr, "out of memory!\n");
 exit(1);
}

n Always do this!

malloc() vs. calloc()

n malloc/calloc both allocate memory
n calloc has slightly different syntax

n as we've seen
n Most importantly: calloc() zeros out

allocated memory, malloc() doesn't.
n calloc() a tiny bit slower
n I prefer calloc()

Using free() (1)

n malloc() and calloc() return the address of
the chunk of memory that was allocated

n Normally, we store this address in a pointer
variable

n When we have finished working with this chunk of
memory, we "get rid of it" by calling the free()
function with the pointer variable as its argument

n This is also known as "deallocating" the memory
or just "freeing" it

Using free() (2)
int *arr;
arr = (int *) calloc(10, sizeof(int));
/* now arr has the address
 of an array of 10 ints, all 0s */
/* Code that uses the array... */
/* Now we no longer need the array, so "free"
it: */

free(arr);
/* Now we can't use arr anymore. */

Using free() (3)

n NOTE: When we free() some memory, the
memory is not erased or destroyed

n Instead, the operating system is informed that we
don't need the memory any more, so it may use it
for e.g. another program

n Trying to use memory after freeing it can cause a
segmentation violation (program crash)

Dynamic memory allocation (3)

#include <stdlib.h>
int *foo(int n) {
 int i[10]; /* memory allocated here */
 int i2[n]; /* ERROR: NOT VALID! */
 int *j;
 j = (int *)malloc(n * sizeof(int));
 /* Alternatively: */
 /* j = (int *)calloc(n, sizeof(int)); */
 return j;
} /* i’s memory deallocated here; j’s not */

Dynamic memory allocation (4)

void bar(void) {
 int *arr = foo(10);
 arr[0] = 10;
 arr[1] = 20;
 /* ... do something with arr ... */
 free(arr); /* deallocate memory */
}

n Not calling free() leads to memory leaks !

Memory leaks (1)

void leaker(void) {
 int *arr = (int *)malloc(10 * sizeof(int));
 /* Now have allocated space for 10 ints;
 * do something with it and return without
 * calling free().
 */
} /* arr memory is leaked here. */

n After leaker() returns, nothing points to
memory allocated in the function à memory leak

Memory leaks (2)

void not_leaker(void) {
 int *arr = (int *)malloc(10 * sizeof(int));
 /* Now have allocated space for 10 ints;
 * do something with it.
 */
 free(arr); /* free arr's memory */
} /* No leak. */

n Here, we explicitly free() the memory allocated
by malloc() before exiting the function.

Memory leaks (3)

void not_leaker2(void) {
 int arr[10];
 /* Now have allocated space for 10 ints;
 * do something with it.
 */
} /* No leak. */

n Here, we don't have to free() the memory,
since it was allocated locally (on the "stack").

n "What's the stack?" (you may ask...)

Memory leaks (4)

void crasher(void) {
 int arr[10];
 /* Now have allocated space for 10 ints;
 * do something with it.
 */
 free(arr); /* BAD! */
}

n Here, we free() memory we don't need to free!
n Anything can happen (e.g. core dump)

Memory leaks (5)
n Rules of thumb:
n 1) Any time you allocate memory using malloc()

or calloc(), you must eventually call free() on
that memory

n 2) You must free() the exact same pointer
(address) that was returned from malloc() or
calloc()

n 3) You don't have to free() the memory in the
same function as the one where malloc/calloc
was called

The stack and the heap (1)

n Local variables, function arguments, return value

are stored on a stack

n Each function call generates a new "stack frame"

n After function returns, stack frame disappears

n along with all local variables and function

arguments for that invocation

The stack and the heap (2)

int contrived_example(int i, float f)

{

 int j = 10;

 double d = 3.14;

 int arr[10];

 /* do some stuff, then return */

 return (j + i);

}

The stack and the heap (3)

/* somewhere in code */

int k = contrived_example(42, 3.3);

n What does this look like on the stack?

The stack and the heap (4)

i = 42

f = 3.3

j = 10

d = 3.14

arr[10] =
<garbage>

stack frame

for
contrived_example

(42, 3.3)

function
arguments

local
variables

(more frames)

52return value

The stack and the heap (5)

n Another example:
int factorial(int i)
{
 if (i == 0) {
 return 1;
 } else {
 return i * factorial (i - 1);
 }
}

The stack and the heap (6)

n Pop quiz: what goes on the stack for factorial
(3)?

n For each stack frame, have...
n no local variables
n one argument (i)
n one return value

n Each recursive call generates a new stack frame
n which disappears after the call is complete

The stack and the heap (7)

i = 3
stack framefactorial(3)

return value ?

The stack and the heap (8)

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

The stack and the heap (9)

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

?

The stack and the heap (10)

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

?

stack frame
return value

factorial(0)
i = 0

?

The stack and the heap (11)

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

?

stack frame
return value

factorial(0)
i = 0

1

The stack and the heap (12)

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

1

The stack and the heap (13)

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

2
stack frame

The stack and the heap (14)

i = 3
stack framefactorial(3)

return value 6

The stack and the heap (15)

factorial(3)

result: 6

The stack and the heap (16)

void foo(void) {

 int arr[10]; /* local (on stack) */

 /* do something with arr */

} /* arr is deallocated */

n Local variables sometimes called "automatic"

variables; deallocation is automatic

The stack and the heap (17)

arr[10] =
<whatever> stack frame

for foo()

local
variables

foo

The stack and the heap (18)

n The "heap" is the general pool of computer memory

n Memory is allocated on the heap using malloc() or
calloc()

n Heap memory must be explicitly freed using free()

n Failure to do so à memory leak!

The stack and the heap (19)

void foo2(void) {

 int *arr;

 /* allocate memory on the heap: */

 arr = (int *)calloc(10, sizeof(int));

 /* do something with arr */

} /* arr is NOT deallocated */

The stack and the heap (20)

void foo3(void) {

 int *arr;

 /* allocate memory on the heap: */

 arr = (int *)calloc(10, sizeof(int));

 /* do something with arr */

 free(arr);

}

The stack and the heap (21)

arr =
0x1234 stack framelocal

variables

0x1234

stack

heap

arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

(etc.)

foo2 and
foo3

The stack and the heap (22)

0x1234

stack

heap

arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

(etc.)

(after foo2
exits,

without
freeing

memory)

memory
leak

The stack and the heap (23)

stack

heap

(etc.)

arr[4]

arr[3]

arr[2]

arr[1]

arr[0]0x1234

(after foo3
exits, with

freeing
memory)

Memory leaks
n Memory leaks are one of the worst kinds of bugs

n often, no harm done at all

n eventually may cause long-running program to crash

n out of memory

n very hard to track down

n Special tools (e.g. valgrind) exist to debug

memory leaks

n I supply you with a very simple leak checker

Next week

n struct

n typedef

n Linked lists

