
CS 11 C track: lecture 4

n  Last week: arrays

n  This week:

n  Recursion

n  Introduction to pointers

Lab 4

n  Harder than previous labs

n  One non-obvious trick
n  hints on web page

n  email me if get stuck

n  Support code supplied for you

n  Read carefully!

Recursion (1)

n  Should be familiar from CS 1

n  Recursive functions call themselves

n  Useful for problems that can be decomposed

in terms of smaller versions of themselves

Recursion (2)

int factorial(int n) {

 assert(n >= 0);

 if (n == 0) {

 return 1; /* Base case. */

 } else {

 /* Recursive step: */

 return n * factorial(n - 1);

 }

}

Recursion (3)

factorial(5)

--> 5 * factorial(4)

--> 5 * 4 * factorial(3)

--> 5 * 4 * 3 * factorial(2)

--> 5 * 4 * 3 * 2 * factorial(1)

--> 5 * 4 * 3 * 2 * 1 * factorial(0)

--> 5 * 4 * 3 * 2 * 1 * 1

--> 120

Pointers (1)

n  Address:
n  A location in memory where data can be stored
n  e.g. a variable or an array

n  Address of variable x is written &x

n  Pointer:
n  A variable which holds an address

Pointers (2)

10 0x123aa8 i

name address contents

int i = 10;
int *j = &i;

0x123aa8 0x123aab j

/* j "points" to i */

Pointers (3)

int i = 10;

int *j = &i;

printf("i = %d\n", i);

printf("j = %x\n", j);

printf("j points to: %d\n", *j);

Pointers (4)

n  &i is the address of variable i

n  *j is the contents of the address stored in

pointer variable j

n  i.e. what j points to

n  * operator dereferences the pointer j

Pointers (5)

n  The many meanings of the * operator:
n  Multiplication

 a = b * c;

n  Declaring a pointer variable

int *a;

n  Dereferencing a pointer

 printf("%d", *a);

Pointer pitfalls (1)

n  Declaring multiple pointer variables:
int *a, *b; /* a, b are ptrs to int */

n  If you do this:
int *a, b; /* b is just an int */

n  Then only the first variable will be a pointer

n  Rule: every pointer variable in declaration
must be preceded by a *

Pointer pitfalls (2)

n  Note that
int *j = &i;

n  really means
int *j; /* j is a pointer to int */

j = &i; /* assign i's addr to j */

n  Don't confuse this *j with a dereference!

Pointers (6)

n  A harder problem:
int i = 10;
int *j = &i;
int **k = &j;
printf("%x\t%d\n", &i, i);
printf("%x\t%x\t%d\n", &j, j, *j);
printf("%x\t%x\t%x\t%d\n",
 &k, k, *k, **k);

Pointers (7)

10 0x123aa8 i

name address contents

0x123aa8 0x123aab j

0x123aab 0x123ab0 k

Assigning to pointers (1)

int i = 10;
int *j = &i;
int *k;
/* Assign to what j points to: */
j = 20; / Now i is 20. */
/* Assign j to k: */
k = j; /* Now k points to i too. */
/* Assign to what j points to: */
*j = *k + i; /* Now i is 40. */

Assigning to pointers (2)

n  When pointer variable is on left-hand side of an
assignment statement, what happens depends on
whether it's dereferenced or not
n  no dereference: assign the value on RHS (an address) to

the pointer variable on the LHS

j = k;
n  dereference: assign value on RHS into location

corresponding to where pointer points to

*j = *k + 10;

Assigning to pointers (3)

n  When pointer variable is declared and assigned to
on the same line:

int *j = k;
n  it means:
int *j; /* declare j */
j = k; /* assign to j */
n  i.e. assign the value on RHS (an address) to the

pointer variable on the LHS

Mnemonics: fetch/store

n  When you use the * (dereference) operator in an
expression, you fetch the contents at that address

printf("j's contents are: %d\n", *j);
n  When you use the * (dereference) operator on the

left-hand side of the = sign in an assignment
statement, you store into that address

j = 42; / store 42 into address */

Pointers – call by reference (1)

n  Can use pointers for a non-obvious trick
n  Recall: in C, variables are copied before

being sent to a function
n  referred to as "call-by-value"

n  Significance is that passing a variable to a
function cannot change the variable's value

n  But sometimes we want to change the
variable's value when function returns

Pointers – call by reference (2)
void incr(int i) {
 i++;
}
/* ... later ... */
int j = 10;
incr(j); /* want to increment j */
/* What is j now? */
/* Still 10 – incr() does nothing. */

Pointers – call by reference (3)
void incr(int *i) {
 (*i)++;
}
/* ... later ... */
int j = 10;
incr(&j);
/* What is j now? */
/* Yep, it's 11. */

Pointers – call by reference (4)

int j = 10;
incr(&j);
n  You should be able to work out why this

works
n  Where have we seen this before?

int i;
scanf("%d", &i); /* read in i */

Pointers – call by reference (5)

n  Easy mistake to make:
void incr(int *i) {
 i++; / Won't work! */
 /* Parsed as: *(i++); */
}
n  Need to say (*i)++ here
n  Precedence rules again; use parens () if any

confusion can exist

Next week

n  Pointers and arrays

(the untold story)

n  Dynamic memory allocation

