
CS 11 C track: lecture 3

n This week:
n Arrays

n one-dimensional

n multidimensional

n Command-line arguments

n Assertions

Arrays

n What is an "array"?

n A way to collect together data of a
single type in a single object

n A linear sequence of data objects e.g.
n array of ints

n array of chars (string)

Creating and using arrays

n One-dimensional array of three ints:
int arr[3];
int sum;
arr[0] = 1;
arr[1] = 22;
arr[2] = -35;
sum = arr[0] + arr[1] + arr[2];

One-dimensional arrays (1)

n Arrays can be
n initialized

n partially initialized

n not initialized

n Uninitialized space contains?
n "garbage"

One-dimensional arrays (2)
n Examples:
int my_array[10];
/* not initialized */

int my_array[5] = { 1, 2, 3, 4, 5 };
/* initialized */

int my_array[] = { 1, 2, 3, 4, 5 };
/* OK, initialized */

int my_array[4] = { 1, 2, 3, 4, 5 };
/* warning */

int my_array[10] = { 1, 2, 3, 4, 5 };
/* OK, partially initialized */

One-dimensional arrays (3)
n Note on partial initialization:
int my_array[10] = { 1, 2, 3, 4, 5 };

n rest of array initialized to 0
int my_array[10];

n entire array uninitialized
n contains garbage

One-dimensional arrays (4)
n Explicit initialization of arrays:

int i;
int my_array[10];
for (i = 0; i < 10; i++) {

my_array[i] = 2 * i;
}

n This is the most flexible approach

One-dimensional arrays (5)
n Some bad things that can happen...
int my_array[10];
/* What happens here? */
printf("%d\n", my_array[0]);
/* What happens here? */
printf("%d\n", my_array[1000]);

n No checking!
n C is an UNSAFE language!

One-dimensional arrays (6)

n NOTE! The following is illegal:
int my_array[5];
my_array = { 1, 2, 3, 4, 5 }; /* WRONG */

n The { 1, 2, 3, 4, 5 } syntax is only usable
when declaring a new array, and not for
reassigning the contents of the array

int my_array[5] = { 1, 2, 3, 4, 5 }; /* OK */
int my_array[] = { 1, 2, 3, 4, 5 }; /* OK */

Two-dimensional arrays (1)
int arr[2][3]; /* NOT arr[2, 3] */
int i, j;
int sum = 0;
arr[0][0] = 1;
arr[0][1] = 23;
arr[0][2] = -12;
arr[1][0] = 85;
arr[1][1] = 46;
arr[1][2] = 99;
/* continued on next slide */

Two-dimensional arrays (2)

for (i = 0; i < 2; i++) {
for (j = 0; j < 3; j++) {

sum += arr[i][j];
}

}

printf("sum = %d\n", sum);

Two-dimensional arrays (3)
n Two-dimensional arrays can be split into

component one-dimensional arrays:

int arr[2][3];
/* initialize... */
/* arr[0] is array of 3 ints */
/* arr[1] is another array of 3 ints */

Two-dimensional arrays (5)
n How arr is laid out in memory:

1 23 -12 85 46 99

arr[0] arr[1]

Two-dimensional arrays (6)
n Initializing two-dimensional arrays:
int my_array[2][3];

/* not initialized */
int my_array[2][3]
= { { 1, 2, 3 }, { 4, 5, 6 } };
/* OK */

int my_array[2][3]
= { 1, 2, 3, 4, 5, 6 };
/* warning with -Wall */

Two-dimensional arrays (7)
int arr[2][]
= { { 1, 2, 3 }, { 4, 5, 6 } };
/* invalid */

int arr[][]
= { { 1, 2, 3 }, { 4, 5, 6 } };
/* invalid */

int arr[][3]
= { { 1, 2, 3 }, { 4, 5, 6 } };
/* OK */

Two-dimensional arrays (8)
int my_array[][3]
= { 1, 2, 3, 4, 5, 6 };
/* warning with -Wall */

int my_array[][3]
= { { 1, 2, 3 }, { 4, 5 } };
/* OK; missing value = 0 */

n Rule: all but leftmost dimension must be
specified

n Compiler can compute leftmost dimension
n OK to specify leftmost dimension as well

Passing arrays to functions (1)
n What does this do?
void foo(int i) {

i = 42;
}

/* later... */
int i = 10;
foo(i); /* What is i now? */

Passing arrays to functions (2)
n Current value of i is copied into function

argument i
n Passing a value to a function as an

argument doesn't change the value
n We say that C is a "call-by-value"

language
n But arrays are "different"!

n (actually, not really, but it seems like they
are; need pointers for full explanation)

Passing arrays to functions (3)
n Arrays passed to functions can be modified:
void foo(int arr[]) {

arr[0] = 42; /* modifies array */
}

/* later... */
int my_array[5] = { 1, 2, 3, 4, 5 };
foo(my_array);
printf("%d\n", my_array[0]);

Passing arrays to functions (4)
n Last array dimension in declaration is ignored

for one-dimensional arrays:
void foo2(int arr[5]) /* same as arr[] */
{

arr[0] = 42;
}

n Same as foo()

Passing 2D arrays to functions (1)

n Two-dimensional (or higher-dimensional)
arrays can also be passed to functions

n However, must specify all array dimensions
except for the leftmost one (which is optional)
n same rule as for initializing 2d arrays

Passing 2D arrays to functions (2)

int sum_2d_array(int arr[][3], int nrows) {
int i, j;
int sum = 0;
for (i = 0; i < nrows; i++) {

for (j = 0; j < 3; j++) {
sum += arr[i][j];

}
}
return sum;

}

Passing 2D arrays to functions (3)

n Also OK to specify leftmost dimension:

int sum_2d_array(int arr[2][3], int nrows){
/* same as before */

}

n Compiler still ignores leftmost dimension
n May need to pass it in as an extra argument e.g. as
nrows here

Command-line arguments (1)
n http://courses.cms.caltech.edu/cs11

/material/c/mike/misc/cmdline_args.html
n When you type this at the unix prompt:
% myprog inputfile outputfile

n This is a command line
n First word is the program name (myprog)
n Other words are the program arguments
n Here: inputfile, outputfile

Command-line arguments (2)
n Arguments give program information it needs

n e.g. names of files to read from/write to
n or data the program needs

n Can also have optional arguments
n sorter 5 1 3 2 4
n sorter –b 5 1 3 2 4

n -b is optional
n changes the way the sorter program works
n convention: all arguments starting with "-" are optional

(unless they're e.g. negative numbers)

Command-line arguments (3)

n Recall: strings are arrays of characters (char [])
n Also written (char *) (see why later)
n Command line arguments are divided into

n int argc (argument count)
n char *argv[] (array of strings)
n read as: (char *) argv[]
n not allowed to write char argv[][]

Command-line arguments (4)
n To use command-line arguments, main function needs

to have 2 new arguments: argc and argv

int main(int argc, char *argv[]) {
/* argc is the number of arguments
* argv is the arguments,
* represented as an array of strings.
*/

/* ... code goes here ... */
}

Command-line arguments (5)
n Cmdline args are argv[0], argv[1], ...
n argv[0] is name of program
n In previous example:

n argv[0] à "myprog" (program name)
n argv[1] à "inputfile"
n argv[2] à "outputfile"

Command-line arguments (6)
n We usually process command-line arguments in main():
#include <string.h>
int main(int argc, char *argv[]) {

int i;
/* process command-line arguments */
for (i = 1; i < argc; i++) {

if (strcmp(argv[i], "-b") == 0) {
/* process optional argument */

}
/* process non-optional arguments */

}
/* ... rest of program ... */

}

Command-line arguments (7)

n Useful functions for command-line
argument processing:
n atoi() – converts string to int

n atoi("123")à 123
n in <stdlib.h>

n strcmp() – compares strings
n strcmp("foo", "foo") à 0
n in <string.h>

Command-line arguments (8)

n Notes on strcmp():
n strcmp() returns 0 if strings are the

same, nonzero otherwise
n Do not use == to compare strings!

n You can use it, but it won't do what you
expect

n Always use strcmp() instead

Assertions (1)
n Sometimes expect code to behave in a certain

way
n e.g. sort() function should sort its input
n Would like to make programs self-checking
n An assertion is a "sanity check" on code
n "If there are no bugs in this code, this must be

true at this point in the code."
n This is the kind of thing assertions check

Assertions (2)
n Example:
n Assume have a function called sorted() that

returns 1 if array sorted, else 0
n Can use assert() in conjunction with
sorted() to check arrays for sortedness
every time they're sorted

Assertions (3)
#include <assert.h>
void sort(int arr[], int nelems) {

/* ...sort the array somehow... */
assert(sorted(arr));
/* "sorted" defined somewhere else;
* returns 1 if array is sorted;
* otherwise returns 0. */

}

n If assertion fails, program terminates
n file and line number of failure is printed

Assertions (4)
n Assertions make program slower

n but usually not much
n Use only to check logical correctness of code

n "What must be true at this point in the code?"
n Don't try to use them to check e.g. user input

n Example: user should enter a number between 1
and 10

n Don't use assert() to check this!

Assertions (5)

n After debugging, may not need them
anymore (you know code is correct)

n Might not want the slowdown
n Might want to turn off assertions

Assertions (6)
n Command-line argument to gcc that

turns off assertions:
% gcc –DNDEBUG program.c –o program
n NDEBUG means "Not DEBUGging"
n -D means "define" (don't worry for now)
n Now assertions are just ignored
n Program will run faster

n but if assertion is violated, you won't know!

Next week

n Pointers!
n The one hard topic in C programming

n Will take several weeks to cover thoroughly

