
CS 11 C track: lecture 2

n  Last week: basics of C programming
n  compilation
n  data types (int, float, double, char, etc.)
n  operators (+ - * / = == += etc.)
n  functions
n  conditionals
n  loops
n  preprocessor (#include)

This week

n  Preprocessor (#define)
n  Operators and precedence
n  Types and type conversions
n  Function prototypes
n  Loops (while, do/while)
n  More on input/output and scanf()
n  Commenting
n  Using the make program

#define (1)

n  So far, only preprocessor command we know
is #include

n  Lots of other ones as well
n  will see more later in course

n  One major one: #define
n  Used in almost all C header files

#define (2)

n  #define usually used to define symbolic
constants:

#define MAX_LENGTH 100
n  Then preprocessor substitutes the number
100 for MAX_LENGTH everywhere in
program

n  NOTE: Just a textual substitution!
n  no type checking

#define (3)

#define MAX_LENGTH 100
/* later... */
int i;
/* later... */
if (i > MAX_LENGTH) {
 printf("Whoa there!\n");
}

#define (4)

/* That code expands into: */
if (i > 100) {
 printf("Whoa there!\n");
}
n  Note that all occurrences of MAX_LENGTH

replaced with 100
n  Why not just write 100 in the first place?

#define (5)
n  Why not just write 100 in the first place?
n  If you decide you want to change MAX_LENGTH to

another number instead
n  only have to change one #define statement

and all occurrences of MAX_LENGTH will be
changed to the new number

n  Hard-coded numbers like 100 are called magic
numbers
n  usually repeated many times in a program
n  would have to change many lines to change the

number throughout the program

Digression: ? : operator
n  C has one ternary operator (three arguments),

the ? : ("question mark") operator
n  Like an if statement that returns a value:
int i = 10;
int j;
j = (i == 10) ? 20 : 5; /* note 3 args */
/* "(i == 10) ? 20 : 5" means:
 * "If i equals 10 then 20 else 5." */

n  Not used very often

#define macros

n  #define can also be used to define short
function-like macros e.g.

#define MAX(a, b) \
 (((a) > (b)) ? (a) : (b))
n  Like a short function that gets expanded

everywhere it's used (a.k.a. an inline
function)

n  But pitfalls exist (won't discuss further)

#define style

n  #define defines new meaning for names
n  Names that have been defined using
#define are conventionally written with
ALL_CAPITAL_LETTERS

n  That way, they're easy to identify in code
n  Conversely, don't use this style for regular

variable names

Operators and precedence

n  Low to high precedence:
n  = (assignment) += -= *= /=
n  == !=
n  < <= > >=
n  + and -
n  * and /
n  ++ --

n  15 precedence levels in all!
n  Use () for all non-obvious cases

++ and -- (1)

n  ++ and -- can be prefix or postfix

int a = 0;

a++; /* OK */

++a; /* OK */

n  Here they mean the same thing

++ and -- (2)

n  Prefix is not the same as postfix!
int a, b, c;
a = 10;
b = ++a; /* What is b? */
 /* 11 */
c = a++; /* What is c? */
 /* 11 */

Types (1)
n  int

n  usually 32 bits wide
n  could be 64 (depends on computer)

n  long
n  "longer" integer
n  length >= length of int
n  usually same as int

n  short (will see later in course)

Types (2)

n  float
n  single-precision approximate real

number
n  32 bits wide

n  double
n  double-precision
n  64 bits wide

Type conversions (1)

n  Converting numbers between types
int i = 10;
float f = (float) i;
double d = (double) i;

n  (float) etc. are type conversion
operators

n  Compiler will convert automatically
n  But don’t do it that way!

Type conversions (2)
n  Dangers of implicit conversions:
 int i, j;
 double d;
 i = 3;
 j = 4;
 d = i / j; /* d = ? */
 /* 0.0 */
 d = ((double) i) / ((double) j);
 /* d = ? */
 /* 0.75 */

Function prototypes (1)

n  Normally, functions must be defined before use:
int foo(int x) { ... }

int bar(int y)

{

 return 2 * foo(y);

}

n  Couldn’t define bar before foo
n  Compiler isn’t that smart

Function prototypes (2)
n  Can get around this with function prototypes
n  Consist of signature of function w/out body

 int foo(int x); /* no body yet. */
 int bar(int y); /* no body yet. */
 int bar(int y)
 {
 return 2 * foo(y); /* OK */
 }
 /* Define 'foo' later. */

Function prototypes (3)

n  Note that foo not defined when bar
defined

n  Rule of thumb: always write function
prototypes at top of file

n  That way, can use functions anywhere in
file

while loops

int a = 10;

while (a > 0)

{

 printf("a = %d\n", a);

 a--;

}

n  Useful when # of iterations not known in advance

Infinite loops and break

int a;

while (1) /* or: for (;;) */

{

 scanf("%d ", &a);

 printf("a = %d\n", a);

 if (a <= 0)

 break; /* get out of loop */

}

More on break

n  break exits the nearest enclosing loop

n  To exit more deeply-nested loops, need

goto

n  Avoid using goto in general

goto

for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 /* code ... */

 goto out; /* something went wrong */

 }

}

out: /* a label */

/* continue here */

do/while

n  Sometimes want to test at end of loop:
int i = 10;

do

{

 /* try something at least once */

 /* i gets changed */

}

while (i > 0);

continue
n  To exit a single iteration of a loop early, but keep on

executing the loop itself, use a continue statement
int i;

for (i = 0; i < 100; i++) {

 if (i % 2 == 0)

 continue;

 else

 printf("i = %d\n", i);

}

n  Here, only prints out odd numbers

Note on syntax
n  Body of for, while, do/while, if, if/
else statements can be either
n  a block of code (surrounded by curly braces)

n  a single line of code

n  Better to always use a block of code
n  expresses intent more clearly to reader

n  can add extra statements later more easily

Input/output and scanf() (1)

n  C provides three input/output "files" for
you to use:
n  stdin for input from the terminal

n  stdout for output to the terminal

n  stderr for error output
n  normally also outputs to terminal

n  All defined in stdio.h header file

Input/output and scanf() (2)

n  printf() function outputs to stdout

n  scanf() function reads from stdin

n  More general versions to read from other
files:

n  fprintf() outputs to any file

n  fscanf() reads from any file

Input/output and scanf() (3)

n  fprintf() and stderr used to print
error messages:

fprintf(stderr,

 "something went wrong!\n");

n  Still prints to terminal

n  Always use this for printing error messages or
program usage messages!

Input/output and scanf() (4)

n  Recall scanf() function from lab 1

n  Reads in from terminal input (known as stdin)

n  Uses funny syntax e.g.

char s[100];

scanf("%99s", s);

n  This says: "read in a string s that is no more than
99 characters long".

Input/output and scanf() (5)

n  scanf() changes the variable(s) in its argument
list

n  scanf() also returns an int value
n  if scanf() was successful, return the number of items

read

n  if input unavailable, the special EOF ("end of file")
value is returned

n  EOF is also defined in stdio.h header file

Input/output and scanf() (6)

n  Testing scanf()'s return value:

int val;

int result;

result = scanf("%d", &val);

if (result == EOF)

{

 /* print an error message */

}

Input/output and scanf() (7)

n  Notice the &val in the scanf() call:

int val, result;

result = scanf("%d", &val);

n  What's that all about?

n  Can't explain in detail now

n  Will explain when we talk about pointers

n  Rule: need & for reading int or double, but not
strings

Commenting your code (1)

n  The most important thing is to realize that

 COMMENTS ARE VERY
VERY IMPORTANT!

Commenting your code (2)
n  Purposes of comments:

n  explain how to use your functions

n  explain how your functions work

n  explain anything that's tricky or non-
obvious

n  Who reads the comments?
n  anyone modifying your code

n  you, in a few weeks/months/years

Commenting your code (3)

n  Put comments right before functions
n  purpose of function

n  what arguments mean

n  what's returned

n  Comment code that’s not obvious

n  Assume others will read your code

n  Style (spelling, grammar) counts!

n  Poor commenting è marks off!

Good commenting

/*

 * area: finds area of circle

 * arguments: r: radius of circle

 * return value: the computed area

 */

double area(double r) {

 double pi = 3.1415926;

 return (pi * r * r);

}

Variable names

n  Usually use meaningful variable names

double x; /* what does x mean? */

double distance; /* better */

n  Not always necessary

int loop_index; /* bad */

int i; /* good */

The make program (1)

n  make is a program which
n  automates compilation of programs

n  only recompiles files that
n  have changed

n  depend on files that have changed

n  Only really useful for programs with
multiple source code files

The make program (2)

n  Write compilation info in a Makefile

n  Usually compile by typing make

n  Clean up by typing make clean

n  We usually supply the Makefile

n  Details:
http://courses.cms.caltech.edu/courses/cs11/material/c/mike/

 misc/make.html

The make program (3)

n  Trivial Makefile:
program: program.o

 gcc program.o -o program

program.o: program.c program.h

 gcc -c program.c

clean:

 rm program.o program

The make program (4)

n  Targets in red

program: program.o

 gcc program.o -o program

program.o: program.c program.h

 gcc -c program.c

clean:

 rm program.o program

The make program (5)

n  Dependencies in green

program: program.o

 gcc program.o -o program

program.o: program.c program.h

 gcc -c program.c

clean:

 rm program.o program

The make program (6)

n  Commands in blue

program: program.o

 gcc program.o -o program

program.o: program.c program.h

 gcc -c program.c

clean:

 rm program.o program

The make program (7)

n  If program.c or program.h changes
n  program.o is now out-of-date

n  program.o gets recompiled (changes)

n  program is now out-of-date

n  program gets recompiled

n  If multiple .c files exist and only one
changes, only necessary files recompiled

Next week

n  Arrays

n  Strings

n  Command-line arguments

n  assert

