i CS 11 C track: lecture 1

= Preliminaries

= Need to know basic UNIX commands
= Tutorial linked from track home page

= Track home page:
« http://users.cms.caltech.edu/~mvanier/CS11_C

i Assignments

= 1st assignment is posted now

= Due one week after class, 2 AM

= Grading system: see "admin page"

linked from track home page

i Other administrative stuff

= See admin web page

= Covers how to submit labs, collaboration
policy, grading, etc.

i Textbook

= Kernighan and Ritchie:

The C Programming Language, 2nd. ed.

= 1st edition NOT acceptable
= "ANSI C"

= Only for reference

i C: pros and cons

= What C is good at
= low-level programming
= speed and memory efficiency
= portability (sorta)

= Bad things about C

= unsafel!l!
= low level of abstraction

i Getting started (1)

= The "hello, world!" program:

#include <stdio.h>

int main (void)

{
printf ("hello, world'\n");
return O;

i Getting started (2)

= Make this into a file called hello.c using a text
editor
= €.g. emacs, Vi, VS Code

= Compile into a program and run:
$ gcc hello.c -o hello

$./hello
hello, world!
$

= W00 hoo!

i Source code to executable (1)

= What you write is called "source code"

= Two kinds of source code files:
= regular code (files end in ".c")
= header files (files end in ".h")

= Compiler turns source code into "object code"
= (files end in ".0")

= Linker turns object code file(s) into executable
(no special file suffix)

i Source code to executable (2)

= The program gcc is both a compiler and a linker
= When you do this:

$ gcc hello.c -o hello
= Then gcc

= compiles hello.c to hello.o

= links hello.o with system libraries

= outputs the binary executable program hello

= removes hello.o

i Source code to executable (3)

= You can do each step individually:
$ gcc -c hello.c (compile only)
$ gcc hello.o -o hello (link only)

= In this case, hello.o is not removed

= Sequence:

= compiling: source code to object code
= linking: object code to binary executable

i The C language - overview

= Programs are built up of functions
= Functions

« take in arguments
= compute something
= return a result
= Themain () function

= iS where program execution starts

i Data types (1)

= All data in C has to have a specified type

= Examples:
= int (integer)
= char (character)
= float Or double (approximate real number)
= others

= Variables hold data of a particular type only
= Variables must be declared before use

i Data types (2)

= [ype declarations:

int i; /* name i type = int */

char */

char c; /* name

double d;
float some float = 3.14;

c type

= Identifiers: i, ¢, d, some float
= Optional initialization (e.g. some float)

= Booleans - 0 or nonzero (usually 1)

i Data types (3)

= Strings: arrays of type char

char some string[9] = "woo hoo!";

char same string[] = "woo hoo!";

= Much more on strings, arrays later

= Other types: structs, pointers

i Operators (1)

= Numeric: + - * / %

= Assignment: =

int
int
i =

j:

i
J
2

]

o°

10; /*
20; /*
i* 3j;

2; /*

initialization */
initialization */
/* assignment */

assignment */

i Assignment operator

= Assignment works this way:

= 1) Evaluate the right-hand side (RHS) of the
assignment operator

= 2) Assign the resulting value to the left-hand side
(LHS) of the assignment operator

i Operators (2)

= What does
i=24+1i*3;
mean?

a) i= (2 + 1) * 3j;

‘b)i=2+(i*j);

= * has a higher precedence than +

= Use () to force other interpretation

i Operators (3)

= Other assignment operators:

n =, -=, *=,

i+=2; /[/*i=14+2; */
= increment and decrement: ++, --
i++; /* i =1+ 1; */

++3i ; /* same */

i Operators (4)

= [est operators:

= compare two values

s < <= > >=

=« == for testing equality
« 1= for testing inequality

= read "'" as "not"

i Operators (5)

= Logical operators:

= arguments are ints used as booleans

/.e. usually 0 or 1 (false or true)

! operator is unary logical "not"

&& operator is

| | operator is

dinary

dinary

ogica

ogica

Ilandll

or

i Operators (6)

int booll, bool2, bool3, bool4;

booll
bool?2
bool3

bool4

0;: /* false */

'booll; /* bool2 --> true */

booll || bool2;

booll && bool2;

/* wvalue? */

/* wvalue? */

i Operators (7)

= "Unary minus" operator:

int varl = 10;

int var2;

var2 = -varl;

s Like — with not

= Negates the va

ning to the left

ue

i Expressions and statements

=i + 2 * j isan expression (has a value)

=i =9 * k; Isa statement
= ends in a semicolon

= also is an expression (value is value of i)
=i =3 =%k = 0; isallowed
= Equivalentto 1 = (§J = (k = 0));
= NOT ((1i = 3) = k) = 0;

i Comments

/* This is a comment. */
/%

* Comments can span

* multiple lines.
*/

// This is NOT an ANSI comment!

i Functions (1)

= Functions take arguments and return values:

int £f(int x)
{
int y = 10;

return y * x;

i Functions (2)

= Functions take arguments and return values:

name
int nt X)

{

int y = 10;

return y * x;

i Functions (3)

= Functions take arguments and return values:

—argument list

int £[(int x) ‘*
{

int y = 10;

return y * x;

i Functions (4)

= Functions take arguments and return values:

return type

<
int|f(int x)
{

int y = 10;

return y * x;

i Functions (5)

= Functions take arguments and return values:

body
int f£(int x) /

{

int y = 10;

return y * x;

i Functions (6)

= Functions take arguments and return values:

int £f(int x)

{ return statement
int y = 10; ‘(///

return y * x;‘

Functions (7)

= Calling the function we just defined:
/* in another function... */

int res;

int 1 = 10;

res = £(10) ;

res = £(5 + 5);

res = £(1);

res = £(i*5 + i/2);

= All of these are valid function calls
= Take in arguments, return result

Functions (8)

= Functions can take multiple arguments:
—argument list

int g{int x, int y|)<7
{

int z = 42;
return x * y * z;
}
= Argument names (x, y) preceded by
types (int)
= Arguments separated by commas

i Functions (9)

= Calling functions that take multiple
arguments:

/* in another function... */
int res;

int i = 10, j = 20;

res = g(10, 20);

res = g(5 + 5, 20);

res = g(i, J);

res = g(i*5 + i/2, j * 10);

i Functions (10)

= Not all functions return values:

void print number (int 1)

{

printf ("number is: %$d\n", 1i);

}

= Return type is void (nothing to return)
= Use this when no return value needed

i Functions (11)

= Not all functions return values:

void print number (int 1)

{
printf ("number is: %$d\n", 1i);
return; /* unnecessary */

}

= return statement not required
= unless you return in the middle of the function

i Functions (12)

= Calling this function:

/* In another function...

int 1 10;
print number (20) ;
print number (i) ;

print number (i*5 + i/2);

= Prints 20, 10, 55 respectively

*/

i Functions (13)

= Not all functions take arguments:

int five (void)

{

return 5;

= No arguments (use void to indicate)

i Functions (14)

= Calling functions without arguments:
int value;

value = five () ;

= Now value equals 5

= Note () after £five

= means "this function is being called with no
arguments”

= Without this, function won't be called!

i Functions — type declarations

= [ype declarations come at the beginning of
the function

= Need a declaration for every local variable
int foo(int x)
{
int y; /* type declaration */
y =x * 2;

return y;

i Functions — type declarations

= This is wrong:
int foo(int x)
{
int y; /* type decl */
y =x * 2; /* code */
/* type declaration after code: */
int z =y * y;
return z;

}
= Generates a compiler warning

i Local and global variables (1)

= Variable declarations can be local or global
= Local: inside a function

= Global: outside a function
= accessible from any function

i Local and global variables (2)

int x; /* Global wvariable */

int y = 10; /* Initialized global variable */

int foo(int z)

{
int w; /* local variable */
x = 42; [/* assign to a global variable */
w = 10; /* assign to a local variable */

return (x + y + z + w);

i Local and global variables (3)

= In general, avoid using global variables!

= Global variables can be changed by any
function
= makes debugging much harder

= Global variables are never necessary
= though sometimes convenient

= OK to use global "variables" if they really are
constant

= /.e. if you don't change their values

i printf ()

int a = 5;

double pi = 3.14159;

char s[] = "I am a string!";

printf("a = %d, pi = %£, s = %$s\n",
a, pi, s);

= Substitutes values for $d, %$f, %s etc.

= 3d :int, $£ : float, double, %s : string

= \n: new line

i The C preprocessor (1)

= What does the funky line
#include <stdio.h>

mean?

= C preprocessor directive

= Extra step in compilation:
= Cpp: source code -> expanded source code
= gcc: compiles source code -> object code
= gcc (Id): links object code -> executable
= gcc does all this for you

i The C preprocessor (2)

= What does the funky line
#include <stdio.h>

mean?

= Includes the declaration of print£ ()

= NOT the implementation
= allows your code to use print£ ()

= The linker adds in the implementation

i Conditionals (1)

= Need to be able to test for conditions:

int a = 10;
if (a < 20)
{
printf ("less than 20\n");

}

else

{
printf ("not less than 20\n");

}

i Conditionals (2)

= Test: 0 is "false", anything else is "true":

if (1) /* true */

{
printf ("less than 20\n");

}

else

{
printf ("not less than 20\n");

i Conditionals (3)

= VERY common error:
int a = 0;
if (a = 10) /* always true! */
{
printf ("a equals 10\n");

}

else

{
printf ("a doesn t equal 10\n");

i Conditionals (4)

= Should be:
int a = 0;
if (a == 10) /* not always true */

{
printf ("a equals 10\n");

}

else

{
printf ("a doesn t equal 10\n");

i Conditionals (5)

= else clause is optional:
int a 0;

if (a == 10)

{

printf ("a equals 10\n");

i Conditionals (5)

= else if for multiple cases:
int a = 0;
if (a == 10) {

printf ("a equals 10\n");
} else 1if (a < 10) {

printf("a is less than 10\n");
} else {

printf("a is greater than 10\n");

i for loop (1)

= Need to do things repeatedly:

int 1;
{

printf ("cowabunga!!!\n") ;

i for loop (2)

for (<initialization>;
<test>;
<increment>)

{ <body> }

for (i = 0; i < 10; i++)
{

printf ("cowabunga!!!\n") ;

i for loop (3)

for (<initialization>;
<test>;
<increment>)

{ <body> }

for Qi = ok i < 10; i++)
{

printf ("cowabunga!!!\n") ;

i for loop (4)

for (<initialization>;
<test>;
<increment>)

{ <body> }

for (i = 0; (i < 10} i++)
{

printf ("cowabunga!!!\n") ;

i for loop (5)

for (<initialization>;
<test>;
<increment>)

{ <body> }

for (i:O;i<10;
{

printf ("cowabunga!!!\n") ;

‘L for loop (6)

for (<initialization>;

<test>;

<increment>)

{ <body> }

for (i = 0; i < 10; i++)

{

printf ("cowabunga!!!\n") ;

i That's all for now!

= Much more on all these topics in later lectures
= Do first assignment to get familiar with basics
= Use "style checker" to avoid style mistakes

= Have fun!

