REAL-TIME CONSTRAINED TRAJECTORY GENERATION APPLIED TO A FLIGHT CONTROL EXPERIMENT

Mark B. Milam ∗,1 Ryan Franz ∗∗, Richard M. Murray ∗

∗ Division of Engineering and Applied Science
Control and Dynamical Systems
California Institute of Technology
Pasadena, CA 91125

∗∗ Electrical and Computer Engineering
University of Colorado, Boulder, CO 80309

Abstract: A computational approach to generate real-time, optimal trajectories for a flight control experiment is presented. Minimum time trajectories are computed for hover-to-hover and forward flight maneuvers. Instantaneous changes in the trajectory constraints that model obstacles and threats are also investigated. Experimental results using the Nonlinear Trajectory Generation software package show good closed-loop performance for both maneuvers and in the presence of obstacles. Success of the algorithm demonstrates that high-confidence real-time trajectory generation is achievable in spite of the highly nonlinear and non-convex nature of the problem.

Keywords: Trajectory planning, real-time, optimal control, optimization, nonlinear control, guidance systems

1. INTRODUCTION

Real-time trajectory generation in the presence of constraints is an important problem in the control of mechanical systems. Typical applications of trajectory generation and tracking are obstacle avoidance of robotic vehicles, interception of a maneuvering target by a missile, and rapid changes of trajectories for an Uninhabited Combat Air Vehicle (UCAV) to address dynamic threats. Advanced control approaches are needed to achieve such missions (Uninhabited Air Vehicles: Enabling Science for Military Systems, 2000), and (McCall and J.A. Corder, 1996). The objective of this paper is to present a solution to this class of problems and validate the solution on an experiment that represents a real-world application.

The approach for trajectory generation and tracking advocated in this paper is the two degree of freedom design shown in Figure 1. This paradigm consists of a trajectory generator and a feedback controller. The trajectory generator provides a feasible feed-forward control and reference trajectory in the presence of system and environment constraints. Given inherent modeling uncertainty, a feedback controller (tracker) is necessary to provide stability around the reference trajectory. An advantage of this approach is that a stabilizing controller is provided with the feasible trajectory, not just the trajectory itself. Furthermore, it is possible to make the reference trajectory as aggressive as is allowed by the model. A recent companion paper presents an alternative to the two degree of freedom design (Dunbar et al., 2001).

A prime example of a case where the two degree of freedom design would be useful is in the control of an UCAV. The desired objective of the UCAV would be commanded by the operator or pre-programmed without operator intervention. The objective might be to engage a target in a dynamically changing environment or to determine a trajectory that minimizes the cross-section of the UCAV in order to evade radar in a reconnaissance mission.

The Caltech ducted fan (Milam and Murray, 1999) is a scale model of a highly maneuverable UCAV and will be used as a test-bed to validate our trajectory generation and tracking methodology. Our desired objective will be to track positions and velocities of the ducted fan, prescribed by two joysticks that the operator is changing in real-time, in minimum time. This must be achieved while ensuring that the test vehicle is stabilized and operating within all flight and actuation constraints.

Real-time trajectory generation for a ducted fan has been considered in (Nieuwstadt and Murray, 1998). In this case, differentially flat systems (Fliess et al., 1999) with no constraints are considered. Additionally, no optimization criterion was used when computing the trajectories. (Faiz et al., 2001) studies a system similar to the ducted fan, where constraints are approximated with linear segments and the problem cast into a linear programming problem. This may be possible for trajectory constraints but difficult for input constraints. The reason is that deriving the inputs using the the differential flatness formulation results in a highly nonlinear and non-convex problem.

The primary contribution of this paper is to implement and validate the Nonlinear Trajectory Generation (NTG) software package described in (Milam et al., 2000) on a real-time flight control experiment. NTG is a software package used for trajectory generation that combines elements of geometric control, B-splines, and nonlinear programming. In addition, we will demonstrate that

1 Author to whom correspondence should be addressed, email: milam@cds.caltech.edu.
real-time trajectory generation is possible in a complex and non-convex environment with dynamic constraints. Finally, we will provide some insights on handling the convergence issues associated with using nonlinear programming techniques on-line.

The organization of the papers is as follows. The Caltech ducted fan and experimental setup will be described in Section 2. In Section 3, we will present the dynamic model of the ducted fan. This section also presents the aerodynamic coefficients used in the model. The formulation of the optimization problem and desired objective is provided in Section 4. In Section 5, we will provide a brief overview of NTG, the proposed methodology for trajectory generation. The timing and trajectory management is given in Section 6 and all trajectory generation algorithms and control laws are hosted on four signal processors.

3. FLIGHT EXPERIMENT MATH MODEL

The configuration variables x and z represent the horizontal and vertical inertial translations, respectively, of the ducted fan while θ is the rotation of the ducted fan about the boom axis. The axis system located at the center of the ducted fan and rotating with it will be referred to as the body frame and be denoted by a b subscript.

$$m\ddot{x} + F_{X_b} - F_{X_a} \cos \theta - F_{Z_b} \sin \theta = 0$$
$$m\ddot{z} + F_{Z_a} + F_{Z_b} \sin \theta - F_{Z_b} \cos \theta = mg_{eff}$$
$$J\ddot{\theta} - M_a + \frac{1}{r_s} I_p \Omega \dot{x} \cos \theta - F_{Z_b} r_f = 0,$$

where $F_{X_a} = D \cos \gamma + L \sin \gamma$ and $F_{Z_a} = -D \sin \gamma + L \cos \gamma$ are the aerodynamic forces. See (Milam and Murray, 1999) for a complete derivation of the equations of motion. We chose a spatial representation of the equations of motion in order that we can consider both hover and forward flight modes. F_{X_b} and F_{Z_b} are thrust vectoring body forces. I_p and Ω are the moment of inertia and angular velocity of the ducted fan propeller, respectively. $J = .25$ is the moment of ducted fan and r_f is the distance from center of mass along the X_b axis to the effective application point of the thrust vectoring force. The angle of attack α can be derived from the pitch angle θ and the flight path angle γ by

$$\alpha = \theta - \gamma.$$

The flight path angle can be derived from the spatial velocities by

$$\gamma = \arctan \frac{-\dot{z}}{\dot{x}}.$$

The lift (L), drag (D), and moment (M) are given by

$$L = qSC_L(\alpha), D = qSC_D(\alpha), M = cSC_M(\alpha),$$

respectively. The dynamic pressure is given by $q = \frac{1}{2} \rho V^2$. The norm of the velocity is denoted by V. S the surface area of the wings, and ρ is the atmospheric density. Figure 3 depicts the coefficients of lift ($C_L(\alpha)$) and drag ($C_D(\alpha)$) and the moment coefficient ($C_M(\alpha)$). These coefficients were determined from a combination of wind tunnel and flight testing.

4. OPTIMIZATION PROBLEM FORMULATION

We chose a very aggressive optimization problem to solve on-line: Minimize time (T) subject to
the trajectory constraints \(0 \leq F_{X_b} \leq F_{X_b}^{\max}, \quad F_{X_b}^{\max}/2 \leq F_{z_b} \leq -F_{z_b}^{\max}/2\), and \(z_{min} \leq z \leq z_{max}\), the boundary constraints at the initial time \(x(0), \dot{x}(0), z(0), \dot{z}(0), \theta(0), \dot{\theta}(0), \ddot{\theta}(0)\), and boundary conditions at the final unknown time \(T\)

\[
x(T), \dot{x}(T), z(T), \dot{z}(T), \theta(T), \dot{\theta}(T)
\]

We chose \(F_{X_b}^{\max} = 11\) N, \(z_{min} = -1\) m, \(z_{max} = 1\) m for all the test results presented in this paper. In the "two degree of freedom design," we chose the forces constraints in the trajectory generation to be conservative so that the stabilizing controller has some remaining control authority to track the reference trajectory. The reason that we chose minimum time as the objective was to make the trajectories as aggressive as possible. The boundary constraints on the initial time accelerations provide us with smooth inputs in the case when a new trajectory is computed away from an equilibrium. Our final boundary condition will always be an equilibrium.

5. TRAJECTORY GENERATION METHODOLOGY

There are three components to the trajectory generation methodology we propose. The first is to determine a parameterization (output) such that Equation (1) can be mapped to a lower dimensional space (output space). (Fliess et al., 1999) gives information on finding this mapping if the system is flat. The idea is to map dynamic constraints to algebraic ones. Once this is done the cost and constraints can also be mapped to the output space. The second is to parameterize each component of the output in terms of an appropriate B-spline polynomial. Finally, sequential quadratic programming is used to solve for the coefficients of the B-splines that minimize the cost subject to the constraints in output space. See (Milam et al., 2000; Petit et al., 2001) for more details on this approach. The NTG software package is an implementation of this concept. The user provides the cost and the constraints in terms of the outputs and their derivatives as well as the Jacobian of the cost and constraints with respect to each output and the maximum derivative that occurs in each output.

By using this methodology, we can sufficiently reduce the dimension of the nonlinear programming problem to make real-time computation possible. For our system we will choose as outputs \(z_1 = x(t), \ z_2 = z(t), \) and \(z_3 = \theta(t), \) and \(z_4 = T\) since the system in Equation (1) is not obviously differentially flat. By choosing this parameterization, we will have one equality constraint that will need to be satisfied over the entire trajectory. If we were only concerned with forward flight, it would be possible to choose a parameterization that contains no equality constraints. See (Martin, 1996) for a complete discussion of this topic. In addition, a particular parameterization may also depend on the complexity of deriving the constraints from the outputs. However, generally it is recommended to use a parameterization that eliminates all equality constraints.

6. TIMING AND TRAJECTORY MANAGEMENT

We will consider two different modes in the experimental results: hover-to-hover and forward flight. These modes may also be combined. In the hover-to-hover mode the user commands a desired position \(z_d\) and \(z_d\) via the joysticks. Every \(t_{sample}\) seconds a new minimum time trajectory is computed from the boundary conditions \(t_{sample}\) seconds into the future to the desired equilibrium position given by current position of the joysticks. Equilibrium is defined for the hover-to-hover mode as being the desired translational position, zero velocities, \(\theta = \pi/2, \ F_{z_b} = 0, \) and \(F_{X_b} = 7\) N. The forward flight mode is similar to the hover-to-hover mode except that the user commands the desired position in the vertical direction \(z_d\) and the desired spatial velocity \(\dot{x}_d\). The equilibrium manifold if found by solving the resulting transcendental equations when \(\ddot{z} = 0\) in Equation (1). A plot of the equilibrium manifold is shown in Figure 4. Figure 5 shows the timing...
trajectory, but a small discontinuity may occur. If the optimization takes longer than \(t_{\text{sample}} \) seconds in the future as an initial boundary condition and the equilibrium condition indicated by the joysticks as the final boundary condition. If the optimization has finished successfully before \(t_{\text{sample}} \) seconds, at \(t = t_{\text{sample}} \) the resulting trajectory is used and another optimization is triggered in the same fashion. If the optimization takes longer than \(t_{\text{sample}} \) seconds, we truncate the first \(t_{\text{runtime}} - t_{\text{sample}} \) seconds to attempt to maintain continuity in the trajectory, but a small discontinuity may occur. For this reason, \(t_{\text{sample}} \) should ideally be longer than the expected run times of NTG. An important point is that the value of \(t_{\text{sample}} \) is not a constant. The reason is as follows: the initial bound for the next optimization must lie on a point on the last accepted trajectory where the differential equations are exactly satisfied. This is enforced at 21 points along each trajectory, but because of the variable horizon length (due to minimum time), the spacing of the points in time varies. For this reason, \(t_{\text{sample}} \) is chosen to coincide with the closest enforcement point, within some nominal sample time.

Due to the nature of the trajectory generation methodology used in this experiment, the convergence to an optimal solution is not guaranteed. Because of this, higher-level management logic also has to decide whether to use a given trajectory computed by NTG. The most obvious criterion to accept a trajectory is an indication of convergence returned by NTG. Other criteria include an upper bound on the acceptable runtime. For example, if the runtime is more than 10 percent longer than \(t_{\text{sample}} \), the current trajectory generation computation is aborted. If the decision is made to reject a trajectory, the last accepted trajectory continues to be used and another optimization is triggered as usual. If the existing trajectory is exhausted before another one is accepted, the final equilibrium condition is continued as long as necessary. In hover, this simply means that \(x \) and \(z \) are kept at the desired values and all velocities are zero; in forward flight, \(z \) is incremented with time according to the desired velocity and \(z \) is kept at the desired value.

7. EXPERIMENTAL RESULTS

In this section we will first give a description of the controllers and observers necessary for stabilization about the reference trajectory. Second, we will discuss the NTG setup used for both the hover-to-hover and forward flight modes. Finally, we will provide example trajectories using NTG for two flight modes on the Caltech Ducted Fan experiment.

7.1 Stabilization Around Reference Trajectory

Although the reference trajectory is a feasible trajectory of the model, it is necessary to use a feedback controller to counteract model uncertainty. There are two primary sources of uncertainty in our model: aerodynamics and friction. Elements such as the ducted fan flying through its own wake, ground effects and thrust not modeled as a function of velocity and angle of attack contribute to the aerodynamic uncertainty. The friction in the vertical direction is also not considered in the model. The prismatic joint has an unbalanced load creating an effective moment on the bearings. The vertical frictional force of the ducted fan stand varies with the vertical acceleration of the ducted fan as well as the forward velocity. Actuation models are not used when generating the reference trajectory, resulting in another source of uncertainty.

The separation principle was kept in mind when designing the observer and controller. Since only the position of the fan is measured, we must estimate the velocities. The observer that works best to date is an extended Kalman filter. The optimal gain matrix is gain scheduled on the forward velocity. The Kalman filter out performed any method that derived the derivative using only the position data and a filter.

The stabilizing LQR controllers were gain scheduled on pitch angle (\(\theta \)) and the forward velocity. The weights were chosen differently for the hover-to-hover and forward flight modes. For the forward flight mode, a smaller weight was placed on the horizontal (\(x \)) position of the fan compared to the hover-to-hover mode. Furthermore, the \(z \) weight was scheduled as a function of forward velocity in the forward flight mode. There was no scheduling on the weights for hover-to-hover. The elements of the gain matrices for each of the controller and observer are linearly interpolated over 51 operating points.

7.2 Nonlinear Trajectory Generation Parameters

In Section 4, we outlined the optimal trajectory generation problem we intended to solve. The three outputs \(z_1 = x, z_2 = z, \) and \(z_3 = \theta \) will each be parameterized with four (intervals) , sixth order, \(C^4 \) (multiplicity), piecewise polynomials over the time interval scaled by the minimum time. The last output \(z_4 = T, \) representing the time horizon to be minimized, is parameterized by a scalar. By choosing the outputs to be parameterized in this way, we are in effect controlling the frequency content of inputs. Since we are not including the actuators in the model, it would be undesirable to have inputs with a bandwidth higher than the actuators. There are a total of 37 variables in this optimization problem. The trajectory constraints are enforced at 21 equidistant break points over the scaled time interval.

There are many considerations in the choice of the parameterization of the outputs. Clearly there is a trade between the parameters (variables, initial
values of the variables, and breakpoints) and measures of performance (convergence, runtime, and conservative constraints). Extensive simulations were run to determine the right combination of parameters to meet the performance goals of our system.

7.3 Forward Flight

To obtain the forward flight test data, the operator commanded a desired forward velocity and vertical position with the joysticks. We set $t_{\text{sample}} = 2.0$ sec. By rapidly changing the joysticks, NTG produces high angle of attack maneuvers. Figure 6 depicts the reference trajectories and the actual θ and \dot{x} over 60 sec. Figure 7 shows the commanded forces for the same time interval. The sequence of maneuvers in this plot are the following. First, the ducted fan transitions from near hover to forward flight. Second, the ducted fan is commanded from a large forward velocity to a large negative velocity. Finally, the ducted fan is commanded to go to hover. Figure 8 is an illustration of the ducted fan altitude and x position for these maneuvers. The airfoil in the figure depicts the pitch angle (θ). It is apparent from this figure that the stabilizing controller is not tracking well in the z direction. This is due to the fact that unmodeled frictional effects are significant in the vertical direction. We believe that this could be corrected with an integrator in the stabilizing controller. Figure 9 shows the run times for the 30 trajectories computed in the 60 second window. The average computation time is less than one second. Each of the 30 trajectories converged to an optimal solution and was approximately between 4 and 12 seconds in length. A random initial guess was used for the first NTG trajectory computation. Subsequent NTG computations used the previous solution as an initial guess. Much improvement can be made in determining a “good” initial guess. Improvement in the initial guess will improve not only convergence but also computation times.

7.4 Hover-to-Hover

To obtain hover-to-hover test data, the operator commanded a desired horizontal and vertical position with the joysticks. We set $t_{\text{sample}} = 1.0$ sec. By rapidly changing the joysticks, NTG can produce very aggressive trajectories. The top plot in Figure 10 shows z and x positions of the ducted fan and the trajectory constraints. The maneuvers are created by holding the commanded z constant and changing the commanded x by the following sequence: 0 \mapsto 7.5 \mapsto 15 \mapsto 7.5 \mapsto 0. (Note: these commanded positions are approximate.) These maneuvers were done over a time period of 60 seconds with a computation time on average of .7 seconds for 4 to 8 seconds of trajectory. Each of the 60 trajectories converged to a local optimal solution. The bottom plot in Figure 10 corresponds to approximately the same changes in x but with some terrain added. These trajectories were run immediately after the ones without terrain by toggling a variable our instrument display to change the terrain. There was no new initial guess provided to NTG when it was required to solve this optimization problem. The terrain avoidance was also not tested off-line. These results give a rea-
sonable argument for computing the trajectories online. It would be difficult to store trajectories for unknown threats and changes in terrain. All but one of the 60 trajectories converged to a local optimal solution. The one that did not converge was a result of asking the ducted fan to move to a position in violation of the trajectory constraints. The average computation time of each trajectory was approximately .8 seconds for 4 to 9 seconds of trajectory.

Along the same lines of a hierarchical control scheme is to develop different levels of trajectory generation. In our tests, we noticed that trajectories could be any length from 1 sec to 25 sec but we were using the same number of variables for each trajectory. It may be useful to have NTG determine trajectories using a kinematic model of the ducted fan at a high level and then determine trajectories at a lower level using a dynamic model. By doing this we could get a more consistent length of trajectory for each computation.

Another topic for future research would be further development of on-line trajectory generation tools such as NTG. Developing a sequential quadratic programming routine designed specifically to run in real-time is a research goal. A sequential quadratic programming that incorporates an analytical Hessian and/or based on the Interior Point Method are potential candidates to get reduced run-times and increased rate of convergence. B-splines are only one possibility of basis functions to use to parameterize the outputs. There may be other basis functions, such as rational B-splines, that better span the trajectory space of a system than B-splines and are more suitable for real-time computations.

9. ACKNOWLEDGEMENTS

The authors greatly appreciate the contributions of William Dunbar in helping to identify the model of the Caltech Ducted Fan. Thanks also to Nicholas Petit for his advise. This work was funded in part by DARPA grant F33615-98-C-3613.

10. REFERENCES

