Exercise 6.4 (Integral feedback for rejecting constant disturbances) Consider a linear system of the form

\[
\frac{dx}{dt} = Ax + Bu +Fd, \quad y = Cx
\]

where \(u \) is a scalar and \(d \) is a disturbance that enters the system through a disturbance vector \(F \in \mathbb{R}^n \). Assume that the matrix \(A \) is invertible and \(CA^{-1}B \neq 0 \). Show that integral feedback can be used to compensate for a constant disturbance by giving zero steady-state output error even when \(d \neq 0 \).

Solution. Consider first the steady state solution given by

\[
Ax + Bu + Fd = 0.
\]

It is clear that this equation does not have a solution which is zero unless the vectors \(B \) and \(F \) are parallel. When this is not the case we cannot expect to have a solution with zero steady state \(x \) no matter what control law is used. We therefore have to have a more modest goal, namely that the projection \(y = Cx \) of the state is zero in steady state.

A candidate for a controller which drives \(y \) to zero is the proportional-integral (PI) controller

\[
u = -Kx - k_i \int_0^t y(\tau) d\tau
\]

where \(y = Cx \). To design the controller we augment the state \(x \) by the output \(z = Cx \) which we would like to drive to zero. The augmented system is

\[
\frac{dx}{dt} = \begin{bmatrix} A & 0 \\ C & 0 \end{bmatrix} x + \begin{bmatrix} B \\ 0 \end{bmatrix} u + \begin{bmatrix} F \\ 0 \end{bmatrix} d, \quad u = -Kx - k_i z.
\]

We will first explore the conditions for the augmented system to be reachable by forming the reachability matrix:

\[
W_r = \begin{bmatrix} B & AB & \ldots & A^{n-1}B \\ 0 & CB & \ldots & CA^{n-1}B \end{bmatrix}.
\]

To find the conditions for \(W_r \) to be of full rank, the matrix will be transformed by making column operations. Let \(a_i \) be the coefficients of the characteristic polynomial of the matrix \(A \). Multiplying the first column by \(a_n \), the second by \(a_{n-1} \) and the \((n-1) \)th column by \(a_1 \) and adding the sum to the last column the matrix \(W_r \), it follows from the Cayley-Hamilton theorem that the transformed matrix becomes

\[
W_r = \begin{bmatrix} B & AB & \ldots & 0 \\ 0 & CB & \ldots & b_n \end{bmatrix},
\]

where

\[
b_n = C(A^{n-1}B + a_1A^{n-2}B + \ldots + a_{n-1}B)
= CA^{-1}(A^n + a_1A^{n-1} + \ldots + a_{n-1}A)B = -a_nCA^{-1}B = -(\det A)CA^{-1}B.
\]

Notice that we have used the Cayley-Hamilton theorem to obtain the last inequality. The parameter \(a_n \) is not zero because it was assumed that the matrix \(A \) was invertible. It also follows from the given assumptions that the number \(a_n \) is not zero and together these conditions imply that the system is reachable.

The closed loop system with the PI controller is

\[
\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} A - BK & Bk_i \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ F \end{bmatrix} d.
\]

Since the system is reachable we can find controller gains \(K \) and \(k_i \) that assigns arbitrary eigenvalues to the closed loop system. Provided that the eigenvalues are in the left plane the closed loop system has an
equilibrium \(x_e, z_e \) where
\[
\begin{bmatrix}
A - BK & Bk_i \\
C & 0
\end{bmatrix}
\begin{bmatrix}
x_e \\
z_e
\end{bmatrix}
+ \begin{bmatrix}
F \\
0
\end{bmatrix}
d.
\]
The last line of this matrix equation implies that \(z = Cx_e = 0 \) which means that the output \(y \) is zero in steady state. Notice however that the state \(x_e, z_e \) is in general different from zero except for the case where \(F \) and \(B \) are parallel. If \(F = \alpha B \) the equation above has the solution
\[
x_e = 0, \quad z_e = \frac{\alpha}{k_i}d.
\]
In this case, the state \(x_e \) and the output \(y_e \) are zero but the augmented state \(z_e \) is different to compensate for the disturbance.