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How should we sell my old cell phone?

What goals might we have?

I maximize revenue

I get it to the person who has the most use for it
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How should we (re)design network routing
protocols?

What goals might we have?

I minimize overall latencies

I distribute traffic “fairly” among ISPs
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Economics and Computer Science

I selling cell phone = economics, traditional auction theory

I routing protocols = computer science, traditional networks
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How should we sell my old cell phone?

Mature theory of auctions; computational perspective provides

I new applications
I new scale
I new challenges

I new tools/focus
I complexity bounds
I worst-case approximation
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How should we (re)design network routing
protocols?

(Less mature) science of networks; economic perspective provides

I focus on incentives
I designers
I participants

I focus on outcomes and metrics
I equilibrium notions
I concepts of welfare
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This course

Will sample recent topics at active intersection between game theory
and computer science, “algorithmic game theory”.

Research-focused.
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Today

I find out about your background

I establish a common language

I preview some topics for the semester

I course mechanics
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Introductions

For now:

I Name

I Background

I Experience

I Interests

Survey at end of class
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Sources for today’s lecture

I Nisan, Roughgarden, Tardos, and Vazirani (eds), Algorithmic
Game Theory, Cambridge University, 2007. [AGT book]

I Tim Roughgarden’s lecture notes from his “Topics in
Algorithmic Game Theory” course
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Outline

1 Algorithmic Mechanism Design

2 Defining and Quantifying the Effects of Selfishness

3 Algorithmic? Game Theory?

4 This term
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Algorithmic Mechanism Design

Want to perform computation on data held by self-interested
participants

Example: auction

I private information: how much each person values the cell
phone

I want “mechanism”: protocol that interacts with participants,
determines outcome (winner and how much she pays)
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First-price auction

Winner is highest bidder; selling price is her bid.

I Bidders shade bids

I Difficult to know how to bid

I Difficult to predict outcome
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Ascending auction

(Like an art auction)
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Second-price auction

Winner is highest bidder; selling price is second-highest bid.

I Famous result [Vickrey, 61]: every participant in a second-price
auction may as well bid truthfully.

I Easy to know how to bid

I Easy to predict outcome, given valuations

Auctions by eBay, Amazon, Google, Microsoft: similar to
second-price.
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Algorithmic Mechanism Design asks. . .

I How much does it matter that our mechanism doesn’t have
direct access to the participants’ data?

I What is the impact of computational constraints?
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Second-price (Vickrey) auction

I Each bidder i has private valuation vi (“willingness to pay”);
submits some bid bi to auctioneer.

I Auction has two parts:
I Allocation scheme: who gets what? (here, highest bidder gets

item)
I Payment scheme: who pays what to whom? (here, highest

bidder pays second-highest bid to the auctioneer and nobody
else pays anything)

I We’ll assume if i loses, has utility 0; if i wins and pays p, has
utility vi − p (quasilinear utility)
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The Vickrey auction is truthful/strategyproof

Theorem

For every player i and every set {bj}j 6=i of bids for the other players,
player i maximizes her utility by choosing bi = vi.

That is, bidding truthfully is a dominant strategy, even if you know
everyone else’s bids!
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The Vickrey auction is truthful/strategyproof

Proof.

Fix vi, bj , ∀j 6= i. TS: bi = vi maximizes utility. Let B = maxj 6=i bj .
Three cases:

I Case 1: vi < B.

I Case 2: vi > B.

I Case 3: vi = B.

No false bid yields strictly higher utility!
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Three cases:
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Vickrey: Regrets

Theorem

For every bid bi 6= vi, there exists a set of bids {bj}j 6=i for the other
players such that i’s utility is strictly lower than it would have been
at bi = vi.

Proof.
I Case 1: bi < vi. Set B such that bi < B < vi, so i now loses.

I Case 2: bi > vi. Set B such that bi > B > vi, so i now wins
and overpays.

This property makes the auction strongly truthful.
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Additional properties of Vickrey auctions

Theorem

Truthtellers always get nonnegative utility.

So, we say the Vickrey auction is individually rational—players are
willing to participate.

Katrina Ligett, Caltech Lecture 1 21



Why do we care about truthfulness?

I Bidders don’t need to do market research

I Bidders find it easy to compute their bids

I Outcomes are predictable

I Auctioneer can try to solve optimization problem on the true
valuations
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What might the auctioneer try to optimize?

I Social surplus: max
∑n

i=1 vixi, where xi is a binary indicator of
the winner.

I Auctioneer revenue

I . . .
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More properties of the Vickrey auction

Theorem

If all players bid truthfully, the outcome maximizes social surplus.

Thus, the Vickrey auction is efficient in the economic sense.

Theorem

The Vickrey auction works with general valuations.

Theorem

The Vickrey auction is polynomial (linear)-time.

Thus, is is efficient in the computational sense.
In more complex auction settings, the interplay between these three
constraints and the incentive constraints is a main focus of study.
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Outline

1 Algorithmic Mechanism Design

2 Defining and Quantifying the Effects of Selfishness

3 Algorithmic? Game Theory?

4 This term
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Quantifying the Effects of Selfishness

In the auction setting we just discussed,

I the truthfulness property meant that we didn’t have to consider
the impact of player selfishness, and

I the best action for each player doesn’t depend on others’
actions.

In game settings where that’s not true, we need to come up with a
model for how players will act and of the resulting outcomes, along
with a metric for outcome quality.
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Selfish Routing

What route should a commuter take to campus tomorrow?

I Selfishly want to minimize travel time.

I Probably don’t consider impact on other commuters.

What is effect of everyone acting selfishly?
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Pigou’s Example (1920)

Players wish to drive from s to t
Two routes:

I Long but wide

: Time always 1 hour

I Short but narrow

: Time equals fraction of traffic

Continuous, non-decreasing cost functions c(·) represent latency as a
function of the fraction of traffic using that edge
(congestion-dependent).

Graphics in this section taken from Tim Roughgarden’s book Selfish Routing.
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Pigou’s Example

I If everyone wants to minimize their commute time, what will
happen?

We expect all take bottom edge and thus take 1
hour.

I Could we do better if we had centralized control?

Yes! Force
half and half, to get average drive time of 45 minutes.

How bad can the impact of selfish behavior be?
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Braess’ Paradox (1968)

New commuting example: Two routes, each with one short/narrow
section and one long/wide section.
Traffic splits 50/50 and everyone has a 90-minute commute.
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What if we build a very efficient road to try to help?
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Observations from Braess’ Paradox
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I Again, selfishness can lead to sub-optimal outcomes

I Everyone is hurt by the selfishness, in this case

I Counterintuitive outcomes
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Outline

1 Algorithmic Mechanism Design

2 Defining and Quantifying the Effects of Selfishness

3 Algorithmic? Game Theory?

4 This term
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Algorithmic? Game Theory?

In routing examples, implicitly assumed that players would find a
stable outcome, or equilibrium. Also assumed that they have the
information and resources to compute such an outcome.
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Game Theory 101

Game theory gives formal models for situations where multiple
agents take actions that may affect one another’s outcomes.

Figure: Game matrix, or cost matrix for the Prisoners’ Dilemma game.
(Figures in this section taken from AGT.)

Only stable solution: both confess.
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Matching Pennies

In Prisoners’ Dilemma, there’s an outcome such that no player
would wish to unilaterally deviate from it. Not always the case!

Figure: Matching Pennies
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Simultaneous-move games

I Each player (agent) i simultaneously picks a strategy, each
from her own set Si of possible strategies.

I The outcome for each player is fully determined by the vector
S = ×iSi of strategies.

I Each player has a preference ordering or utility function over
outcomes.

Generally, we won’t rely on explicit representations (like matrix)
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Solution concepts

In Prisoners’ Dilemma, exists dominant strategy solution s ∈ S:
each player i is best off playing si, no matter what strategy vector
s′ ∈ S the others choose:

ui(si, s
′
−i) ≥ ui(s′i, s

′
−i)

As in Vickrey example, one goal of mechanism design is to design
games with (good!) dominant strategy solutions.
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Pure Strategy Nash Equilibria

Strategy vector s ∈ S is a Nash Equilibrium if ∀i, ∀s′i ∈ Si,

ui(si, s−i) ≥ ui(s′i, s−i)

I need not be optimal

I can exist multiple equilibria with very different quality

I not clear how to compute, select, and coordinate. . .
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Mixed Strategy Nash Equilibria

Allow randomizing, risk-neutral players who attempt to maximize
expected payoff.

Theorem

Any game with a finite player set and finite strategy set has a mixed
Nash equilibrium.
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Outline
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2 Defining and Quantifying the Effects of Selfishness
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Course goals

The goal of this course is to engage with current topics of research
at the interface between economics and computer science.

I hope that by the end of the term, you will

I have the background (or know how to get the background) to
read the emerging literature, engage in discussion, and attend
talks in the area

I have thought deeply about some active topics of research

I have explored the interface between algorithmic game theory
and your other areas of interest/expertise
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Course content

The goal of this course is to engage with current topics of research
at the interface between economics and computer science.

Two main topics:

I Quantifying the cost of selfish behavior (with an emphasis on
learning)

I Algorithmic Mechanism Design (with an emphasis on the
Bayesian)

Also: guest lectures, special topics (as time allows), presentations on
your projects
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Course mechanics

The goal of this course is to engage with current topics of research
at the interface between economics and computer science.

I NO “homework”

I NO exams

I Participation (20%): includes occasional surveys,
self-assessments, assessments of classmates’ presentations.

I Teaching (20%): required once; present core topics.

I Reaction paper (20%): 4-6 pages synthesizing, reflecting on,
and engaging with literature.

I Project (40%): substantial engagement with a current topic of
research. Deliverables: a short proposal, a 10-12 page report,
and an in-class presentation.
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Maturity and integrity

The goal of this course is to engage with current topics of research
at the interface between economics and computer science.

I Most of us will have to do extra outside reading. As needed,
seek guidance on selecting these readings.

I You’ll be selecting one or two areas to focus on. Again, seek
guidance.

I Academic integrity: This course will require you to present and
build on many existing sources. Proper attribution of ideas,
text, and paraphrased text is required, in both oral and written
presentation.

This is your course! Communicate about content/pace. And have
fun!
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Survey

Google “Katrina Ligett” to find course website (URL unstable)
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