Column Subset Selection

Joel A. Tropp

Applied & Computational Mathematics
California Institute of Technology
jtropp@acm.caltech.edu

Thanks to B. Recht (Caltech, IST)
Column Subset Selection

\[A = \begin{bmatrix} \text{\cellcolor{orange}} & \text{\cellcolor{green}} & \text{\cellcolor{blue}} & \text{\cellcolor{brown}} & \text{\cellcolor{black}} & \text{\cellcolor{red}} \end{bmatrix} \]

\[\tau = \{ \text{\cellcolor{orange}}, \text{\cellcolor{green}}, \text{\cellcolor{blue}}, \text{\cellcolor{brown}}, \text{\cellcolor{black}}, \text{\cellcolor{red}} \} \]

\[A_\tau = \begin{bmatrix} \text{\cellcolor{orange}} & \text{\cellcolor{green}} & \text{\cellcolor{blue}} & \text{\cellcolor{brown}} & \text{\cellcolor{red}} \end{bmatrix} \]
Spectral Norm Reduction

Theorem 1. [Kashin–Tzafriri] Suppose the n columns of A have unit ℓ_2 norm. There is a set τ of column indices for which

$$|\tau| \geq \frac{n}{\|A\|^2} \quad \text{and} \quad \|A_\tau\| \leq C.$$

Examples:

- A has identical columns. Then $|\tau| \geq 1$.

- A has orthonormal columns. Then $|\tau| \geq n$.

Column Subset Selection, MMDS, Stanford, June 2008
Spectral Norm Reduction

Theorem 1. [Kashin–Tzafriri] Suppose the \(n \) columns of \(A \) have unit \(\ell_2 \) norm. There is a set \(\tau \) of column indices for which

\[
|\tau| \geq \frac{n}{\|A\|^2} \quad \text{and} \quad \|A_{\tau}\| \leq C.
\]

Theorem 2. [T 2007] There is a randomized, polynomial-time algorithm that produces the set \(\tau \).

Overview:
- Randomly select columns
- Remove redundant columns
Random Column Selection: Intuitions

- Random column selection reduces norms
- A random submatrix gets “its share” of the total norm
- Submatrices with small norm are ubiquitous
- Random selection is a form of regularization
- Added benefit: Dimension reduction
Example: What Can Go Wrong

\[A = \begin{bmatrix} \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} \end{bmatrix} \]

\[A_\mathbf{T} = \begin{bmatrix} \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} \end{bmatrix} \]

\[\| A \| = \| A_\mathbf{T} \| = \sqrt{2} \quad \Longrightarrow \quad No \ \text{reduction!} \]
The $(\infty, 2)$ Operator Norm

Definition 3. The $(\infty, 2)$ operator norm of a matrix B is

$$\|B\|_{\infty, 2} = \max \{\|Bx\|_2 : \|x\|_{\infty} = 1\}.$$

Proposition 4. If B has s columns, then the best general bound is

$$\|B\|_{\infty, 2} \leq \sqrt{s} \|B\|.$$
Lemma 5. Suppose the n columns of A have unit ℓ_2 norm. Draw a uniformly random subset σ of columns whose cardinality

$$|\sigma| = \frac{2n}{\|A\|^2}.$$

Then

$$\mathbb{E} \|A_\sigma\|_{\infty,2} \leq C\sqrt{|\sigma|}.$$

Problem: How can we use this information?
Theorem 6. [Pietsch, Grothendieck] Every matrix B can be factorized as $B = TD$ where

- D is diagonal and nonnegative with $\text{trace}(D^2) = 1$, and
- $\|B\|_{\infty,2} \leq \|T\| \leq \sqrt{\pi/2} \|B\|_{\infty,2}$
Lemma 7. Suppose B has s columns. There is a set τ of column indices for which

$$|\tau| \geq \frac{s}{2} \quad \text{and} \quad \|B_\tau\| \leq \sqrt{\pi} \cdot \frac{1}{\sqrt{s}} \|B\|_{\infty,2}.$$

Proof. Consider a Pietsch factorization $B = TD$. Select

$$\tau = \{j : d_{jj}^2 \leq 2/s\}.$$

Since $\sum d_{jj}^2 = 1$, Markov’s inequality implies $|\tau| \geq s/2$. Calculate

$$\|B_\tau\| = \|TD_\tau\| \leq \|T\| \cdot \|D_\tau\| \leq \sqrt{\pi/2} \|B\|_{\infty,2} \cdot \sqrt{2/s}.$$
Proof of Kashin–Tzafriri

- Suppose the n columns of A have unit ℓ_2 norm
- Lemma 5 provides (random) σ for which
 \[
 |\sigma| = \frac{2n}{\|A\|^2} \quad \text{and} \quad \|A_\sigma\|_{\infty,2} \leq C\sqrt{|\sigma|}
 \]
- Lemma 7 applied to $B = A_\sigma$ yields a subset $\tau \subset \sigma$ for which
 \[
 |\tau| \geq \frac{|\sigma|}{2} \quad \text{and} \quad \|B_\tau\| \leq \sqrt{\pi} \cdot \frac{1}{\sqrt{|\sigma|}} \cdot \|B\|_{\infty,2}
 \]
- Simplify
 \[
 |\tau| \geq \frac{n}{\|A\|^2} \quad \text{and} \quad \|A_\tau\| \leq C\sqrt{\pi}
 \]
- Note: This is almost an algorithm
Consider a matrix B with Pietsch factorization $B = TD$

Suppose $\|T\| \leq \alpha$

Calculate

$$B = TD \implies \|Bx\|_2^2 = \|TDx\|_2^2 \quad \forall x$$

$$\implies \|Bx\|_2^2 \leq \alpha^2 \|Dx\|_2^2 \quad \forall x$$

$$\implies x^*(B^*B)x \leq \alpha^2 \cdot x^*D^2x \quad \forall x$$

$$\implies x^* [B^*B - \alpha^2 D^2] x \leq 0 \quad \forall x$$

$$\implies \lambda_{\text{max}}(B^*B - \alpha^2 D^2) \leq 0$$
Pietsch is Convex

Key new idea: Can find Pietsch factorizations by convex programming

\[
\min \lambda_{\text{max}}(B^*B - \alpha^2F) \\
\text{subject to } F \text{ diagonal, } F \geq 0, \text{ trace}(F) = 1
\]

If value at F_\star is nonpositive, then we have a factorization

\[B = (BF_\star^{-1/2}) \cdot F_\star^{1/2} \] with \[\|BF_\star^{-1/2}\| \leq \alpha\]

Proof of Kashin–Tzafriri offers target value for α

Can also perform binary search to approximate minimal value of α
An Optimization over the Simplex

Express $F = \text{diag}(f)$

Constraints delineate the probability simplex:

$$\Delta = \{ f : \text{trace}(f) = 1 \text{ and } f \geq 0 \}$$

Objective function and its subdifferential:

$$J(f) = \lambda_{\text{max}}(B^*B - \alpha^2 \text{diag}(f))$$

$$\partial J(f) = \text{conv} \left\{ -\alpha^2 |u|^2 : u \text{ top evec. } B^*B - \alpha^2 \text{diag}(f), \|u\|_2 = 1 \right\}$$

Obtain

$$\min J(f) \text{ subject to } f \in \Delta$$
Entropic Mirror Descent

1. Intialize $f^{(1)} \leftarrow s^{-1}e$ and $k \leftarrow 1$

2. Compute a subgradient: $\theta \in \partial J(f^{(k)})$

3. Determine step size:

$$\beta_k \leftarrow \sqrt{\frac{2 \log s}{k \|\theta\|_\infty^2}}$$

4. Update variable:

$$f^{(k+1)} \leftarrow \frac{f^{(k)} \circ \exp\{-\beta_k \theta\}}{\text{trace}(f^{(k)} \circ \exp\{-\beta_k \theta\})}$$

5. Increment $k \leftarrow k + 1$, and return to 2.

Other Formulations

- Modified primal to simultaneously identify α

$$\min \lambda_{\max}(B^* B - \alpha^2 F) + \alpha^2$$
subject to $\quad F$ diagonal, $\quad F \succeq 0$, $\quad \text{trace}(F) = 1$, $\quad \alpha \geq 0$

- Dual problem is the famous MAXCUT SDP:

$$\max \langle B^* B, Z \rangle \quad \text{subject to} \quad \text{diag}(Z) = e, \quad Z \succeq 0$$
Related Results

Theorem 8. [Bourgain–Tzafriri 1991] Suppose the n columns of A have unit ℓ_2 norm. There is a set τ of column indices for which

$$|\tau| \geq \frac{cn}{\|A\|^2} \quad \text{and} \quad \kappa(A_{\tau}) \leq \sqrt{3}.$$

Examples:

- A has identical columns. Then $|\tau| \geq 1$.

- A has orthonormal columns. Then $|\tau| \geq cn$.
Related Results

Theorem 8. [Bourgain–Tzafriri 1991] Suppose the n columns of A have unit ℓ_2 norm. There is a set τ of column indices for which

$$|\tau| \geq \frac{cn}{\|A\|^2} \quad \text{and} \quad \kappa(A_\tau) \leq \sqrt{3}.$$

Theorem 9. [T 2007] There is a randomized, polynomial-time algorithm that produces the set τ.
To learn more...

E-mail:

jtropp@acm.caltech.edu

Web: http://www.acm.caltech.edu/~jtropp

Papers in Preparation:

- T, “Column subset selection, matrix factorization, and eigenvalue optimization”
- T, “Paved with good intentions: Computational applications of matrix column partitions”
- . . .