Sublinear Algorithms for Compressed Sensing

Joel A. Tropp

Department of Mathematics The University of Michigan jtropp@umich.edu

> Joint work with Anna C. Gilbert Martin J. Strauss Roman Vershynin

Act I: Motivation

What is Compressed Sensing?

Compressed Sensing is the idea that sparse signals can be reconstructed from a small number of nonadaptive linear measurements.

Example:

- \blacktriangleright Draw $oldsymbol{x}_1,\ldots,oldsymbol{x}_N$ from the standard normal distribution on \mathbb{R}^d
- \blacktriangleright Let s be any m-sparse signal in \mathbb{R}^d
- Sollect measurements $\langle \boldsymbol{s}, \ \boldsymbol{x}_1
 angle, \dots, \langle \boldsymbol{s}, \ \boldsymbol{x}_N
 angle$

Solve \$

 $\min_{\widehat{s}} \|\widehat{s}\|_1 \quad \text{subject to} \quad \langle \widehat{s}, \ \boldsymbol{x}_n \rangle = \langle \boldsymbol{s}, \ \boldsymbol{x}_n \rangle \quad \text{for } n = 1, 2, \dots, N$

Arrow Result: $\widehat{s} = s$ provided that $N \sim m \log d$

References: Candès–Tao 2004, Donoho 2004

Application Areas

Compressed Sensing reverses the usual paradigm in source coding:

The encoder is resource poor. The decoder is resource rich.

- 1. Medical imaging
- 2. Sensor networks

Compressed Sensing is also relevant in case

signals are presented in streaming form or are too long to instantiate.

- 1. Inventory updates
- 2. Network traffic analysis

Optimal Recovery

Reference: Golomb-Weinberger 1959

Questions. . .

- What signal class are we interested in?
- What statistic are we trying to compute?
- How much nonadaptive information is necessary to do so?
- What type of information? Point samples? Inner products?
- Deterministic or random information?
- How much storage does the measurement operator require?
- How much computation time, space does the algorithm use?

Example 1: Gaussian Quadrature

- **Signals:** Polynomials of degree at most (2n-1)
- Statistic: The integral $\int_{-1}^{1} p(t) dt$
- Solution Measurements: Function values at n fixed points t_1, \ldots, t_n
- **Algorithm:** The linear quadrature rule $\sum_{i=1}^{n} w_i p(t_i)$
- Result: Perfect calculation of the integral
- >> Note: The polynomial cannot be reconstructed from the samples!

Example 2: Norm Approximation

- Signals: All signals in a *d*-dimensional Euclidean space
- Statistic: The ℓ_2 norm of the signal
- Solution Measurements: A random projection onto $O(1/\varepsilon^2 \delta)$ dimensions
- Solution Algorithm: Compute the (scaled) ℓ_2 norm of the projected signal
- ▶ **Result:** Norm correct within a factor $(1 \pm \varepsilon)$ with probability (1δ)
- **Note:** The ambient dimension *d* plays no role!

Reference: Johnson–Lindenstrauss 1984

Example 3: Fourier Sampling

- Signals: All vectors in a *d*-dimensional Euclidean space
- **Statistic:** The largest m Fourier coefficients
- **Measurements:** $O(m \log^2 d / \varepsilon^2 \delta)$ structured random point samples
- Algorithm: A sublinear, small space greedy pursuit
- So **Result:** An *m*-term trig polynomial with ℓ_2 error at most $(1 + \varepsilon)$ times optimal with probability (1δ)

References: Gilbert et al. 2002, 2005

Example 4: Compressed Sensing

- Signals: All *m*-sparse vectors in *d* dimensions
- **Statistic:** Locations and values of the m spikes
- So Measurements: A fixed projection onto $O(m \log d)$ dimensions
- **Algorithm:** ℓ_1 minimization
- Result: Exact recovery of the signal
- **Note:** Computation time/space is *polynomial in d*

References: Candès et al. 2004, Donoho 2004, . . .

Our Goal

- **Signals:** All noisy m-sparse vectors in d dimensions
- **Statistic:** Locations and values of the m spikes
- So Measurement Goal: $m \operatorname{polylog} d$ fixed measurements
- **Algorithmic Goal:** Computation time m polylog d
- **Error Goal:** Error proportional to the optimal *m*-term error

Act II: Measurements

Locating One Spike

- Suppose the signal contains one spike and no noise
- $\log_2 d$ bit tests will identify its location, e.g.,

$$\boldsymbol{B}_{1}\boldsymbol{s} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \text{MSB}$$

 $\mathsf{bit-test}\ \mathsf{matrix} \cdot \mathsf{signal} = \mathsf{location}\ \mathsf{in}\ \mathsf{binary}$

Estimating One Spike

- Suppose the signal contains one spike and no noise
- Its size can be determined from any nonzero bit test, e.g.,

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Bit Tests, with Noise

- Suppose the signal contains one spike *plus noise*
- The spike location and value can be estimated by comparing bit tests with their complements:

$$Bit = 1$$
 $Bit = 0$

$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.1 \\ -0.2 \\ 1.0 \\ -0.1 \end{bmatrix} = \begin{bmatrix} 0.9 \\ -0.3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0.1 \\ -0.2 \\ 1.0 \\ -0.1 \end{bmatrix} = \begin{bmatrix} -0.1 \\ 1.1 \end{bmatrix}$$

- ▷ |0.9| > |-0.1| implies the location MSB = 1
- ▷ |1.1| > |-0.3| implies the location LSB = 0
- > Using the LSB, we estimate the value as 1.1

Isolating Spikes

- \checkmark To use bit tests, the measurements need to isolate the m spikes
- So Assign each of d signal positions to one of O(m) different subsets, uniformly at random
- >> Apply bit tests to each subset

Isolation, Matrix Form

A partition of signal positions into subsets can be encoded as a 0–1 matrix, e.g.,

$$\boldsymbol{A}_1 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- >>> The first row shows which positions are assigned to the first subset, etc.
- \blacktriangleright Partitioning the signal T times can be viewed as a block matrix:

The Measurement Operator

So The measurement operator Φ consists of an isolation matrix A and a bit-test matrix B. It acts as

$$egin{aligned} egin{aligned} egi$$

- So Each A_t randomly partitions the signal into N = O(m) subsets So The number of trials $T = O(\log m \cdot \log d)$
- \blacktriangleright Each row of $V=\Phi s$ contains bit tests applied to one subset
- ▶ V contains $O(m \log m \log^2 d)$ measurements

Properties of the Measurement System

For any collection of m spikes and any noise,

- In most of the trials, most of the spikes are isolated
- In each trial, few subsets contain an unusual amount of noise
- The measurements have other technical properties that are necessary to make the algorithm work
- >>> The technical claims are difficult to establish

Act III: Algorithm

Geometric Progress

Geometric Progress, with Noise

Chaining Pursuit

```
Inputs: Number of spikes m, data V, isolation matrix A
Output: A list of < 3m spike locations and values
For each pass k = 0, 1, \ldots, \log_2 m:
     For each trial t = 1, 2, \ldots, T:
         For each measurement n = 1, \ldots, N
             Use bit tests to identify the spike position
             Use a bit test to estimate the spike magnitude
         Retain m/2^k distinct spikes with largest values
     Retain spike positions that appear in 2/3 of trials
     Estimate final spike magnitudes using medians
     Encode the spikes using the measurement operator
     Subtract the encoded spikes from the data matrix
```

Algorithmic Costs

Storage

The storage cost is dominated by the measurement system Φ Total storage cost: $O(d\log m \log^2 d)$

Time

The time cost is dominated by the sort in the second loop Total time cost: $O(m \log m \log^2 d)$

Theoretical Guarantee

 \blacktriangleright Let Φ be a random measurement operator with

$$N = O(m)$$
 and $T = O(\log m \cdot \log d)$

Solution Except with probability $d^{-O(1)}$, the following theorem holds

Theorem 1. [Chaining Pursuit] Let s be any d-dimensional signal, and let s_m be its best m-sparse approximation. On inputs m and $V = \Phi s$, Chaining Pursuit produces a signal estimate \hat{s} consisting of 3m spikes or fewer. This signal estimate satisfies

$$\|\boldsymbol{s} - \hat{\boldsymbol{s}}\|_{1} \leq C \log m \|\boldsymbol{s} - \boldsymbol{s}_{m}\|_{1}.$$

In particular, if $s_m = s$, then also $\widehat{s} = s$.

Notes on the Theorem

Theorem 1 can be refined in several ways:

- The number of spikes in the output can be controlled
- The proof actually provides a sharper error bound:

$$\left\| \boldsymbol{s} - \boldsymbol{\hat{s}} \right\|_{\mathsf{weak-1}} \leq C' \left\| \boldsymbol{s} - \boldsymbol{s}_m \right\|_1.$$

So The total number of measurements can be reduced to $O(m \log^2 d)$ with a more complicated measurement system

Comparison with Other Approaches

	FourierSamp	Chaining	ℓ_1 , Gaussian	ℓ_1 , Fourier
Error Bound	ℓ_2	weak ℓ_1/ℓ_1	ℓ_2/ℓ_1	ℓ_2/ℓ_1
Uniform	No	Yes	Yes	Yes
# Measures	$m\log^2 d$	$m\log^2 d$	$m\log(d/m)$	$m\log^4 d$
Storage cost	$m\log^2 d$	$d\log^2 d$	$md\log(d/m)$	$m\log^5 d$
Decode time	$m\log^2 d$	$m\log^2 d$	d^3	$d\log d$ (empir.)

Note: For legibility, the big-O notation and some factors of $\log m$ are suppressed.

References: Gilbert et al. 2002, 2005; Candès et al. 2004, 2005; Donoho 2004, 2005; Rudelson–Vershynin 2006; Cohen et al. 2006

Act IV: Experiments

Example: Spikes, without noise

S =		hat =	
(167,1)	0.8670	(167,1)	0.8670
(230,1)	0.5017	(230,1)	0.5017
(563,1)	0.5547	(563,1)	0.5547
(764, 1)	0.9342	(764, 1)	0.9342

Elapsed time is 0.044399 seconds.

Example: Signals in weak ℓ_1

s =	hat =		
$\begin{array}{c} 1.0000\\ 0.5000\\ 0.3333\\ -0.2500\\ 0.2000\\ -0.1667\\ -0.1429\\ 0.4050\end{array}$	(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)	0.9629 0.5040 0.3826 -0.1944 0.1892 -0.1636	
-0.1250			

• • •

Elapsed time is 0.087329 seconds. Error in approximation, l1 norm: 5.219 Error in best 8-term approximation, l1 norm: 4.7913

Scalability

Even in Matlab, large problems are within reach...

Sample Running Times for Chaining Pursuit (sec)

Comparative Timings: d = 4096

Running time for dim. d = 4096 versus sparsity level m

Comparative Timings: m = 16

Running time for sparsity level m = 16 versus dimension d

Act V: Extensions

Shortcomings of Chaining Pursuit

- 1. Storage is proportional to the length of the signal
- 2. Cannot make the approximation error arbitrarily close to optimal
- 3. Error bound is in terms of the ℓ_1 norm

K2 Pursuit

K2 Pursuit improves on Chaining Pursuit in several regards. . .

- **Measurements:** $m \operatorname{poly}(\varepsilon^{-1} \log d)$
- Storage: $m \operatorname{poly}(\varepsilon^{-1} \log d)$
- **b** Error bound:

$$\left\| \boldsymbol{s} - \widehat{\boldsymbol{s}} \right\|_{2} \leq \left\| \boldsymbol{s} - \boldsymbol{s}_{m} \right\|_{2} + rac{arepsilon}{\sqrt{m}} \left\| \boldsymbol{s} - \boldsymbol{s}_{m} \right\|_{1}.$$

Solution Time: $m^2 \operatorname{poly}(\varepsilon^{-1} \log d)$

We're working to reduce the computation time...

To learn more...

Web: http://www.umich.edu/~jtropp

E-mail: jtropp@umich.edu

- Matlab code for Chaining Pursuit is freely available!
- ACG, MJS, JAT and RV, "Sublinear approximation of compressible signals," to appear, SPIE IIM 2006
- → —, "Algorithmic dimension reduction in the ℓ_1 norm for sparse vectors," submitted April 2006
- JAT and ACG, "Signal recovery from partial information via Orthogonal Matching Pursuit," submitted April 2005
- JAT and Rice DSP, "Random filters for compressive signal acquisition and reconstruction," to appear, ICASSP 2006
- S. Sra and JAT, "Row-action methods for Compressed Sensing," to appear, ICASSP 2006