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Act I:
Motivation

Sublinear Compressed Sensing (NuHAG) 2



What is Compressed Sensing?

Compressed Sensing is the idea that sparse signals can be reconstructed

from a small number of nonadaptive linear measurements.

Example:

❧ Draw x1, . . . ,xN from the standard normal distribution on Rd

❧ Let s be any m-sparse signal in Rd

❧ Collect measurements 〈s, x1〉 , . . . , 〈s, xN〉
❧ Solve

minbs ‖ŝ‖1 subject to 〈ŝ, xn〉 = 〈s, xn〉 for n = 1, 2, . . . , N

❧ Result: ŝ = s provided that N ∼ m log d

References: Candès–Tao 2004, Donoho 2004
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Application Areas

Compressed Sensing reverses the usual paradigm in source coding:

The encoder is resource poor. The decoder is resource rich.

1. Medical imaging

2. Sensor networks

Compressed Sensing is also relevant in case

signals are presented in streaming form or are too long to instantiate.

1. Inventory updates

2. Network traffic analysis
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Optimal Recovery
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Reference: Golomb–Weinberger 1959
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Questions. . .

❧ What signal class are we interested in?

❧ What statistic are we trying to compute?

❧ How much nonadaptive information is necessary to do so?

❧ What type of information? Point samples? Inner products?

❧ Deterministic or random information?

❧ How much storage does the measurement operator require?

❧ How much computation time, space does the algorithm use?
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Example 1: Gaussian Quadrature
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❧ Signals: Polynomials of degree at most (2n− 1)
❧ Statistic: The integral

∫ 1

−1
p(t) dt

❧ Measurements: Function values at n fixed points t1, . . . , tn
❧ Algorithm: The linear quadrature rule

∑n
i=1 wi p(ti)

❧ Result: Perfect calculation of the integral

❧ Note: The polynomial cannot be reconstructed from the samples!
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Example 2: Norm Approximation
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❧ Signals: All signals in a d-dimensional Euclidean space

❧ Statistic: The `2 norm of the signal

❧ Measurements: A random projection onto O(1/ε2δ) dimensions

❧ Algorithm: Compute the (scaled) `2 norm of the projected signal

❧ Result: Norm correct within a factor (1± ε) with probability (1− δ)
❧ Note: The ambient dimension d plays no role!

Reference: Johnson–Lindenstrauss 1984
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Example 3: Fourier Sampling
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❧ Signals: All vectors in a d-dimensional Euclidean space

❧ Statistic: The largest m Fourier coefficients

❧ Measurements: O(m log2 d/ε2δ) structured random point samples

❧ Algorithm: A sublinear, small space greedy pursuit

❧ Result: An m-term trig polynomial with `2 error at most (1 + ε) times

optimal with probability (1− δ)

References: Gilbert et al. 2002, 2005
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Example 4: Compressed Sensing
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❧ Signals: All m-sparse vectors in d dimensions

❧ Statistic: Locations and values of the m spikes

❧ Measurements: A fixed projection onto O(m log d) dimensions

❧ Algorithm: `1 minimization

❧ Result: Exact recovery of the signal

❧ Note: Computation time/space is polynomial in d

References: Candès et al. 2004, Donoho 2004, . . .

Sublinear Compressed Sensing (NuHAG) 10



Our Goal
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❧ Signals: All noisy m-sparse vectors in d dimensions

❧ Statistic: Locations and values of the m spikes

❧ Measurement Goal: m polylog d fixed measurements

❧ Algorithmic Goal: Computation time m polylog d

❧ Error Goal: Error proportional to the optimal m-term error
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Act II:
Measurements
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Locating One Spike

❧ Suppose the signal contains one spike and no noise

❧ log2 d bit tests will identify its location, e.g.,

B1s =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1





0
0
1
0
0
0
0
0


=

0
1
0

 MSB

LSB

bit-test matrix · signal = location in binary
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Estimating One Spike

❧ Suppose the signal contains one spike and no noise

❧ Its size can be determined from any nonzero bit test, e.g.,

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1





0
0

0.8
0
0
0
0
0


=

 0
0.8
0


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Bit Tests, with Noise

❧ Suppose the signal contains one spike plus noise

❧ The spike location and value can be estimated by comparing bit tests

with their complements:

Bit = 1 Bit = 0

»
0 0 1 1

0 1 0 1

–2664
0.1

−0.2

1.0

−0.1

3775=

»
0.9

−0.3

– »
1 1 0 0

1 0 1 0

–2664
0.1

−0.2

1.0

−0.1

3775=

»
−0.1

1.1

–

❧ |0.9| > |−0.1| implies the location MSB = 1

❧ |1.1| > |−0.3| implies the location LSB = 0

❧ Using the LSB, we estimate the value as 1.1
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Isolating Spikes

❧ To use bit tests, the measurements need to isolate the m spikes

❧ Assign each of d signal positions to one of O(m) different subsets,

uniformly at random

❧ Apply bit tests to each subset
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Isolation, Matrix Form

❧ A partition of signal positions into subsets can be encoded as a 0–1

matrix, e.g.,

A1 =

0 1 0 0 1 1 0 1
1 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0


❧ The first row shows which positions are assigned to the first subset, etc.

❧ Partitioning the signal T times can be viewed as a block matrix:

A =


A1

A2
...

AT


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The Measurement Operator

❧ The measurement operator Φ consists of an isolation matrix A and a

bit-test matrix B. It acts as

Φs =


A1

A2
...

AT

 · diag s ·
[

B0

B1

]T

❧ Each At randomly partitions the signal into N = O(m) subsets

❧ The number of trials T = O(log m · log d)

❧ Each row of V = Φs contains bit tests applied to one subset

❧ V contains O(m log m log2 d) measurements
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Properties of the Measurement System

For any collection of m spikes and any noise,

❧ In most of the trials, most of the spikes are isolated

❧ In each trial, few subsets contain an unusual amount of noise

❧ The measurements have other technical properties that are necessary to

make the algorithm work

❧ The technical claims are difficult to establish

Sublinear Compressed Sensing (NuHAG) 19



Act III:
Algorithm
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Geometric Progress
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Geometric Progress, with Noise
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Chaining Pursuit

Inputs: Number of spikes m, data V , isolation matrix A

Output: A list of ≤ 3m spike locations and values

For each pass k = 0, 1, . . . , log2 m:
For each trial t = 1, 2, . . . , T:

For each measurement n = 1, . . . , N

Use bit tests to identify the spike position
Use a bit test to estimate the spike magnitude

Retain m/2k distinct spikes with largest values

Retain spike positions that appear in 2/3 of trials
Estimate final spike magnitudes using medians

Encode the spikes using the measurement operator
Subtract the encoded spikes from the data matrix
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Algorithmic Costs

Storage

The storage cost is dominated by the measurement system Φ

Total storage cost: O(d log m log2 d)

Time

The time cost is dominated by the sort in the second loop

Total time cost: O(m log m log2 d)
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Theoretical Guarantee

❧ Let Φ be a random measurement operator with

N = O(m) and T = O(log m · log d)

❧ Except with probability d−O(1), the following theorem holds

Theorem 1. [Chaining Pursuit] Let s be any d-dimensional signal, and

let sm be its best m-sparse approximation. On inputs m and V = Φs,

Chaining Pursuit produces a signal estimate ŝ consisting of 3m spikes or

fewer. This signal estimate satisfies∥∥ s− ŝ
∥∥

1
≤ C log m

∥∥ s− sm

∥∥
1
.

In particular, if sm = s, then also ŝ = s.
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Notes on the Theorem

Theorem 1 can be refined in several ways:

❧ The number of spikes in the output can be controlled

❧ The proof actually provides a sharper error bound:

∥∥ s− ŝ
∥∥

weak-1
≤ C′ ∥∥ s− sm

∥∥
1
.

❧ The total number of measurements can be reduced to O(m log2 d) with

a more complicated measurement system
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Comparison with Other Approaches

FourierSamp Chaining `1, Gaussian `1, Fourier

Error Bound `2 weak `1/`1 `2/`1 `2/`1

Uniform No Yes Yes Yes

# Measures m log2 d m log2 d m log(d/m) m log4 d

Storage cost m log2 d d log2 d md log(d/m) m log5 d

Decode time m log2 d m log2 d d3 d log d (empir.)

Note: For legibility, the big-O notation and some factors of log m are suppressed.

References: Gilbert et al. 2002, 2005; Candès et al. 2004, 2005; Donoho

2004, 2005; Rudelson–Vershynin 2006; Cohen et al. 2006
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Act IV:
Experiments
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Example: Spikes, without noise

Phi = GenerateMeasurements( 1024, 16, 4 );

s = [ four randomly located spikes ];

V = EncodeSignal( s, Phi );

hat = ChainingPursuit( 4, V, Phi );

s =

(167,1) 0.8670
(230,1) 0.5017
(563,1) 0.5547
(764,1) 0.9342

hat =

(167,1) 0.8670
(230,1) 0.5017
(563,1) 0.5547
(764,1) 0.9342

Elapsed time is 0.044399 seconds.
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Example: Signals in weak `1

s =

1.0000
0.5000
0.3333
-0.2500
0.2000
-0.1667
-0.1429
-0.1250

...

hat =

(1,1) 0.9629
(2,1) 0.5040
(3,1) 0.3826
(4,1) -0.1944
(5,1) 0.1892
(6,1) -0.1636

Elapsed time is 0.087329 seconds.

Error in approximation, l1 norm: 5.219

Error in best 8-term approximation, l1 norm: 4.7913
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Scalability

Even in Matlab, large problems are within reach...

Sample Running Times for Chaining Pursuit (sec)

d
m 220 221

25 7.3 14.0
26 8.4 15.0
27 14.4 25.8
28 19.1 30.5
29 28.1 39.1
210 47.5 76.0
211 108.0 123.9
212 200.2 216.4
213 — 460.2

Note: N = 4m, T = 32
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Comparative Timings: d = 4096
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Comparative Timings: m = 16
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Act V:
Extensions
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Shortcomings of Chaining Pursuit

1. Storage is proportional to the length of the signal

2. Cannot make the approximation error arbitrarily close to optimal

3. Error bound is in terms of the `1 norm
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K2 Pursuit

K2 Pursuit improves on Chaining Pursuit in several regards. . .

❧ Measurements: m poly(ε−1 log d)

❧ Storage: m poly(ε−1 log d)

❧ Error bound:

‖ s− ŝ ‖2 ≤ ‖s− sm‖2 +
ε√
m
‖s− sm‖1 .

❧ Time: m2 poly(ε−1 log d)

We’re working to reduce the computation time...
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To learn more...

Web: http://www.umich.edu/~jtropp

E-mail: jtropp@umich.edu

❧ Matlab code for Chaining Pursuit is freely available!

❧ ACG, MJS, JAT and RV, “Sublinear approximation of compressible

signals,” to appear, SPIE IIM 2006

❧ —, “Algorithmic dimension reduction in the `1 norm for sparse vectors,”

submitted April 2006

❧ JAT and ACG, “Signal recovery from partial information via Orthogonal

Matching Pursuit,” submitted April 2005

❧ JAT and Rice DSP, “Random filters for compressive signal acquisition

and reconstruction,” to appear, ICASSP 2006

❧ S. Sra and JAT, “Row-action methods for Compressed Sensing,” to

appear, ICASSP 2006
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