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We present an efficient and robust approach in the finite element framework for numerical
solutions that exhibit multiscale behavior, with applications to singularly perturbed
convection-diffusion problems. The first type of equation we study is the convection-
dominated convection-diffusion equation, with periodic or random coefficients; the second
type of equation is an elliptic equation with singularities due to discontinuous coefficients
and non-smooth boundaries. In both cases, standard methods for purely hyperbolic
or elliptic problems perform poorly due to sharp boundary and internal layers in the
solution.

‘We propose a framework in which the finite element basis functions are designed to
capture the local small-scale behavior correctly. When the structure of the layers can
be determined locally, we apply the multiscale finite element method, in which we solve
the corresponding homogeneous equation on each element to capture the small scale
features of the differential operator. We demonstrate the effectiveness of this method
by computing the enhanced diffusivity scaling for a passive scalar in the cellular flow.
We also carry out the asymptotic error analysis for its convergence rate and perform
numerical experiments for verification. For a random flow with nonlocal layer structure,
we use a variational principle to gain additional information in our attempt to design
asymptotic basis functions. We also apply the same framework for elliptic equations
with discontinuous coefficients or non-smooth boundaries. In that case, we construct
local basis function near singularities using infinite element method in order to resolve
extreme singularity. Numerical results on problems with various singularities confirm the
efficiency and accuracy of this approach.

Keywords: Finite element method; multiple scales; effective diffusivity; discontinuous
coefficients; infinite element method.
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1. Introduction

Many phenomena in science and engineering exhibit multiscale behavior, i.e., the
solutions to the partial differential equations that model the phenomena are char-
acterized by more than a single scale. A simple example is the problem with a
boundary layer in fluid mechanics, whose solution contains sharp features char-
acterized by f(x/€) in the layer while the rest of the domain is characterized by
f(x), for some smooth function f and a small parameter e. Another example is an
elliptic equation with a highly oscillatory coefficient arising in material science or
flow through porous media. Numerical solutions of these problems present many
challenges. The basic difficulty is that small scale information must be resolved in
order to obtain the correct coarse scale solution but solving for the small features
in a globally coupled manner results in a computationally infeasible problem.

In this work, we present a different approach in the finite element framework,
originally motivated by the Multiscale Finite Element Method [Hou et al. (1999);
Hou and Wu (1997)]. Whereas a conventional method requires a grid that is fine
enough to resolve all the small scales of a problem, the main idea behind the Mul-
tiscale Finite Element Method is to build the local behavior of the differential
operator into the basis functions to capture the small scale effect while having a
relative coarse grid over the whole domain. This is done by solving the equation on
each element to obtain the basis functions, rather than using the linear basis func-
tions. For elliptic problems with multiple scale solutions that result from rapidly
oscillating coefficients, this method has been shown to be effective in obtaining
globally accurate solutions [Hou et al. (1999); Hou and Wu (1997)]. Other related
multiscale methods include those presented in Babuska et al. [1994]; Brezzi and
Russo [1994]; Hughes [1995]; Dorobantu and Engquist [1998]; Matache et al. [2000];
Cao et al. [2002]; and E and Engquist [2003]. Here, we apply the idea of building
special basis functions to capture the correct local behavior to other more difficult
situations. We first focus on the singularly perturbed convection-diffusion equation,
with periodic as well as random coefficients. Then we consider elliptic equations
with discontinuous coefficients and non-smooth boundaries.

1.1. Convection-diffusion equation

Solving the singularly perturbed convection-diffusion equation is made difficult due
to its dual nature. Because the diffusive term is multiplied by a small parameter €
(0 < € < 1), the convective effect dominates and the equation behaves essentially
as a hyperbolic one in a large part of the domain; in a small region, however,
diffusion becomes important and the balance between the convective and diffusive
effects creates boundary or internal layers. These layers are usually exponential and
require a fine grid for an accurate solution.

General results for convection-diffusion problems are well summarized in Morton
[1996]. For the singularly perturbed case, some specialized numerical methods are
described in Roos et al. [1991]; Miller et al. [1996]. However, most of the work
has been confined to the one-dimensional or simple two-dimensional cases in which
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the solution is essentially one-dimensional in its behavior. One method of dealing
with this problem is the modification of an underlying mesh. For simple problems,
optimal meshing and its properties are well known [Miller et al. (1996)]. For more
complicated problems, general adaptive meshing algorithms using a posteriori error
estimates are needed [Bank (1990)]. However, one difficulty with this method is
in finding the solution of the linear system, as the grid points, which are added
for refinement in adaptive meshing algorithms, are globally coupled to the regular
mesh. The resulting linear system may also lack the banded structure or the positive
definiteness of the uniform grids [Golub et al. (1996)]. The second class of methods
for dealing with the layers is based on a modification of the differential operator.
The simplest approach in this category is the upwinding method. This method
does produce a stable numerical solution, but at the loss of accuracy, often O(h)
accurate away from the layers but only O(1) near the layer [Kellog and Tsan (1978)].
Another way of suppressing spurious oscillations is the method of artificial viscosity.
In two dimensions, it is the streamline-diffusion method in which viscosity is added
only in the direction of characteristics [Johnson (1987); Douglas, Jr. and Russell
(1982)]. But, again, the fronts are smeared and the accuracy is degraded. The
global estimates are also not uniform with respect to the diffusion parameter €, and
another parameter must be tuned in order to add the right amount of artificial
viscosity. Since the layers are typically exponential, another approach is to modify
the differencing scheme in such a way that an exponential function is captured
exactly rather than a polynomial one. This idea of “exponential fitting” is very
old, dating back to 1950s [Allen and Sourthwell (1955)], and there have been many
variants on this theme [Stynes and O’Riordan (1991); Hegarty et al. (1993); Lube
(1992); Sacco and Stynes (1998); Roos et al. (1996)]. In the finite element setting, the
finite element space can be modified with basis functions that have the exponential
behavior. The difficulty, however, has been that it is hard to construct such basis
functions in genuinely two-dimensional problems.

In many cases, the correct behavior of a solution can be determined by exam-
ining the equation locally. We study this case in the context of the enhanced
effective diffusivity problem from fluid mechanics [Avellaneda and Majda (1991);
Avellaneda (1991); Isichenko (1992)]. This provides an interesting physical back-
ground for examining the performance of our method. Specifically, we study the
transport properties of the highly oscillatory but periodic cellular velocity field.
The fluid in this flow is rotating in each of the small cells of size §, with oppo-
site directions in adjacent cells. For this problem, we find that the basis func-
tions based on the local solution of the homogeneous equation perform well,
resulting in the correct scaling of the overall diffusivity property of the flow.
We carry out the error analysis of the multiscale finite elements applied to this
case, using homogenization theory [Jikov et al. (1991); Bensoussan et al. (1978);
Sanchez-Palencia (1980)]. We derive sharp estimates for the error §/h, where 0 is
the small scale to be homogenized, that does not depend on the layer parameter e.
In contrast, the standard finite element method has ¢ on the denominator and fails
to converge unless we have a very fine mesh so that h < ¢. Since resolving the basis
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functions numerically can be expensive, we also demonstrate the possibility of using
an asymptotic expansion.

When the characteristic length scale that governs the singular behavior is larger
than the element size, the information contained in the support of each element is
not sufficient to determine the local behavior correctly. Thus, in order to capture
the correct behavior of the multiscale solution, we need to incorporate some infor-
mation about the solution structure into our computational basis. For the random
velocity field we consider, theoretical understanding of the flow field based on per-
colation theory [Fannjiang and Papanicolaou (1997)] and the variational principle
introduced in Fannjiang and Papanicolaou [1994] can provide additional informa-
tion. This variational principle is nonlocal and a test function must be evaluated on
the whole domain in order to compute the energy integral. While the test function
that minimizes the integral has a complicated layer structure and is difficult to find,
we can construct a test function that captures the essential behavior of the layers
and use this to extract the location and the thickness of boundary layer. Once we
have the information regarding the layers, we build exponential basis function along
the streamlines on which the layers occur, while the bilinear basis functions of the
underlying uniform grid are still kept for the smooth part of the solution.

1.2. Elliptic equation with discontinuous coefficients

Another class of problems that give rise to singular behavior are elliptic equations
with coefficients that have large variations or discontinuities in the domain of inter-
est. For example, in describing a flow through porous media, the coefficient of the
equation corresponds to the permeability of the medium and can vary significantly
in different regions. In solving for electrical properties of composite materials, con-
ductivity of the adjacent materials can differ by many orders of magnitude. The
problem of singular coefficients can also be compounded by non-smooth interfaces.
Under these circumstances, it is known that conventional numerical methods do not
perform well [Babuska and Osborn (1985); Leveque and Li (1994)]. For certain sin-
gularities, for example, the standard finite element method can even be arbitrarily
slow in its convergence [Riide and Zenger (1986)].

A variety of mesh refinement strategies are available for dealing with prob-
lems with rapidly-varying solutions, using, for instance, a posterior: error esti-
mates to create finer meshes where more resolution is needed. However, for
the type of singular behavior considered in this paper, a typical mesh refine-
ment scheme cannot provide enough resolution. A great deal is known about
the analytical properties of elliptic operators (see, e.g., Gilbarg and Trudinger
[1983]) and for certain cases, incorporating analytic approximations of the solu-
tion at the singularities can result in an efficient method [Strang and Fix (1973);
Borcea and Papanicolaou (1997)]. Unfortunately, it is in general difficult to obtain
an analytic expression or to incorporate into a numerical method when it is known.

As before, we construct basis functions that capture the effect of singularities.
The singularities are essentially local, and the finite element framework using these
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basis functions then translates to an accurate global solution. However, there is an
additional difficulty: the singular behavior is such that we are not able to solve the
equation locally for the basis functions using a conventional finite element method.
The remedy we present here is the construction of the local basis functions using
the infinite element method [Ying (1995)]. This elegant technique takes advantage
of the similarity of its special grid structure and has the effect of having infinite
resolution at the singularity. This method has been used previously for singularities
in simple situations, for example with one singularity near the center of a polygon, or
in infinite domain problems. We therefore employ the infinite elements as a part of
a general framework. Computationally, the method can be implemented efficiently.
The number of unknowns in the solution process is proportional to the number of
points on the element boundary, while having the effect of infinite resolution at
the singularity. We also derive a way of computing the stiffness matrix efficiently.
We examine the multiscale problem with a corner and checkerboard singularities
within each cell and find that the method performs very well. As the contrast
increases, the singularity gets more localized and even for a moderate mesh size in
the infinite element, the method is not sensitive to the high contrast.

In the next section, we describe some preliminary material. In Sec. 3, we apply
the multiscale finite element method [Hou et al. (1999); Hou and Wu (1997);
Efendiev et al. (2000)] to the convection-diffusion problem. We demonstrate its
effectiveness for the periodic problem by using it to obtain the correct diffusivity
scaling for the cellular flow, and we obtain a sharp convergence rate of the multi-
scale method using asymptotic error analysis, as verified by numerical experiments.
We also apply this method to the random coefficient case, in which additional infor-
mation from a variational principle is needed to obtain a correct scaling for a basis
function. In Sec. 4, we apply the idea to the elliptic equation with discontinuous
coefficient on non-smooth boundary using infinite element method. Through these
examples, we demonstrate the usefulness of the multiscale approach using local basis
functions that capture the small scale features of the differential operator.

2. Formulation of the Problem

We introduce some basic spaces before stating the problem in the weak form for
the finite element method. Let  C R? be a bounded domain with a Lipschitz
continuous boundary 9. We will use L?(Q2) based Sobolev space H*(Q), which
is the space of all functions v € L2(2) whose derivatives D%u (in the sense of
distributions) of order |a| < k are also in L?(£2). This space is equipped with norms
and seminorms

1/2 1/2
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The space H(Q) is the closure of the set C§°(€2) in H(£2). With the sufficiently
smooth boundary 99, H}(Q) is the set of all functions u in H'(2) such that u =0
on Q. H=(Q) is the dual space of H}(Q), the set of all continuous linear func-
tions on H{(Q). HY/?(Q) is the trace on 99 of all functions in H'(£2) with the norm
|v]l1/2,00 = inf |lul|1,o where the infimum is taken over all u € H'(Q) with trace v.
C denotes a generic positive constant independent of small parameters unless other-
wise stated, with C'+C = C and C'-C = C. We say that a quantity p is O(q) when
|p| < Cq for all ¢ sufficiently small. Repeated indices indicate summation over them.

2.1. Weak formulation
The general form of our model problem is
~V-(a(x)Vu)=f, u=0 ondQ (QcR?), (1)

where a(x) = (a;;(x)) satisfies the uniform ellipticity condition a|&;|* < a;;6:€; <
Bl&i1? (0 < o < B) for any € € R2.
The weak formulation of (1) is to find u € H} such that

a(u,v) = f(v), Yve Hy, (2)

where
Ov Ou
a(u,v)-/ﬁ)aija—%a—%dx, f(v)—/vadx. (3)

In the finite element method (FEM), we apply the differential operator exactly
but restrict the weak form (2) to a finite dimensional subspace of H}(2): Find
u” € V" such that

a(uh,vh) = f(vh), Vol e wh, (4)

where V" = span{¢i,...,én} and W' = span{ty,...,¢n} with trial and test
functions ¢; and v;, respectively. V" is called the trial function space and W the
test function space. When V" = Wh (¢, = 1;), we refer to the method as the
Galerkin method; when V" # W we refer to it as the Petrov-Galerkin method.
We choose v = v" in (2) and subtracting (4) from (2), we have

alu —u,v") =0, (5)

an orthogonality property that becomes very useful in the error analysis. Let u be
the weak solution of (2) and the approximation u” of (4). Then we have, according
to the Cea’s Lemma [Brenner and Scott (1994)], which guarantees that the weak
form picks out the optimal v" from V":

lu—wlie <2 min lu— o] (6)
« vheVvh

For the convection-diffusion equation, we have non-symmetric a;; = €d;; + H;; as
shown later in (17). We assume that a;; are in L>(Q2) and f € H~1(£2). We only con-
sider the homogeneous Dirichlet boundary condition for clarity, but other boundary
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conditions can be easily incorporated. A nonhomogeneous Dirichlet condition can
be easily translated into the forcing term; Neumann boundary condition is auto-
matically enforced by the variational form if Dirichlet condition is not imposed.
We fix the domain to be = (0,1) x (0,1) C R? for computation. The existence
and uniqueness of the solution in the weak form can be proved by the Lax-Milgram
Lemma (see, e.g., Brenner and Scott [1994]). The coercivity condition is satisfied
by incompressible velocity fields. Unfortunately, in the singularly perturbed case,
the Ceéa’s Lemma is not too helpful. Explicit calculation of the constants gives a 1/¢
factor, which makes the estimate less useful [Park (2000)]. We pay careful attention
to the error structure in Sec. 3.4 to derive a sharper result.

2.2. Homogenization

Homogenization is a way of extracting an equation for the coarse scale behavior
that takes into account the effect of small scales [Bensoussan et al. (1978); Jikov
et al. (1991)]. We are often content with the coarse scale behavior of the solution,
but we cannot simply ignore the fine scales because the fine scales interact with
other scales to affect the coarse grid solution. The homogenized or the “effective”
equation contains no small scales and is therefore much easier to solve. Physically
speaking, it is a method by which a problem in a heterogeneous medium consisting
of a large number of periodic cells is approximated by a problem in a homogeneous
medium. Here, we review the basic homogenization theory that will be important
later. We use § to characterize the rapid variation in the coefficient; we reserve €
for diffusivity.
We consider the divergence form of the equation,

-V (a(x,x/0)Vus)=f inQ, us=g ondQ, (7)

where the coefficient a(x,y) is assumed to be periodic in y, and us € H}(Q) and
f € H Y(Q). The convection-diffusion equation can be written in this form, as
described later. According to the homogenization theory, the solution us has the
following property of convergence,

us — ug  weakly in H}(Q), (8)
a(x,x/6) Vus — a*(x)Vug weakly in L*(Q), 9)

as & — 0, where ug satisfies the homogenized equation
—V-a*"(x)Vug=f in, wug=g ondQ. (10)

The homogenized coefficient a*(x) does not contain the small scale 4.
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It is natural to seek the first approximation in the form
us(x) = ug(x) + dug(x,x/0) + - - - (11)

where u;(x,y) is periodic in y with y = x/d. The justification for this expansion is
given in Bensoussan et al. [1978]; Jikov et al. [1991]. Using multiple scale expansion,
we find the homogenized coefficient to be

e L (O (xy)
aij(x) = V] /{alk <5Jk+ D dy, (12)

where Y denotes the periodic cell of y variable and |Y'| is the volume of the cell,
and where x* is the solution of the “cell problem”

o (o ox*xy)\_ 9
ayl (a” (y) 3y] - ayia”bk(xv y)v (13)

with periodic boundary condition in y. The x* function is determined up to a
constant; we impose (x*) = 0 to get a unique solution, where (-) denotes the average
over one period.

Now, since ug satisfies the boundary us = ¢g on the boundary 92, ug 4+ du; does
not. In order to enforce this boundary condition, we need to introduce a boundary
“corrector” 65, which satisfies

Ls0s =0 inQ, 6;=—ui(x,x/0) on 9N. (14)

Putting this together, we have

) = )+ 00 () 2

This expansion is used in a later section.

+ 605 + O(5?). (15)

3. The Convection-Diffusion Equation
3.1. Introduction

The convection-diffusion equation modeling the transport of the quantity u(x,t) is

Ou(x,t)
ot

where b(x) is the given velocity field; € (0 < € < 1) is the molecular diffusivity
characterizing the Brownian motion; and f is the forcing on the system. The con-
vection term can be written in a more general form as V - (bu) if we assume that
the velocity fields are incompressible, V- b = 0. This equation can be considered as
the linearized version of the two-dimensional Navier-Stokes equations in vorticity
formulation with viscosity € = 1/Re (Re is the Reynolds number). We are inter-
ested in the convection-dominated case, with large |b|/e; this is also referred to as
the high Peclet number problem in fluid mechanics, where the Peclet number Pe
is the ratio between the convective and the diffusive effects. If the velocity field is

+ b(x) - Vu(x,t) — eAu(x,t) = f(x), (16)
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obtained through a streamfunction 1, that is, b = V¢ = (=, ,), Eq. (16) can
be written in the following divergence form:

ou(x,t)
ot

with the skew-symmetric matrix

_ (0 ¥
H_<¢ 0), (18)
so that V-H = —b.

The limiting equation with € — 0 is hyperbolic, and the equation qualita-

— V- (el + H)Vu(x,t) = f(x), (17)

tively does not have many features that we would expect from an elliptic equation.
In particular, solutions of (17) may have sharp boundary and internal layers. The
boundary layer theory for the singularly perturbed problem has been studied for a
long time, and there are some analytical techniques available, such as the matched
asymptotics and multiple scale expansions. However, except for simple problems,
the analytical approach is limited and we must turn to numerical schemes. Unfortu-
nately, the standard numerical schemes have difficulties of their own. In the present
work, we improve the numerical methods by combining them with some analytical
understanding of the layer structure.

An important characteristic of (16) is that the operator is not self-adjoint, and
we do not have the nice properties of the Sturm-Liouville type problems. The stiff-
ness matrix of the finite element formulation is therefore nonsymmetric, requiring
a different set of linear system solvers from the most commonly used ones. The
matrix problem may already be ill-conditioned because of small €. Also, the lack
of self-adjointness creates additional difficulties in the formulation of a variational
principle.

A common extension of successful one-dimensional methods to two-dimensional
situations is the tensor product approach, in which the one-dimensional solu-
tion is used in each direction, i.e., ¢i;(x,y) = ¢i(x)d;(y). This works well for a
small class of problems whose behavior is essentially one-dimensional, e.g., when
b(x) = (bi(x),b2(y)) with by(z) > by > 0 and ba(y) > by > 0 for some con-
stant by [Stynes and O’Riordan (1991); Hegarty et al. (1993)]. Other methods that
work well in genuinely two-dimensional problems impose stringent conditions on the
coefficients or require that much information is given about the layer structure in
advance [Miller et al. (1996)]. For example, many methods require that the velocity
field does not have a turning point where the coefficient switches the sign.

3.1.1. Rescaling

While Eq. (16) explicitly contains only one small parameter ¢, another parameter
enters when we want to consider the behavior of this equation in the large-domain
and long-time limit. Rather than trying to solve the equation in successively large
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domains for increasingly longer time, we introduce the rescaling parameter §. We
let

x' =x/0 and t =t/ (0<d< 1), (19)

which transforms (16) to, after dropping the apostrophe on x’ and ',
Oous 1 X
dus | 1y (_
at " 5°\3
We have also set f = 0, since there is no forcing in the problem we consider in this
section. The analysis of this equation with periodic coefficients in the § — 0 limit

involves homogenization, which we reviewed in Sec. 2.2.

The homogenization theory applied to the convection-diffusion equation is the
following [McLaughlin et al. (1985); Fannjiang and Papanicolaou (1994)]. As 6 — 0,

the solution to the rescaled equation ug converges to u, which satisfies the constant
coeflicient equation

) . Vu(s = eAu(s. (20)

g—;& = o Au. (21)
The convergence is in L2,
lim sup /|u(x, t) —us(x,t)|>dx = 0 (22)
0—00<t<t,

for any to. Equation (21) means that in the large-domain, long-time limit, the overall
behavior can be characterized as diffusive, with the convection term performing
contributions of varying degree depending on the velocity field. How different velo-
city fields affect this “effective diffusivity” tensor o, is of great interest and it is the
test problem for the numerical methods we develop. Using homogenization theory,
we can obtain an expression for this o, [Fannjiang and Papanicolaou (1994)]:

oc(e) = e{(Vx +e) (Vx+e)), (23)

where (-) denotes averaging over one period and e is a unit vector. This comes
directly from the expression for the homogenized coefficient (12). x is the solution
of the cell problem (13), which we can rewrite in a vector form as

V- [(eI+H)(Vx+e)] =0, (24)
with H as defined in (18). This can be simplified by using V- H = —b to
—eAx+b-Vx+b-e=0 (25)

on the torus. o, is generally a nonsymmetric matrix, but for the streamfunction we
consider, there is a symmetry of the form H(x) = —H(—x) and this assures that the
o tensor is symmetric [Fannjiang and Papanicolaou (1994)]. L? integrability of the
streamfunction ¢ is sufficient for the existence of this homogenization [Fannjiang
and Papanicolaou (1994)].
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3.1.2. Problems in one dimension

To gain insights into the behavior of the singularly perturbed equation, we first
consider the simple one-dimensional problem,

—eu” +a(z)u' =0, xz€]0,1], (26)

with Dirichlet boundary conditions u(0) = 0, u(1) = 1. If @ > 0, the solution has
an exponential layer of thickness O(e) near x = 1, in which the eu” term becomes
important. Intuitively, we can think of the ¢’ term as the convective effect pushing
the “fluid” to the right. If a(zg) = 0 for some z( € [0, 1], ¢ is called a turning point
and internal layers can occur.

Supposed a(x) = ap. In the simple FEM, we expand u(z) = Ziv u;¢;(x), where
¢; are the linear “hat” functions. The exact solution to the resulting discrete equa-
tions at the nodal points are

=1 1+ah/(2)
7T " an/(2e)

We immediately see that unless ah/e < 2, oscillations will occur. The ratio ah/e
is often called the mesh Peclet number. This illustrates the common problem, that
the mesh size h needs to be very small when € is very small.

3.1.3. Green’s function approach

To deal with the present difficulty, many methods have been proposed. Among the
most effective methods are the finite element methods with basis functions that
contain the exponential behavior resembling the boundary layer of the solution
[Roos et al. (1991)]. One can, for example, obtain the trial functions by solving the
homogeneous equation modified by making the coefficient constant [Hegarty et al.
(1993)]. In one dimension,

—ed! +ag, =0, witha= (a(z;_1)+ a(x;))/2, for z € (x;_1, ;). (27)

The functions ¢; obtained this way have exponential layers. When these functions
are summed up with correct weights, they provide a better approximation to the
solution than the hat functions do. In fact, if the coefficient is constant, this scheme
gives exact nodal values.

This can be understood in terms of Green’s functions. By definition,
u(x) = [, G(x,%0) f(x0) dxg. Choosing v(x) = G(x¢,x) in the bilinear form (2)
and using the Green’s function, we have a(u,G) = (f,G) = u for any choice of w.

h

Therefore, letting u — u —u”, we can now write a(u —u”", G) = u — u". Subtracting

this from the orthogonality condition a(u — u”,v) =0,

u—u" =alu—u",G—-v), YoeVh (28)
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This shows that the error ||u — u”|| can be minimized by selecting the test func-
tion space V" to contain as much of the Green’s functions as possible. Given this
reasoning, it makes sense to choose V" to include functions G; that satisfy

L*Gi(x) = —d(x — x;)

at each mesh point x;. L* is the adjoint operator here.
Fortunately, in one dimension, G; is a linear combination of local Green’s func-
tions g;(z),x € (zj—1,%,+1), that satisfy

L7gij(z) =0, gj(xj—1) =gj(xj+1) =0, g;(z;) =1 (29)

For variable coefficient problems, previously proposed methods suggest solving a
local problem with averaged coefficients. However, as we will also do in two dimen-
sions, we solve the variable coefficient problem directly. It can be shown that for
the one-dimensional equation (26) with a variable coefficient convection term, using
linear trial functions and solutions to the local homogeneous adjoint equation as the
test functions in the weak formulation results in exact nodal values, if the integra-
tions are done exactly [Park (2000)]. If there is no forcing, adaptive trial functions
and linear test functions also give exact nodal values.

In two dimensions, the global Green’s function cannot be expressed as a linear
combination of local Green’s functions solved in each element. However, the adjoint
equation is still useful. After integration by parts and some algebra, we can write

a(v,w):eZ/aKva-nds—l—eZ/K(—Awdx—b-Vw)vdx, (30)

over elements denoted by K. Therefore, when we get w by solving the adjoint
equation —eAw —b-Vw = 0 on each element, the second term disappears. We then
let v = u — u” and use the orthogonality property to get

Z/ (u—u")Vw-nds =0,
— Jox

that is, the projection of the error u — u” onto the element boundary becomes zero.

3.2. The multiscale finite element method

In Hou et al. [1999], the multiscale FEM was introduced for elliptic equations with
oscillatory coeflicients. The main idea is to resolve the fine scales locally within each
element of size h > § by solving the homogeneous equation with some appropriate
boundary conditions. This way, each basis function retains the oscillatory property
of the differential operator. It is proved [Hou et al. (1999)] that when these elements
are used to construct the global stiffness matrix, the averaged effects of the rapidly
oscillating coefficients are correctly captured. By resolving the fine details inside
the elements, problems that are prohibitively expensive with conventional finite
element methods are broken down into smaller, manageable parts. Because the
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elements are larger, the final solution is computed on a coarser grid; however, the
large scale features are usually of interest in the first place, and sufficient information
is obtained for that purpose. In this method, the trial functions are the solutions
of the homogeneous equation and the test functions are some continuous functions,
different from the approach suggested by the Green’s functions. But both methods
are similar and give comparable results in most cases.

Formally, the multiscale FEM formulation is the following. We let K" be a
partition of € of triangles or rectangles with diameter less than h. We define a set
of basis ¢§’K,z’ =1,...,d (d = 3 for triangles and d = 4 for rectangles) such that
@5 i satisfies

Lsds =0 in K. (31)

At the nodal points z; € K,j = 1,...,d, we require ¢37K(xj) = J;; as usual. The
correct boundary conditions for (31) would match the global solution, but since we
do not know this, we can impose linear boundary conditions for now; this issue is
discussed later. We define

VP =span{¢} x:i=1,...,d, K CK"} C Hj(Q),
and the Galerkin formulation is to find the solution ug‘ € V" such that
a(u},v) = f(v) YveVh (32)

In order to understand the convergence of this method, the ideas from the homog-
enization procedure discussed in Sec. 2.2 play a critical role. Just as we expand ug
in (11), we can also expand the basis function ¢; as

x\ 0
85(x) = do(x) + O (.5 ) 520+ 66°, (33)

with ¢}, x*, and 6° defined similarly to (10), (13), and (14). Since ¢ is a smooth
function, we see that the oscillation in ¢s comes from that of y, which solves the
cell problem (25). The error analysis is based on the fact that ¢s and us satisfy the
same operator and therefore the two expansions (15) and (33) match, away from
the small region near the boundary.

We see that the boundary conditions are an important issue if the two expan-
sions were to match better near the boundary. While we assumed linear boundary
condition above, another possibility is to solve the one-dimensional version of the
equation along each edge, as we do for the problems in this section. This usually
results in some improvement in error. For very small €, care must be taken: the
layers inside the basis may have thickness of O(d§4/€), but the reduced equation on
the boundary may give layers of thickness O(d¢). In that case, the mesh spacing
that resolves the layers inside the basis may not resolve the layers on the boundary.
The case in which solving the one-dimensional equation works the best is in Sec. 4,
when coeflicients have discontinuities. For many elliptic problems, the best solution
turns out to be the oversampling method introduced in Hou and Wu [1997]. In that



30 P. J. Park €& T. Y. Hou

case, the effect of a wrong boundary condition is restricted to a O(d) region near
the boundary. The oversampling idea is then to solve for the basis function on a
domain larger than the element and extract the information from the middle of the
domain. This reduces the error due to the incorrect boundary conditions. A rigorous
analysis has been carried out in Efendiev et al. [2000]. In the convection-diffusion
case, the oversampling does not always work because the effect of the boundary
condition may not be confined to such a small region.

3.3. Computation of the effective diffusivity

We apply the multiscale FEM discussed in the previous section to the time-
dependent convection-diffusion problem with the periodic velocity field. In par-
ticular, we consider the “cellular” flow for which some analytical results exist. The
problem we use to demonstrate the effectiveness of the method is the computation
of the effective diffusivity property (23).

3.3.1. Effective diffusivity

The “cellular flow” is given by the streamfunction

1 2 2
P = ﬁsin <%x> sin (%y) , (z,y) €[0,1%, (34)

where ¢ is the rescaling parameter that determines the number of cells. The scaling
factor 1/(47?) is used to relate to other studies done on domains of size [—m,7]?.
This streamfunction with § = 0.25 is plotted in Fig. 1(a). The velocity vector is
tangent to the streamlines shown.
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Fig. 1. (a) shows a periodic streamfunction (§ = 0.25); (b) shows x for the cellular flow (§ = 0.25,
€ = 0.001).
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A well-known result for this velocity field, described for example in Childress and
Soward [1989]; Childress [1979]; Rosenbluth et al. [1987], concerns the long-time,
large-distance diffusive behavior: the “effective diffusivity” o, in the limit ¢ — 0,
scales as

Te ~ Ve (35)

In the absence of convection, the effective diffusivity is simply e. It is clear that
convection can only increase the overall diffusivity, as it carries particles along the
streamlines faster than diffusion does. This can be seen clearly when we expand the
expression for o, in (23) and simplify to get another expression,

oc =€+ e(Vyx-Vyx). (36)

The result (35) can be understood through a simple scaling argument. The
important feature in the solution is the formation of boundary layers near sepa-
ratrices. It is these boundary layers that characterize the transport properties of
particles. To determine the width of the layer along the separatrices, we set § = 1
and balance the diffusive flux across the layer with the convective flux along the
layer. Comparing the time scales, w? /e ~ [ /ug, where w is the width of the layer,
is the size of the cell, and wug is the magnitude of the velocity. Since I and ug are of
O(1), we conclude that w ~ y/e. Then we can use (23). Since the width of the cell
boundary layer is of order w ~ /€, we obtain Vx ~ 1/4/e. Substituting this in (23)
and integrating over the width of the layer immediately gives (35).

In general, o, is a tensor. It is the asymptotic rate of mean square displacement
with different diffusivity depending on the direction. In the present case, however,
the effective diffusivity is isotropic. This allows us to introduce a simple and intuitive
definition, also useful for computations. With a slight modification from Fannjiang
and Papanicolaou [1994], we can measure the mean square displacement by

= lim — // 22 +y?) u(z,y, t) dody (37)

t—oo 4t

with the delta function at the origin as the initial function. We have inserted the
factor 4 so that when there is no convection term, we get o. = €, which we can
verify by putting in the Green’s function for the heat equation into (37).

3.3.2. Numerical results

In order to test the multiscale FEM, we compute the equation (20) in time, starting
with a regularized delta function. An example of a multiscale basis function obtained
by solving (31) is shown in Fig. 2, to illustrate the fine details within the basis. The
basis function has the same layer structure as we would find in the global solution.
The boundary conditions given are 1 at the lower left corner and 0 at the other
corners; along the edges, the reduced one-dimensional equations are solved. Layers
are strong at the lower left region because of this boundary condition.
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012f77Z=

0.06

Fig. 2. A contour plot of the multiscale basis function, with 1 at the lower left corner and 0 at the
other nodes. In this example, §/h = 0.5, where h is the mesh size.

Table 1. The diffusivity scaling for the cellular flow (n = 16, m = 32).

=1 6=0.1 6 = 0.05
€ Oe Ratio Oc Ratio Oc Ratio
0.04 0.03252 — 0.03265 — 0.03275

0.02 0.02092  0.6432 0.02316 0.7093 0.02355 0.7191
0.01 0.01141 0.5454 0.01643 0.7094 0.01665 0.7070
0.005 0.00619  0.5425 0.01300 0.7912 0.01233  0.7405
0.0025 0.00344 0.5557 0.01046 0.8046 0.00872  0.7072

For computation, we let u(z,y,t) = Zj &i(t)dj(z,y) and v = ¢; in the weak
formulation. A good discretization scheme for this problem is second order Adams-
Bashforth on the advection term and Crank-Nicholson on the diffusion term. We can
approximate the initial condition with a Gaussian or another smooth function
such as

1

—(sin(47(r +1/8)) +1)%, r<0.25

u(z,y) = ¢ 16 :
0, r > 0.25

where r is the radius. We restrict R? to a finite domain and then scale it to the
computational domain of the unit square using §; we take small At and compute up
to some time 7', depending on € and 4. When o, starts to decrease noticeably, we
know that the fluid front has reached the boundary but is prevented from moving
further. We compute the scaling by comparing the values of o, at a fixed time for
different €. In Table 1, we show the rate at which o, in (37) is changing. Given
the scaling (35), we expect o, to decrease by a factor of 1/v/2 ~ 0.7071 when e is
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halved. We see in the table that when § = 1, o, is nearly halved, meaning there
is no enhancement. However, when § = 0.05, the ratio is close to the predicted
value, as € gets small. If the conventional bilinear elements are used, this behavior
is missed completely.

We note that while we compute the effective diffusivity here, that is not the main
objective of the method. The objective is to compute the transient state correctly.
The fact that we get the correct scaling is just a consequence of obtaining the
correct solution. For this convection-diffusion problem, the multiscale FEM offers a
big computational saving over the conventional FEM. Since the velocity field is time
independent, the cost in computing the multiscale base function is just an overhead
at ¢t = 0. Once we have computed the multiscale bases, the subsequent computations
at later times can be performed on the coarse grid with a coarse time step. For the
particular example considered here, the ratio between the coarse grid and the fine
grid is equal to 32 in each dimension. Thus there is a factor of 32 x 32 = 1024
between the number of coarse grid and the number of fine grid. If we take into
the account of saving in the number of time step, we can gain a factor 10000s in
computational cost comparing with the corresponding fine grid computation.

In the case of homogeneous periodic velocity field as the one considered here, we
can further reduce the cost in computing the multiscale bases by solving for the cell
problem x(y) in a single periodic cell and use the first two terms in the asymptotic
expansion of the base function in (33) as our multiscale basis, i.e.

960

=, (39)

05(x) = do(x) + 0x* (5)
where ¢g(x) can be taken as the standard FEM base over a rectangular element,
e.g. the bilinear base. In this case, the solution of the cell problem x* is independent
of slow variable x since the streamline is independent of x. Therefore, by solving
for the cell problem in a single periodic cell, we can generate the multiscale base
functions for the entire computational domain.

Multigrid solver

One of the major difficulties for the singularly perturbed problems is solving the lin-
ear system. For small ¢, the linear system may be indefinite and often ill-conditioned.
This means some iterative techniques would not converge. It was shown in Golub
et al. [1996] that the positive definiteness of the continuous differential operator is
not always mirrored by some discretization schemes, even if the matrix is diago-
nally dominant. As a result, the standard multigrid algorithm, which is an O(N)
algorithm where IV is the total number of unknowns, often performs poorly. Fortu-
nately, there is a modified multigrid algorithm developed specifically for convection-
dominated problems [De Zeeuw (1990)]. It uses matrix-dependent prolongation and
restriction operators that account for the character of the equation. We have found
that this algorithm is very efficient and robust, usually converging under 10 or 20
iterations to the residual of 1078, Iterative methods such as BICGSTAB or GMRES
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for nonsymmetric matrices also work, but the number of iterations required may be
large as € gets small.

Parallel efficiency

A major advantage of the multiscale FEM algorithm is its parallel efficiency. The
construction of one basis function is independent from that of any other; the ele-
ments can be divided evenly among all the processors first, and then collected to
a master processor that performs the final calculations. Hence, the algorithm is
almost perfectly parallelized: As the number of processors doubles, the computing
time is halved. The time is not exactly halved since the master process has to do
the final step after the global stiffness matrix is computed. Only when the number
of processors is very large is the efficiency degraded, as the communication time
among the processors takes a significant portion of the total time.

There is also a substantial saving in the memory required. We let n be the
number of multiscale elements within each direction and let m be the number of
grid points in each element. Then, the total memory required is O(n? + m?), since
O(m?) operations for each element can be done in sequence. If the same resolution
were to be achieved in direct simulation, O ((nm)Q) would be required. If n =
32, m = 32, for example, there is a factor of 1000 saving in memory.

3.4. Asymptotic error analysis

We study the error of the multiscale method in this section. In the genuinely elliptic
problem considered before [Hou et al. (1999); Efendiev et al. (2000)], there is one
parameter §, which characterizes the rapid oscillation. Now there is an additional
parameter € for thin layers that must be considered in examining the error terms.

3.4.1. Previous results

We first discuss the result for the symmetric coefficient, a;; = a;;, studied in detail
in Hou et al. [1999], as it provides the framework for the analysis of this section.
When the small scale of the problem ¢ is resolved by the mesh size h, the error
estimate is

h 2
Ju=lon <€ (5) Wloa (<o) (39)

In this case, the multiscale basis functions do not have oscillations and they look
similar to the bilinear functions. Thus, the convergence rate resembles that of the
standard FEM. Note that we must have h small enough to resolve the § scale for
convergence. The two methods are different for the case of our interest, h > ¢. In
Hou et al. [1999], estimates from homogenization theory are used to show that

5\ 1/2
u-lha<Ci(3) +Coblflon (n3 o) (10)
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Note that § < 1 now appears in the numerator of the first term. The method
therefore converges as § — 0 for a fixed h, unlike in the h < § case (39). To get the
L? estimate, the Aubin-Nitsche trick [Brenner and Scott (1994)] is usually employed
to gain an extra order in h from the H' estimate. This method, however, does not
work well for this problem and the (§/h)/? term still remains.

In order to obtain the correct estimate as indicated by numerical experiments,
subtle error cancellations in the discrete problem need to be examined. With this
analysis, it is formally concluded that

1)
Ju—u"o,0 < Clﬁ + C36 + Csh?(| fllo,a,  (h>>0). (41)

The leading order term is now (6/h) and as long as h is large enough, the error is
small, as verified by numerical examples [Hou et al. (1999)].

Discrete analysis

We review this analysis of the discrete problem [Hou et al. (1999); Efendiev et al.
(2000)], so that we can understand the convection-diffusion case.

Using the triangular inequality, standard finite element estimates for bilinear
elements, and the regularity and homogenization estimates [Hou et al. (1999)], we
can write

lu —u"llo.0 < [lu—uollo.o + luo — uglloe + u" — uglos (42)
< C16 + Cob?|| fllo,e + [[u" = ug o, (43)

where u is the solution to the original continuous problem, u” the numerical approx-
imation to u given by (32); ug is the solution to the homogenized problem (10), u?
the numerical approximation to ug. We would obtain u? by solving the bilinear
form (2) with the homogenized coefficient.

The problem then is to estimate the |[u® — ul||o.q term in (43). To examine this
term, we introduce the discrete [2 norm. It is shown in Hou et al. [1999] that

lu* — ugllze < Cullu® — uglli2 + Cad, (44)

where

1/2
ul = ul|l = (Z [u"(x;) — ub(x;)] hz) , (45)
ieN

with A/ containing all the nodal points of the mesh. Equations (43) and (44) show
that |[u® — ul||;2, the convergence of u” to uf at the nodal points, contains the
crucial error term.

Let U be the vector containing the nodal points u”. This is the solution to the
discrete equation

At = g, (46)

where A" and f" are the global stiffness matrix and the load vector, obtained from
(32) using v = ¢".
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Similarly, we have for the homogenized problem,
ASUg = £d, (47)

where we obtain A? and fJ from the bilinear form for (10) using v = ¢}
Since the basis function ¢; can be expanded as (33), we can also expand the
stiffness matrix and load vector around the homogenized counterparts as

Al = Ab 4 5AN - fh =S (48)

Al is assembled from the local stiffness matrix of each element, which we denote
by e. By substituting the expansion ¢5 = ¢o +x*dpo/dx), +6° (33) in the bilinear
form (2), we find, after some algebra, that

i ii 1 .
¢ :_/ o (5 ;0" + ¢ ;0%) dx+/ 5agefgefjdx+5/ &Y ¢ ;06,4 d
K K K

(49)
and
fio= = [ 10+ 0 da. (50)
where the comma is a shorthand for partial differentiation. Here,
ot = (4 92 61)
and
59 = o' —all — My, (52)

From (12) and (13), we find that (¢%) is the homogenized coefficient a and

O'zi = 0. Integrating by parts, we also obtain <Upjxfyp> = 0 and hence (7)) = 0

[Efendiev et al. (2000)].
Given the expansions (48), we can deduce an expansion in U",

Ut = U} + UM + 52U 4. (53)
In particular, U is given by
AUY = fi - ATUG. (54)
Furthermore, we can express U} as follows:
U = G ftt — GoALUY, (55)

where G = (A#)~L.

Now the whole analysis reduces to estimating the order of U}, since |[U"—U|| <
S|\ UM + 02|Ua||? + ---. With [|[U]|, (43) and (44) directly lead to the desired
estimate of ||u — u”| o .
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3.4.2. The convection-diffusion case

We now return to the convection-diffusion case, where we have, in place of (43),

Ju—u"{o.0 < lu—uollo,e + luo — uflloa + u" — ufloe (56)
1) h2
< C1$ +Cz—€||f||o,ﬂ+ Ju = ugf[lo,0- (57)

The 1/+/€ is due to the fact that the norm of the solution grows at the rate of /e,
as we will verify later. In the symmetric case, a;; = aj;, it was shown in Efendiev
et al. [2000] that we can write the second term for U} in (55) in a different form:

N j<k

(GeATUY), = > > AY (U5 - Ug) (GFF - GF); (58)
k=1 j=1

Ul = Ghfl — DGh A DUP. (59)

D is a difference operator, details of which can be found in Efendiev et al. [2000].
The fact that we can write DGR and DU} here is crucial because this difference
structure gives an additional O(h) in the convergence rate. With the estimates
Glllo.a < C/R%, | < C16 + Cah, and ||Al||o.q < C/h, this leads to ||U}|| <
Ci + C3/h in the symmetric case and hence to (41).
In the convection-diffusion case, we do not have the same structure. After some
algebra and discrete integration by parts, we have, instead of (59),
N j<k
(GhAtUy), = AU - US) (G + GF). (60)
k=1 j=1
Because of the plus sign between the Gy terms, we can write this only as
U = Gy fi' = GG AT DU, (61)

without the difference operator for G term. The fact that we lost O(h) means
that the structure of (55) must be examined more carefully for possible additional
cancellation.

3.4.3. Estimating A}

We do this by carefully estimating the A% term in (55). We denote the terms in
(49) as follows:

A= — / o' (g ;0% + b ;0%) du, (62)
K

Ay =34 / ay 0%0",; dz, (63)
K

As = L[ iigh ok d 64

353 KU b,;%0,; d. (64)

We now proceed to examine each of these terms.
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(i) Estimating A;:
We first move the integral to the boundary to avoid estimating 6! inside an
element and use the fact that 6! = x!(0¢o/0x) on the boundary from (14) and
that O¢g/0x ~ 1/h in a cell of size h. Thus,

/ o gf ;0" dw = / o 50" ds (65)
K R 0K l
1 iq i 1 !
~ E/aK (a” +a®xdy, )x'ns ds (66)
— 1 a¥x'n; ds + l/ ax’, x'n;ds (67)
h Jok ' h Jox et

The first term of (67) is O(1) since a”/ and ! are bounded. The second term
is more difficult to estimate. Note that these terms are indexed by k,l and
summed in other indices. Some terms are dropped once their sizes have been
estimated, but the same indices should still be summed even though they may
not be repeated. Now we group the boundary segments for the second term
into two parts, with I'; denoting the four sides of an element K, consecutively
numbered. Now (67) is the same order as

1 . ,
7 </ alkx?ykxlnl ds + / a%xfykxlng ds)
I'1+I'3 24Ty

1 , ,
== (/ auxfylxlnl ds —l—/ alzxfygxlnl ds
I'1+TI3 I'1+T3

+/ a21xfylxln2 ds + / a22xfylen2 ds) . (68)
I'o+Ty Ia+Iy

We consider the j = 1 case now; the j = 2 case is analogous, except that the
role of the second and third terms in (68) are reversed. The first and the last
terms present little problem since the coefficient is a'! = a?? = ¢, which comes
from the diffusion term and cancels out the effect of the x term.

The second and third term appear more troublesome. x satisfies the sin-
gularly perturbed problem (25) and so has layers. But we observe that Vy is
O(1/+/€), that is, the thickness of the layer in x is O(y/€), as will be discussed
soon. Since the streamfunction 1 is a smooth function and the layers occur
around the separatrices ¥ = 0, ¥ is of O(y/€) in the layer. Thus, (68) can be
estimated as

1

1
e-—-l—/ ! ds+/ Xl ds+ e — (69)
\/E Iy 4Ts sY2 FotTy sY1 \/E

Ne.ie+\/g+\/g. L (70)

1
R + €
Ve Ve
~ O(1). (71)
We plot the x! and x? functions in Fig. 3 to clarify the terms in (69). We
note, however, that the domain in the figure is over one period and not over
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Fig. 3. Cell problem solutions x1 (left) and x2 (right), rescaled to the unit square.

01 02

some arbitrary element domain K of the integral. The key step in obtaining
(71) is considering the interaction of x and . By examining where the layers
occur, we obtain the O(1) estimate and avoid the 1/+/€ estimate, which is what
we would get with a simpler procedure.

In (69) and (70), we have assumed that

1
HijHLm(aK) ~ NG (72)

This is what we expect from the argument for the effective diffusivity scal-
ing, as the gradient of x determines the /e scaling. In fact, we see in (23)
that x directly determines the o, scaling. With the layer of width O(/€) and
gradient O(1/+/€), x gives the correct scaling, as verified numerically in Park
[2000].

Estimate (72) can also be verified directly, as shown in Table 2, derivatives
of x1 along each direction have the 1/4/€ scaling; 2 gives similar results.
Estimating As:

We again transfer the integral to the boundary first.

5 / a6 dr =5 | a6 n; ds (73)
K T OK '
~ 0 / a9l ds (74)
h Jox 7
1) 1 J l
i o o /K v "
~ O(/e) +0(1) = O(1). (76)
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(iii)

Table 2. ”X,lyi || has 1/4/€ behavior for resolved solu-
tions over one cell.

€ lIx %, llzee Ratio lIx%, lliee Ratio
0.02 0.7903 — 0.5650 —
0.01 1.6755 2.1200 0.8479 1.5007
0.005 3.0552 1.8234 0.9482 1.1182

0.0025 4.7457 1.5533 1.2551 1.3236

Table 3. ||V0]| has 1/+/€ behavior, with resolved solu-
tions over one cell.

¢ 04l Ratio 6,01  Ratio
0.02 0.7903 — 0.6099 —

0.01 1.6755 2.1200 1.1513 1.8877
0.005 3.0552 1.8234 1.9513 1.6949

0.0025 4.7457 1.5533 2.8846 1.4783

In order to obtain (76), we use the same argument as for A, assuming that

1
- ~—
107112 (o) NG (77)

In general, the structure of 8 is very complicated, and it is hard to derive
such estimates analytically. The effect of the boundary condition may travel
past the immediate vicinity of the boundary. That is the reason we move
the derivatives of 8 from inside the element onto the boundary whenever pos-
sible. Since the estimate (77) is only on the boundary, the scaling is easier to
understand. From (14), we know that 6 behaves as x on the boundary. So, the
6 derivative along the boundary of the element scales as 1/y/¢ with respect
to ¢, following (72). The derivative perpendicular to the boundary could be of
order 1/(d+/€) since the O(y/€) layer within the d-size cells gives the absolute
thickness of O(d+/€). The numerical result in Table 3 appears to support this.
Estimating As:

A rough estimate for A3 gives

1 3 1 11\ 1
i 5L HF — . 5h-[=.2)~ 2
5/Ka 9b,3664 e = < - h (h h) - (78)

However, we actually get an additional O(h) because we can write this term
in a difference form As = DA for some \"*. Because this term does not involve
X or 6, it is exactly the same as in the elliptic case. In Efendiev et al. [2000],
details on the difference structures of Az are described. We can also say the
same thing for f{!, also described in Efendiev et al. [2000]. With the additional
h, we conclude that Az ~ O(1).
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Table 4. ||GR|| has 1//€ dependence (n = 8, m = 256).

€ GR |2 Ratio |G |0 Ratio
0.04 80.6231 — 114.2264 —
0.02 144.2394 1.7891 204.3565 1.7890
0.01 218.5669 1.5153 309.6592 1.5153
0.005 292.8571 1.3399 414.9086 1.3399

0.0025 403.3811 1.3774 571.4950 1.3774

3.4.4. Error estimate

Putting the A; estimates together, we obtain the following:

|G AhDUN | < C ( (79)

)

ot~ vii< e (5 ) + 6 (22) Wloe (50)

The 1//€ term comes from the definition G} = (Ag)fl. This is the scaling we
expect for GB because the homogenized coefficient for A} behaves as /e. We verify
this numerically in Table 4.
Using (57) and the fact that ||ulo.q ~ 1//€, we finally have
h
leitlon < (2) + carl s (5)
l[ullo.c

for the relative error. Due to the discrete analysis, we get the (0/h) term as the
leading order error. This is a sharp estimate, as will be verified in the next section.
We note that the relative error is independent of e. If we had used the conventional
finite element analysis, the first step of using Ceas’s Lemma (6) by itself would give
1/e, from which we cannot recover the current estimate.

3.4.5. Numerical results

We solve the problem numerically to verify the convergence rate given by (81). We
use zero Dirichlet boundary condition and the forcing function

f =z —5?) +sin(10(z — y)) + cos(5(x + y)).

The well-resolved solution was computed on a 4096 x 4096 grid on the parallel
computer (Intel Paragon).

In Table 5, we clearly see that the {2 norm of the solution itself grows with
increasing 1/+/e: Decreasing e by 2 results in a v/2 increase in the error. In order to
verify the d/h factor, we reduce é and h at the same time. In Table 7, we clearly
see that as ¢ and h — 0 (with the ratio fixed at 6/h = 1/4), the error stays about
the same.

From (81), we expect the leading order error to have the 1/h term. We see in
Table 6 that this is indeed the case, as halving h results in doubling of the error. In
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Table 5. ||u|| has 1/4/€ behavior (n = 4096).

€ 1) [°° norm Ratio 12 norm Ratio

0.008  0.015625 3.7034 — 1.4633 —

0.004 0.015625 4.9398 1.3338 1.9515 1.3337
0.002  0.015625 6.9347 1.4038 2.7391 1.4036
0.001  0.015625 9.8403 1.4190 3.8858 1.4186

Table 6. ||u—u"|| has the 1/h term (e = 0.008,5 = 0.015625).

n m [*° error Ratio 12 error Ratio
8 256 0.0675 — 0.0259 —
16 128 0.1605 2.3794 0.0628 2.4247
32 64 0.3358 2.0919 0.1297 2.0653
64 32 0.6134 1.8265 0.2397 1.8481

Table 7. |ju — u”|| has the §/h term (m = 256, ¢ = 0.008).

n 1) [°° error Ratio 12 error Ratio
8 0.03125 0.1112 — 0.04566 —
16 0.015625 0.1517 0.7330 0.05954 0.7668
32 0.0078125 0.1661 0.9133 0.06457 0.9221

64  0.00390625 0.1625 1.0222  0.06365  1.0144

that computation, since € and ¢ remain the same, we keep the overall resolution the
same by keeping n x m constant. In all the numerical computations of this section,
the results are in excellent agreement with the error estimate (81).

3.5. Asymptotic basis

Computing the basis functions numerically can itself be expensive if the fine struc-
tures are present as € — 0. In some cases, it may be possible to use asymptotic
expansion to generate the basis functions. In general, this is a difficult problem.
There are many complicated internal layers along the separatrices of the stream-
function. Fortunately, we can simplify this one step by again using the asymptotic
expansion:

Ao

35(x) = do(x) +0x* (x. ) 570 + 60" (82)

This is a multiple scale expansion for the basis function, just as we had for the global
solution in (15). In the case of homogeneous stream function, x is a function of the
fast variable y only. Thus, we can find the asymptotic expansion for x instead of ¢,
and then use (82) to get an expression for ¢s. In general, constructing ¢s by finding
x first is not a practical option, since there may not even be a periodic structure.
However, we carry out this step here to gain insights into the solution structure.
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The problem now is to find the asymptotic solution to the cell problem (25) for x
over the torus. This is still a difficult problem with possibly very complicated layer
structures. For the cellular flow, however, we can make some progress. First, we
can reduce (25) to a “quarter-cell problem” by using certain symmetry properties.
A “cell” was shown in Fig. 1(a); it contains four square regions and so a quarter-cell
has boundary layers along the edges and no internal layer. Looking at (25), when
e is unit vector in y, x is even in the x direction and odd in the y direction. Then
by defining p = x + «, the analysis of (25) is reduced to that of Fannjiang and
Papanicolaou [1994],

—eAp+b-Vp=0, (83)
_ 1 =220 =

To understand (83), we transform the problem to a new coordinate system
based on the streamfunction ¥ (x,y). Because the boundary layers occur along the
streamlines, 1 (z,y) provides a good basis. We define 9 (z,y) as one coordinate
and then define a family of lines orthogonal to the streamlines [Childress (1979);
Soward (1987)] by ¢(x,y) = C [b - dl, where dl is the tangent to the streamlines.
This is an “angle” variable that measures the distance along a given streamline.
C = C(v) is a constant for the given level set of . It is introduced here to calibrate
¢(z,y), to make sure that it takes the same range of values on each streamline.
We can pick C = 1/C4, where C; is the circulation along the given streamline.
For very small ¢, we can also choose C to be circulation along the cell boundary
since the layers are close to it, and still have small errors [Anufriyev and Fishman
(1982)]. This way, C' is constant for all ¥(z,y) and we avoid computing it for each
streamline.

With these new variables, (83), after some rescaling, becomes [Childress (1979)],

2
9 = eﬂ, (85)
o Oy?
with appropriate boundary conditions [Childress (1979)]. Physically, this corre-
sponds to the temperature distribution generated by periodic segments of heating,
insulation, cooling, and insulation.

The solution to this problem can be obtained by the Wiener-Hopf method
[Anufriyev and Fishman (1982)]. Solving the resulting integral equation and writing
the solution as an expansion in temperature waves, we can find

plo, ) = %—l—% Z Con—_1 €Xp (— § ) sin ( § —(2n — 1)g¢ — Hgn_1> (86)
n=1

don—1 don—1

along with the values of all the constants [Anufriyev and Fishman (1982)]. This
asymptotic expansion can now be converted numerically to (z,y) coordinates.
In Figs. 4(a) and 4(b), we have plotted the two solutions of x using the asymp-
totics and the finite element method, respectively. The asymptotic expansion gives
a very good approximation in this case.
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Fig. 4. (a) An asymptotic solution mapped to the (z,y) coordinates; (b) A quarter cell of x solved
numerically (n = 128).

In general, it is difficult to construct the multiscale basis function analyti-
cally since the multiscale basis functions may contain complicated, genuinely two-
dimensional structures. However, when the flow has scale separation and a periodic
structure, we can construct a semi-analytic multiscale basis function by using the
first two terms in the multiscale expansion of the basis function, i.e.

65() = dolo) +0x¢* (%, 5) 52

The corrector x can be computed numerically over a periodic cell. In particular,
when the flow field is homogeneous, the corrector x is independent of the slow vari-
able, x. Thus, we need only to compute the corrector numerically for one periodic
cell and use it to construct the multiscale basis functions for all coarse grid cells.
This will lead to significant computational savings in computing the multiscale basis
functions. Moreover, it will reduce the effect of resonance errors introduced by the
boundary corrector 65 [Efendiev et al. (2000)].

(87)

3.6. Random coefficients

When the characteristic length scale of the problem is large, the basis functions that
sample only a small region cannot capture the correct behavior. An example is the
case of random velocity field. The properties of random velocity fields have been
studied for a long time, particularly in relation to turbulent flows [Kraichnan (1970);
Fannjiang and Papanicolaou (1996); Avellaneda and Majda (1991)]. There are
many ways of generating a random flow [Apelian et al. (1997)], including speci-
fying the spectrum in the Fourier space, as is usually done in turbulence litera-
ture [Kraichnan (1970)], superposing shear flows in random directions [Balk and
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McLaughlin (1999)], and randomly placing a large number of vortices [Avellaneda
et al. (1991)]. We choose the random perturbation to the cellular flow streamfuncion
[Isichenko (1992)], as it allows for various scaling arguments and a prediction for
the effect of randomness.

For a velocity field that is steady, incompressible, has mean zero, and comes
from a stationary streamfunction i (x,y), it was argued [Isichenko (1992); Isichenko
and Kalda (1991)] that as e — 0,

Oc ~ €313, (88)

This claim (88) is due to a scaling argument based on some results from the
percolation theory regarding the geometry of the streamlines of the flow [Fannjiang
and Papanicolaou (1997)]. The straight lines in the cellular streamfunction Fig. 1(a)
are the separatrices and their intersections are the hyperbolic stagnation points.
Due to the nature of hyperbolic points, the cellular structure is unstable when
these points are perturbed. This results in the cell boundaries reconnecting in some
random manner, forming channels and islands of various sizes. One realization is
shown in Fig. 5. Intuitively, the long loops near the critical level ¢ (z,y) = 0 gives
the dominant contribution to the overall diffusivity. This scaling behavior is difficult
to verify computationally, as it is an asymptotic result in the limit that J, the
parameter that rescales the domain and time in (19), and viscosity € are small.

We note that in the random flow case, the cell problem (24) is not as useful.
In the periodic case, the cell problem allows us to understand the property of the
flow by looking at a single period; in the random flow, that period becomes infinitely
large. However, we find it convenient to work with the cell problem, even though
the cell is the whole domain, since we have the convenient expression (23) for o, in

Fig. 5. A random streamfunction with § = 0.25,~v = 0.5.
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terms of y. We think of the random cell problem as the infinite volume limit of the
periodic cell problem.

We could also solve the unsteady problem with a regularized delta function as
an initial condition and compute o, as we did for the cellular flow. However, this
presents some complications in the numerical problem. We find that in order for
any structures related to the topography of the streamlines to appear, we need to
run the equation for a long period of time. However, because of the increase in the
effective diffusivity, we have the fluid reaching the boundary more quickly. Instead,
we solve for the steady-state solution p(x,y) given by

—eAp+b-Vp=0, (89)

9p Op

p(x,O) =0, p({E, 1) =1, Oz (Ovy) = %(17:‘/) =0, (90)

just like (83) and then use

Oc & e// |Vp|? dz dy. (91)

This is equivalent to the cell problem (23) for x = p — z. (91) is an approximation
because the problem is no longer periodic. Our computations using a multigrid
solver [De Zeeuw (1990)] on a 4096 x 4096 grid gives an estimate very similar to the
theoretical scaling, both as ¢ — 0 for small € and € — 0 for small § [Park (2000)].

3.6.1. A wariational principle

To overcome the problem caused by the nonlocality, we need to have some knowledge
regarding the structure of the layers before solving the problem. This information
can be derived from a variational principle in this problem [Avellaneda and Majda
(1991); Fannjiang and Papanicolaou (1994)]. The main difficulty in obtaining a
variational principle for the convection-diffusion equation comes from the convection
term. Because of the skew-symmetric part H in the coefficient (eI + H), we cannot
easily formulate a functional that has o. as the minimum. After a symmetrization
procedure, Fannjiang and Papanicolaou [1994] found

o) = dnt_(VF V1) + LOHYS T HY ) (92)

at the cost of introducing the nonlocal operator I'y. I'y = VA~!'Vf which is the
orthogonal projection operator onto the subspace of gradient fields. A major contri-
bution to the integral comes from |Vx|? in the boundary layer. For computational
purposes, (92) can be written in a different form involving a Poisson problem, which
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can be solved fast [Fannjiang and Papanicolaou (1994)], in place of the nonlocal I'y
operator.
Given this information, it is reasonable to try test functions of the form

(. y) — CI)

eoz

f(.y) = exp (— (93)

for approximating the behavior of x, where « is the unknown exponent we wish
to find and c is the unknown level set at which the longest streamline occurs.
We expect this ¢ to be near 0 if the other parameters are such that the percolation
results hold. Since f(z,y) has a layer of thickness proportional to €* and V f ~ 1/¢e%,
we expect the a of (93) that achieves the minimum of the variational integral to be
close to the true value of the exponent. Variational principles for the convection-
diffusion problem has been used mostly as a theoretical tool for deriving estimates
of the effective diffusivity for many flows, but we use it as a numerical tool here.
Numerically, the minimization of the integral using the test function (93) gives
estimates close to the theoretical ones for small § and €, both for cellular and
random flows. In Figs. 6(a) and 6(b), we plot the values of the functional for the
exponent a and the level set value c.

With the scaling information provided by the variational principle, we attempt
to design a more efficient numerical method. The idea is similar to that of the
previous section. We would like to have the trial or test functions that contain the
same behavior as the solution. The idea presented in this section can be applied more
generally. Given a problem and its variational principle, if the dominant contribution
to the integral comes from a layer structure of the solution, we can use this idea to
find out the thickness and the location of the layer. Then we can use this information
to design a more efficient method to solve the original problem.
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Fig. 6. (a) Variational integral for the random velocity field as a function of the exponent o
(e = 0.0001, § = 0.125); (b) Variational integral for the random velocity field as a function of the
constant ¢ (o = 0.23, ¢ = 0.0001, § = 0.25).
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3.6.2. A numerical method
One-dimensional problem

We noted previously that the test function space should be composed of exponentials
that solve the local adjoint problem in order to minimize the error for a given mesh.
This idea of the exponential basis has been studied extensively mostly for the one-
dimensional case, assuming a positive coefficient, a(z) > ag > 0 [Roos et al. (1991);
O’Riordan and Stynes (1991); Miller et al. (1996); Stynes and O’Riordan (1991)].
In this section, we study how basis functions should be constructed for a more
general case when the coefficient has a turning point. Understanding the turning
point case in one dimension is essential for the two-dimensional problems studied
in the next section, since a similar phenomenon occurs all along the layers.
We consider the simple case

1, O<z<1/2
—eu +a(x)u' =0, alx)=<¢0, x=1/2 (94)
-1, 1/2<z<1

with boundary conditions 4(0) = 0 and u(1) = 1. The exact solution can be found
easily [Park (2000)]. The solution has a sharp internal layer at © = 1/2. Intuitively,
the “fluid” on the left of x = 1/2 is being pushed to the right while the opposite is
true on the right of z = 1/2.

For this problem, simply replacing the linear basis function at the layer with
the local solutions of the homogeneous equation does not work. We need to solve
the equation locally, but we must separate the exponential behavior on each side of
the turning point into two different bases as well as including the linear basis. The
shape and the direction of the layer cannot be determined locally, so three basis
functions should be present over the same support. The problem is well-posed as
long as the three bases remain linearly independent.

With the two types of bases, ¢; and 1;, that are linear and exponential respec-
tively, we can write

u = Z a; Qi + Z bii, (95)

including 1; only at the turn points where the layer will occur.

One way to solve this is as a minimization for the variational principle, using the
conjugate gradient method for instance [Park (2000)]. A better way is through the
finite element formulation, with modifications for the extra unknowns b;. With 1);,
the size of the local stiffness matrix is larger. Because we include the extra bases
only near the possible layer locations, the matrix problem increases only by a small
number of rows and columns. While the new matrix does not have a banded struc-
ture anymore, it can be solved efficiently, as will be described later in this section.
With the extra bases, oscillations do not occur even with a coarse grid and the
performance is similar as € — 0.
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Two-dimensional problem

In two dimensions, we would also like to design basis functions that capture the
exponential behavior. The difficulty, as mentioned previously, is that solving the
equation locally does not give the correct behavior for the velocity fields we con-
sider in this section. This is the reason we introduced the variational principle in
Sec. 3.6.1. In this section, we examine how to use our knowledge of the layer struc-
ture, based on the percolation theory and the variational principle, to design basis
functions that will capture a global layer accurately. We find that the framework
developed in this section can be used more broadly as we will see in the next section.

Ideally, we would like to construct special basis functions ¥;,7 = 1,...,s such
that u — Zi b;¥; is smooth when b; are chosen optimally. If we can do that, the
smooth part can be approximated well by the bilinear functions ®;. Then, for
uh =3 a;®; +>; b;¥;, we would have [Strang and Fix (1973)]

i
s
u — E Ci\I/i

1

lu—u"(l; < C R (96)

k

In general, it is too hard to find all these ¥;. It is equivalent to finding the location
and behavior of all the layers in the solution exactly. For the random flow problem,
we are trying to capture just the main feature of the solution which we think has
the dominant contribution. We see in the numerical examples that the large errors
in fact come from few sharp layers and that the use of a limited number of ¥,
improves the result significantly.

Numerical results

The extra basis functions are constructed based on an insight gained from the one-
dimensional example. We define the support of the new basis functions along the
layer and then embed the correct exponential behavior. At each location, there are
two bases, each with the predicted layer shape on one side, and linear function on
the other. The underlying grid is uniform and the bilinear bases on this grid take
care of the smooth part of the solution. This method applied to the cellular flow
appears to work well, with exponential bases picking up most of the weight near the
layers in the solution [Park (2000)]. In fact, the minimum [? error for the solution
is achieved when the basis functions are constructed with o & 1/2 and it is robust
with respect to a slight error in the estimate of «. This confirms that the value
of a obtained through the variational principle can be used to approximate the
exponential behavior.

The streamlines along which the layers occur are generally not aligned with
the underlying uniform grid. The computer implementation in this case becomes
more involved. For example, we need to segment evenly the separatrices on which
layers occur, define the element support appropriately, and use a mapping from
a quadrilateral support to a square to construct modified linear bases. While the
variational principle of the last section gives information about a dominant layer,
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Fig. 7. (a) A random streamfunction for the use of exponential basis in a quarter of the domain;
(b) solution to the cell problem for a random streamfunction, generated by extending the random
streamfunction (a) to all four quadrants and then rescaling it to the unit square, with periodic
boundary conditions.

this may not be sufficient. If § is not small, for example, there may not be one such
layer; there may be other layers we need to capture. For instance, the internal layers
will also occur along the separatrices that contain the hyperbolic points, because
they are where the flows in opposite directions meet. Therefore, we search for these
hyperbolic points near the ¢ = 0 and place additional extra bases functions nearby.

We first generate some random streamfunction, such as the one shown in
Fig. 7(a). Since the formulation of the cell problem requires periodic boundary
conditions, we extend the original streamfunction in the first quadrant to the other
quadrants by reflections ¢(z,y) = ¢¥(z,—y) and ¥(x,y) = P(—=x,y) [Fannjiang
and Papanicolaou (1997)]. We then rescale the domain to [0, 1]? before solving the
problem. A resolved solution for the velocity field given by the streamfunction of
Fig. 7(a) extended in this way is shown in Fig. 7(b). To use the exponential basis
functions, we lay down a mesh along the streamlines. The boxes along the curved
streamlines indicated the support of the special basis functions. Along this curved
mesh, we place a set of exponential basis functions, in a manner analogous to the
one-dimensional example of Sec. 3.6.2.

The results for the e = 0.001 case are shown in Table 8. We see that the error is
decreased by 60% for both in the {2 and [ norm when exponential functions are
used. Since changing the resolution in the interior of the basis function results in
only small changes, most of the error is due to other weak layers not approximated
by the exponential form or due to the differences in the exponential behavior on
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Table 8. Improvement due to the use of expo-
nential functions (e = 0.001).

n m 12 error [*° error

Linear 16 16 0.089987  0.28294

Exponential 16 8 0.038651  0.11858
16 16 0.037504  0.11340
16 32 0.037553  0.11117

different layers. For smaller €, the difference is larger. For ¢ = 0.0005, we see that
the multigrid method that we found to be very robust does not converge in the
bilinear case unless n is at least 64. For ¢ = 0.00025, we need at least n = 256
for its convergence. With the exponential basis, smaller € cases are handled more
effectively. Although the error does increase each time e is halved (roughly 40%), we
obtained stable solutions with relatively small error. For example, for e = 0.00025,
the 12 error is 0.080120 (the [°° error is 0.21643).

It is not always possible to determine the shape of the layers exactly. The widths
also vary a little on different layers. Therefore, it is desirable to have low sensitivity
to small inaccuracies in the estimates for «, the exponent that determines the layer
thickness given some e. Our simulations show that the method is tolerant to small
errors in the estimate of o [Park (2000)].

Ideally, we would like to use an efficient method such as the one developed
in this section to compute the diffusivity scaling for the random flow accurately.
However, in the steady-state problem, we find that the layer does not form a long
smooth curve. That may be true in the time-dependent problem but still only in
the long-time limit. Instead, due to the nonhomogeneous boundary condition, the
solution develops more small scale features. We see that the layer locations are very
complicated. We find that the resulting complexity of these layers is too burdensome
for the method of this section. The fact that the method seems to be insensitive to
small errors in the layer thickness estimate works to our advantage, but the location
of the layers are not clearly known. As 0 gets small, there are many potential sites
for these layers and it becomes difficult to account for all of them. For less complex
problems, the exponential basis approach works well, as we demonstrated above
with numerical examples.

There is one important difference between conventional methods and the expo-
nential approach we consider here: because the latter is based on asymptotic theory,
its performance should improve as the parameters get small. For example, if we can
manage to evolve the time-dependent problem for a long time, there should be more
coherent structure in the solution, as predicted by the percolation results. Then the
present method should capture more of the important features in the solution.
In contrast, other methods do not take advantage of any solution structure and
would deteriorate quickly for smaller parameters.
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Solution of the augmented linear system

The global stiffness matrix of the conventional finite element method in two dimen-
sions is a banded matrix with nine diagonals. With the extra basis functions,
however, the stiffness matrix contains added rows and columns, as shown in (97).

A B T f
- . (97)

C D To g

The matrix A represents the interaction of the bilinear elements, B and C' the inter-
actions between the bilinear and the exponential, and D the interaction between
the exponentials; x; is the weight of the bilinear elements and z2 that of the special
elements. The support of the exponential basis function does not have to be the
same size as that of a bilinear element; thus one exponential basis function can
interact with more than eight bilinear elements. As a result, B, C, and D in general
do not have a regular pattern and must be treated as full matrices.

This system can be solve efficiently using a generalization of the Bordering
algorithm [Keller (1987)] to take advantage of the banded structure of A. Motivated
by the Schur complement form, we have

(D—-CA™'B)zy =g—CA™'f.

Thus we can solve the system by (i) solve for n in An = B; (ii) let L = D — Ch;
(iii) solve for & in A = f; (iv) let r = g — C&; (v) solve Lzy = r; and (vi) solve
& — nxo. Therefore, we can still use the fast multigrid solver [De Zeeuw (1990)]
for the banded matrix A. Step (i) is the most expensive, since we need to solve
the matrix problem for each column of B. However, the multigrid iteration can be
supplied with a good initial guess and hence is more efficient after the first solve.
Many columns of B are also zeros and do not require the iteration. One difficulty
still arises for the cell problem (25) if the periodic boundary condition is required
for the cell problem. We then store all the matrices in a sparse form and supply
the matrix-vector multiplication routine to the GMRES algorithm for a reasonable
good performance [Barrett et al. (1994)].

4. Elliptic Equation with Discontinuous Coefficients

In the previous section, we considered the singularly perturbed elliptic equation
that has the characteristics of a hyperbolic equation. Now we consider the genuinely
elliptic case but with degeneracies coming from highly variable, possibly even dis-
continuous, coefficients or non-smooth boundaries. In general, the coeflicient may
be a matrix (a;;), but here we will deal with the isotropic case, a;; = a d;;. The coef-
ficient a(x,y), for instance, may represent permeability or electrical conductivity in
a medium and its contrast, max a(z,y)/ mina(zx,y), may be high.
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Fig. 8. An interface with sharp corners: (a) different coefficients in regions Q1 and Q2; (b) the
checkerboard singularity at the center.

When the coefficient is discontinuous, we require the governing equation (1) to
hold in each domain and also that the solution and the normal flux be continuous
across the interface. Suppose we have

(6%] in Ql,
(%) in QQ,

a(z,y) = {

where € is a convex polygon in R?, Q; C Q is an open domain with boundary
=00, C Q,and Q5 = Q\ Q1. An example with a non-smooth interface is shown
in Fig. 8(a). The continuity and jump conditions are

811,1

ouy o 8u2
a1 on

= g —/— (98)
o on

U1|891 = U2|aﬂl,

’
o

where n is the outward normal to the interface 9.

When the interface is smooth, the singularity is not severe, with smooth solu-
tions inside each region. Many methods have been developed for this case and they
work well, at least for moderately large contrast. A method that is the simplest
conceptually but nontrivial in implementation is aligning the grid with the discon-
tinuity. In Chen and Zou [1998], it is proved that if the boundary is at least C?,
this finite element method converges nearly in the same optimal way, in both the
L? and energy norms, as in the problems without interfaces. There are also many
methods that use regular grids, such as the Immersed Interface Method [Leveque
and Li (1994)], but they require the interface to be smooth.

The more difficult problem is with the singularities that arise due to a non-
smooth interface. Here, we would like to carry out a similar strategy as in the
convection-diffusion case, attempting to capture the effect of the singularity in the
basis function and thus obtain a correct coarse grid solution. However, the singu-
larities due to non-smooth interfaces can be very severe. Therefore, unlike in the
previous section, it may not be possible to resolve singularity numerically even in
the basis function if one uses a conventional finite element method. We overcome
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this problem by constructing the basis using the infinite element method, which, as
described below, can be very effective in capturing the most severe singularities.

4.1. Corner and checkerboard singularities

In general, an effective numerical method requires an analytic form of the singularity
[Strang and Fix (1973)]. The degree of singularity caused by a corner in the interface
depends on the shape of the corner and the contrast in the coefficient. When f
is sufficiently smooth on the boundary, the solution in the neighborhood of the
singularity can be expanded in polar coordinates [Han (1982)] as

oo

u(r,0) = Z% ¥t 0,(0),

=0

where a steep gradient due to small v; requires many grid points. The correct
form for the singularity can be obtained by solving the Sturm-Louiville problem
for the exponents v;: (a@’)/ + 120 = 0, with the associated eigenfunctions ©;
and appropriate jump conditions at the interface, (6 ) = ©(6;), a(6; )0’ (") =
a(0;)0'(0;). Knowing v;, it is possible, for example, to use a conformal mapping
of type z = £% to map a region around the singularity to a new domain.

For simple problems, this process can be carried out and we can obtain exact
formulas for eigenvalues and eigenfunctions. But in general, this must be solved
numerically. In the new method we introduce, there is no need to solve this eigen-
value problem. The local grid will have sufficient resolution, even if v; are small.

The more difficult case is that of the “checkerboard” configuration, shown in
Fig. 8(b) with the singularity at the center. Sometimes it is referred to as the
“four-corner juncture” problem. In general, the four regions may have four different
conductivities, a;,i = 1,...,4. In the neighborhood of the singularity, the analytic
solution behaves as [Riide and Zenger (1986)]

u(r,0) = w1 (0)r7 4wy (0)r*~7 + O(r?), (99)

where v = (a1, a2, a3, a4) and 0 < v < 1. When three of the four regions have the
same «, as in a corner of a rectangle, we get v = 2/3. For our numerical example,
we consider the case when a1 = a3 = 1 and ay = a4 = «. In that case, v = /«a
[Riide and Zenger (1986)]; when the contrast is 10 000, the leading order behavior
at the singularity is 7. We note that as a — 0, we also have v — 0. In the limit
of a — 0, the solution becomes discontinuous at the singularity.

Since the singularity is local, we can use regular finite elements in the smooth
region away from the singularities. Near the singularity, we employ the “infinite ele-
ments.” The infinite element method is an elegant technique that has the advantages
of having essentially infinite mesh refinement at the singularity.
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4.2. The infinite element method

First appeared in early 1970s, the infinite element method has been most use-
ful in infinite domain problems and singularity problems. Its many properties and
some applications are described in Ying [1995] and the references therein. The
main idea is to lay down a grid with certain similarity structure and then uti-
lize the self-similarity in reducing the size of the problem. For example, consider
a square domain with a singularity at the center. We lay down a grid that looks
like the one in Fig. 9(a). The dimensions of the elements decrease geometrically
by a factor of 0 < & < 1 as they get closer to the center. Close to the center,
the elements get arbitrarily small and there is essentially an infinite number of
refinements. We call the region between two successive nested squares a “layer”
(see Fig. 9(b)). In general, the element can be any polygon and the singular-
ity does not have to be located at the center. The only requirement is that the
similarity is preserved between the layers and in the triangulation of each layer.
In partitioning inside a layer, we do it in such a way as to avoid small angles at the
element corners. ‘

For the following discussion, we label the nodes by letting y,(;), (k=0,...,00;
i=1,...,n) be the ith point around the center on the kth layer. This is illustrated
in Fig. 9(b). Now, to create the global stiffness matrix, we add up the local stiffness
matrix for each element to get a “layer stiffness matrix.” It can be written as

K —AT
(5 ). (100
with K and K’ being positive definite. This is a 2n x 2n matrix that relates
y,(:), (1t = 1,...,n) and y,(;)_l, (i = 1,...,n) for any k. The key observation is
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Fig. 9. (a) An example of the infinite element grid (further refinements at the center are not shown
in the picture); (b) The node numbering scheme for the first layer.
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that this matrix is the same for all layers due to the self-similarity of the grid. For
the global stiffness matrix, we put the layer matrices together and obtain

K —AT Yo bo
A K'+K AT " 0
= . (101)

A K+K . Y2 0

This is an infinite set of equations, with by from the boundary condition. In order
to solve this system, we first assume that there is a matrix X, called the transfer
matrix, such that

Yrt1 = Xy (102)

The existence of this matrix is proved in Ying [1995]. This transfer matrix plays
a crucial role: Given the boundary condition gy, we can compute the values at all
the interior grid points yi, (k = 1,...,00) from X through (102). This means all
the information about the singularity is contained in X. With yi+1 = Xyi and
Yrta = X2y, each block line gives —A + (K’ + K)X — ATX? = 0. While solving
for X can be formulated as an eigenvalue problem, the following simpler iterative
method can be used instead [Han (1982)]. We generate a sequence of matrices
Kl‘,K{, and Ai by

Ki=Ki1— Al [(Kia+ K[ )7 A, (103)

K=K - A (Ki1+K_) Ay, (104)

Ai=Ai (Ko + K] )) 7 A, (105)
: AT 99" A;

Ki— [, — 299 4 106

with Ko = K, K{j = K’ and Ay = A from (100). In Ying [1995], it is proved that
the sequence of K! converges:

lim K! = K.

1— 00

With K, we can then compute X using [Ying (1995)]
X =(K.+K') A (107)

The motivation for this procedure is the minimization of energy [Ying (1995)].
The most expensive part of the algorithm is inverting the 2n x 2n matrix
(K;—1 + K[_,) at each iteration; but for relatively small n, e.g. n = 16, 32,64,
the algorithm is still fast. Using this algorithm, we define X *) = (KF + K}) 1A
and iterate until X (¥) converges to some specified tolerance. For the problems we
discuss in the next section, the number of iterations till | X*) — X*+1)| < 1010
is fewer than 12 and is not sensitive to the severity of the singularity.
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4.3. Infinite element as a basis function

We utilize the resolution of the infinite elements by employing them at the sin-
gularities; away from the singularities, we can use the standard bilinear elements.
In an uniform grid, the only requirement is that the singular part of the solution
is contained in one element, which is not difficult to do since the worst singular
behavior is confined to a local neighborhood.

Once we compute all the basis functions, we need to put them together into the
global stiffness matrix. The integration over the linear elements can be done with
the two-dimensional trapezoidal rule as usual. But over an infinite element, it is not
immediately clear how to sum up the contribution of all the layers. The shapes of
the local elements are different and there are infinitely many of them. Fortunately,
we find that a simple expression can be obtained just in terms of the boundary
condition and the transfer matrix. Integrating over an element K,

/ aVo;-Vidx = / aV¢§k) . V(b;k) dx (108)
K kth layer

layers

where, for each layer k, the infinite element solutions ¢Ek) , (;55“ are made up of linear
elements. After some algebra in carrying out the summation, there is cancellation
of terms between succeeding layers and it can be shown [Park (2000)] that

/ aVel - Vel ax = aWT (K — ATX)F0), (109)
K

where @) is the boundary condition for ¢; and BY for ®;. Therefore, the sum
over an element has been reduced to multiplying the boundary condition by some
matrix. This is not unexpected since the transfer matrix X should contain all the
interior information.

As in the multiscale FEM case, the correct boundary condition for the infinite
element basis function is not known. However, good results are obtained when the
reduced one-dimensional problem is used on the boundary. This is especially simple
for a piecewise constant coefficient because an exact solution can be obtained easily
that satisfies the continuity and the jump conditions. Details can be found in Park
[2000].

4.4. Numerical results

When the singularity is severe, the standard FEM converges very slowly as described
later in the section. This makes it hard to obtain the highly-resolved “exact” solution
to which we can compare other computational results. However, as long as there
are no pointwise oscillations, we are able to estimate the convergence rate 8 using
a sequence of grids by 8 = (log2) 1 1og (||un — u2n||/||tu2n — wan|) , Where wuy,, ugn,
and uy, denote the solutions at the grids of dimensions n, 2n, and 4n, respectively.



58 P. J. Park €& T. Y. Hou

Corner problem

We first consider singularities that arise from sharp corners in the interface, such
as the one shown in Fig. 8(a). Suppose we have the coefficient

oz y):{l ifz e O,

’ a ifze Q.

For this problem, the standard FEM converges with O(h), when the grids are lined
up with the interface [Han (1982)]. This is easy to do if the interface is simple; if the
interface is complicated, fitting the mesh around the interface is not a trivial process.
If the singularity happens to be inside an element, the standard FEM results in a
large error.

With the infinite elements at the four corners of the square, the convergence
rate is still first order in term of h. However, the error is much smaller because
the singularities are now well-resolved. We see in Table 9 that the I? error from
the infinite element method is about 10 times smaller than that produced by the
standard FEM, even with moderate m = 16 for the infinite element. A major
advantage of our new method is also the following: Since the main source of the
error is the singularity at the corners, we can keep the uniform coarse grid in
the whole domain and simply refine the few infinite element bases locally. Unlike
the standard adaptive mesh methods in which new refinement points are coupled
globally to all the others, the refinement inside an infinite element is decoupled
from the rest of the domain. The size of the global stiffness matrix does not change.
We can see in Table 9 that the reduction in error with this refinement is nearly first
order in Ay, in the {* norm, where h,, = h/m is the mesh size along the boundary
of the element. With this strategy, we can obtain very small errors.

Table 9. Improvements in error with the infinite element bases at
the corners.

n m 12 error Rate [*° error Rate
FEM 8 32 0.07619 — 0.17850 —
IEM 8 16 0.00733 — 0.02946 —
IEM 8 32 0.00430 0.7695 0.01515 0.9594
IEM 8 64 0.00299 0.5242 0.00768 0.9801

Table 10. Sensitivity of the infinite element basis method for the
corner problem (n = 8, m = 32).

a1 a9 12 error Ratio [®° error Ratio
1 0.001 0.0042230 — 0.015367 —

1 0.0001 0.0041871 0.9915 0.015252 0.9925
1 0.00001 0.0039059 0.9328 0.013827 0.9066
1 0.000001 0.0038436 0.9840 0.012988 0.9393
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Table 11. Sensitivity to the contrast with the infinite
element basis (n = 16, m = 16).

a 12 error Ratio [*° error Ratio
E-1 0.0006797 — 0.0010896 —
E-2 0.0048499 7.14 0.0078976 7.24
E-3 0.0144204 2.97 0.0239461 3.03
E-4 0.0172374 1.20 0.0300191 1.25
E-5 0.0166001 0.96 0.0309556 1.03
E-6 0.0166416 1.00 0.0311084 1.00
E-7 0.0177008 1.06 0.0311447 1.00

We note that increasing m (an element has m points along each edge) here is dif-
ferent from the refinement of multiscale basis of the previous sections. In the infinite
element case, the number of unknowns is only doubled when m is doubled, since only
the boundary points are involved in the computation. In the multiscale and most
other methods, the number of unknowns is squared when m is doubled. Because
the infinite element grid can resolve severe singularities, the error should also be
insensitive to high contrast. Indeed, as we vary the contrast of the coefficients, the
error stays basically the same up to a = 107 or so, as shown in Table 10.

Checkerboard problem

For the more difficult problem of the checkerboard type shown in Fig. 8(b), the lead-
ing order behavior at the singularity is 7 with v = y/a, as described earlier. For a
fixed point in the domain, the convergence of the standard finite element or finite
difference method is predicted to be O(h?7) [Riide and Zenger (1986)]. This means
that, even with the assumption that the gridlines are lined up with the disconti-
nuities and the four-corner is on a grid point, as the contrast in the conductivities
increases, the method is arbitrarily slow. We have verified this numerically [Park
(2000)]. In Fig. 10, we plot an example of the infinite element basis for the checker-
board case, with the contrast of 10°. The values on the boundary are obtained by
solving the one-dimensional equation. The severe singularity at the center makes it
obvious why an infinite element is needed.

We verify the performance of the infinite element bases by considering the prob-
lem with multiple junctures, with the coefficient alternating between «; and as
many times at regular intervals in both directions. For convenience, we again fix
a1 = 1 and let as be the parameter a. We lay down a grid in such a way that each
juncture is placed in the middle of an element. The singular behavior is usually
confined to the immediate vicinity of the singular point; as long as the element
covers this area, the location of the singularity within the element is not important.

The convergence for the standard FEM is very poor with respect to the increase
in contrast. In Table 11, we show the behavior of the error for the infinite element
basis method as the contrast is increased, for the case a alternating eight times
in each direction. We see that the error increases initially, but grows less sensitive
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Fig. 10. An infinite element for the checkerboard pattern, with conductivities oy = 1 and
az = 0.00001 (m = 16); first 30 layers are plotted.

Table 12. Error for multiple juncture problem as the infinite
element basis is refined (o = 1/256).

n m 12 error Rate [*° error Rate

16 8 0.01290978 — 0.02175406 —
16 0.00888366 0.5392 0.01456563 0.5787
32 0.00398064 1.1582 0.00644239 1.1769
64 0.00129888 1.6157 0.00209229 1.6225
128 0.00037668 1.7859 0.00060590 1.7879

as the contrast is increased. Past o = 0.0001 or so, the error essentially remains
the same. We can explain this in terms of the area affected by the singularity. As
the contrast grows larger, the singular behavior gets more severe, but it also gets
more localized. We can see this from the analytical estimate (99) and from Fig. 10.
Therefore, once the singular behavior is sufficiently localized due to high enough
contrast, the infinite element captures this with very little error. The insensitivity
to contrast due to the infinite element mesh is the great advantage of this method.

As described for the corner problem, we can again refine the local mesh inside the
element, rather than the global mesh, in order to gain a substantial error reduction.
In Table 12, we show how the overall error changes when the basis functions are
refined. We see that the convergence rate with respect to the local grid size h,,
actually increases and approaches 2. This shows that the overall error is indeed
coming from the lack of refinement at the singularity and that the infinite element
method can deal with the severe singularities very well.

We already mentioned that, in general, it is hard to obtain a well-resolved solu-
tion when there is a strong singularity. However, for the checkerboard problem,
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Table 13. Comparisons to the homogenized solution obtained

using a* = J/arag.

n m 12 error % error [*° error % error
Linear 64 16 0.950445 93 2.183628 93
IEM 64 8  0.146707 14 0.379787 16
64 16 0.064785 6.4 0.189092 8.1
64 32  0.032905 3.2 0.106049 4.5
64 64 0.023659 2.3 0.067518 2.9

we know that the homogenized coefficient is \/ajae, where oy and ag are the
alternating coefficients [Keller (1987)]. The final example uses this result to verify
the performance of the infinite element method. We pick some boundary condition
and forcing, e.g., f(z,y) = 1 in the domain and u(x,y) = sin(1.57z) sin(7(y + 0.5))
on the boundary. In Table 13, we show how different methods perform. We let
n = 64, which corresponds to § = 1/64, and oy = 1,2 = 0.001 in this case.
We see that the linear method completely fails to capture the correct behavior, and
the error is O(1). On the other hand, using the infinite elements gives the correct
averaging, and the error is very small, down to 2.3% when m = 64. As before,
the solution improves as the mesh inside the element is refined. As as decreases,
the size of the solution grows, but the relative error stays nearly the same. The
relative errors are 8.9%, 8.1%, 7.3% for as = 0.01,0.001, 0.0001, respectively. Again,
piecewise constant boundary conditions from the one-dimensional problem appear
to work well.

5. Conclusions

The approach we propose in the present work is to construct the basis functions
in the finite element setting that contain the correct local behavior. We studied
two important examples in detail to demonstrate that this framework can lead
to efficient numerical methods: the boundary and internal layer structure in the
convection-diffusion equation and the singular behavior in the elliptic equation.
Simple extensions of successful one-dimensional approaches are not capable of cap-
turing complicated two-dimensional effects, and general adaptive mesh algorithms
lead to large, often ill-conditioned matrix problems.

When the characteristic length scale of the problem is small enough to be con-
tained in an element basis, the multiscale finite element method works well, as the
solution of the homogeneous equation solved locally reflects the global behavior
correctly. This is the case for the periodic cellular flow we considered. To obtain the
correct estimate of the convergence rate, we considered the subtle cancellation of
errors in the discrete equation. For the cellular flow, the leading order term of the
relative error was found to be O(d/h), where 0 is the spatial oscillation and h the
coarse grid mesh size. Thus the method converges as 6 — 0 for a fixed h, regardless
of the small diffusivity €. We then try to improve the multiscale method further
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by constructing asymptotic basis functions, since solving them numerically may
become expensive in the limit ¢ — 0. Although we can construct such bases suc-
cessfully for the cellular flow, numerical methods have to be employed to construct
the multiscale basis in general. When the flow has scale separation and periodic
structure, one can construct semi-analytic multiscale bases by solving the peri-
odic cell problem numerically. This would reduce the overhead in computing the
multiscale bases. For the random flow obtained by a perturbation of the cellular
structure, the layer structure is nonlocal and the multiscale basis function cannot
produce the necessary basis functions by sampling a small region. But we found that
using a variational principle, exponential basis functions with correct scaling can
be constructed and added to the finite element space. When these extra functions
are incorporated correctly, we can capture the correct leading order behavior in the
physical solution with a relatively coarse grid.

The same approach of adaptive basis functions provides a natural setting for
dealing with the singular behavior of an elliptic problem. For the discontinuous
coefficient or non-smooth interface problems with high contrast, the basis func-
tions can be constructed efficiently using the infinite element method. Based on
the local self-similarity of a specialized grid, it provides an accurate way of cap-
turing the behavior near a singular point. Because most of the error comes from
the neighborhood of singularities, we found that the local refinement of the infinite
element results in the reduction of the global error and that this can be done effi-
ciently involving only the points on the element boundary. We applied this method
to problems with corners and the checkerboard singularities and showed that the
method is efficient and robust.

Throughout this work, the main idea has been that when the finite element space
is enriched with the basis functions that capture the correct local behavior, we can
use a relatively coarse grid and yet still capture the leading order singular behavior
in a robust manner. This idea should be directly applicable to many other prob-
lems in which the effect of the singularity is local. Further research would involve
obtaining better predictions regarding the location of the layers for the problems
with longer characteristic length scale using such tools as variational principles, as
well as dealing with layers that evolve in time.
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