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Abstract

In this paper, we discuss some applications of multiscale finite element methods to two-phase immis-
cible flow simulations in heterogeneous porous media. We discuss some extensions of multiscale finite
element methods which take into account some limited global information. These methods are well suited
for channelized porous media, where the long-range effects are important. This is typical for some recent
benchmark tests, such as the SPE comparative solution project [8], where porous media has a channelized
structure. The applications of multiscale finite element methods to inverse problems arisen in subsurface
characterization are also discussed in the paper.

1 Introduction

Subsurface flows, as occur in the production of hydrocarbons as well as in environmental remediation projects,
are affected by heterogeneities in a wide range of length scales. It is, therefore, very difficult to resolve
numerically all of the scales that impact transport through such systems. Typically, upscaled or multiscale
models are employed for such systems. The main idea of upscaling techniques is to form coarse-scale equations
with a prescribed analytical form that may differ from the underlying fine-scale equations. In multiscale
methods, the fine-scale information is carried throughout the simulation and the coarse-scale equations are
generally not expressed analytically, but rather formed and solved numerically.

In this paper, we discuss multiscale finite element method (MsFEM) and its applications to the compu-
tations of two-phase flows. MSFEM is first introduced in [22]. The main idea of MSFEM is to incorporate
the small-scale information into finite element basis functions and capture their effect on the large scale
via finite element computations. Recently, a number of multiscale numerical methods, such as residual free
bubbles [5], variational multiscale method [24], multiscale finite element method (MSsFEM) [22], two-scale
finite element methods [26], two-scale conservative subgrid approaches [2], and heterogeneous multiscale
method (HMM) [14] have been proposed. We remark that special basis functions in finite element methods
have been used earlier in [4]. The generalized finite element method has also been introduced in [3] using
special basis function. Multiscale finite element methodology has been modified and successfully applied to
two-phase flow simulations in [25] and later in [7, 1]. Arbogast ([2]) used variational multiscale strategy and
constructed a multiscale method for two-phase flow simulations.

On the fine (fully resolved) scale, the subsurface flow and transport of N components can be described in
terms of an elliptic (for incompressible systems) pressure equation coupled to a sequence of N — 1 hyperbolic
(in the absence of dispersive and capillary pressure effects) conservation laws. Multiscale finite element type
methods are used for upscaling/solving of the pressure equation on a coarse grid. As for the transport
equation, we consider two approaches. In the first approach, the transport equation is solved on the coarse
grid without any subgrid corrections. In the second approach, the transport equation is solved on the fine
grid using reconstructed velocity field. In both cases, the pressure equation is solved using MsFEM and
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the basis functions are not updated throughout simulations. First procedure, though, provides very fast
simulation technique, it is not accurate compared to the second procedure. However, the first procedure can
be efficiently used in inverse problems.

For permeability fields with strong non-local effects, some type of global information can be build into the
basis functions. In this paper, we discuss the use of global information in multiscale methods. The main idea
of the method is to use the global fine-scale solution at initial time to determine the boundary conditions of
the basis functions. This method provides a significant improvement in two-phase flow simulations in porous
media where the long-range effects are important. This is typical for some recent benchmark tests, such
as the SPE comparative solution project [8], where porous media have a channelized structure. The use of
global information allows us to capture the long-range effects more accurately compared to the multiscale
finite element methods that use only local information to construct the basis functions. We discuss some
analysis of the proposed method to illustrate that the method can indeed capture the long-range effect
in channelized media. We would like to note that the global solutions in upscaling procedures have been
previously used in [6], which motivated our work. Global information within mixed multiscale finite element
methods was first used in [1].

With the increasing interest in accurate prediction of subsurface properties, subsurface characterization
based on dynamic data, such as production data, takes on greater importance. Thus, to predict future
reservoir performance, the reservoir properties, such as porosity and permeability, need to be conditioned to
dynamic data, such as production data. In previous findings several methods have been used for predicting
permeability field conditioned to production data. Thus, the problem reduces to the sampling from a com-
plicated multi-modal distribution. This problem is challenging because the permeability field is a function
defined on a large number of grid blocks. Markov chain Monte Carlo (MCMC) method and its modifications
have been used previously to sample the posterior distribution. The direct MCMC simulations are generally
very CPU demanding because each proposal requires solving a forward coupled non-linear partial differential
equations over a large time interval. The forward fine-scale problem is usually formulated on a large number
of grid blocks, which makes it prohibitively expensive to perform sufficient number of MCMC simulations.
In this paper, we discuss how to use inexpensive coarse-scale computations to increase the acceptance rate
of MCMC calculations. Here the acceptance rate refers to the ratio between the number of accepted per-
meability samples and the times of solving the fine-scale non-linear PDE system. In particular, we employ
multiscale methods for pressure equations in conjunction with solving the transport equation on a coarse grid
(without any subgrid treatment) as an approximate solver to guide proposals and reduce the computational
cost. Finally, we would like to note that the main goal of this paper is to tie some of our previous results in
a unifying way. For this purpose, we perform some additional computations and explain the links between
different modifications and applications of multiscale finite element methods.

The paper is organized as follows. In the next section, we discuss the model problem. In Section 3, we
discuss the applications of multiscale finite element methods to two-phase flow simulations. In Section 4,
we discuss how to use of simplified upscaled models based on multiscale finite element methods in inverse
problems.

2 Model problem

We consider two-phase flow in a reservoir {2 under the assumption that the displacement is dominated by
viscous effects; i.e., we neglect the effects of gravity, compressibility, and capillary pressure. Porosity will be
considered to be constant. The two phases will be referred to as water and oil, designated by subscripts w
and o, respectively. We write Darcy’s law for each phase as follows:
kri (S
v; = —ﬁkVp, (2.1)
Hg

where v; is the phase velocity, k£ is the permeability tensor, k,; is the relative permeability to phase j
(j = o,w), S is the water saturation (volume fraction), p is pressure and p; is the viscosity of phase j
(j = o,w). In this work, a single set of relative permeability curves is used and k is assumed to be a diagonal



tensor. Combining Darcy’s law with a statement of conservation of mass allows us to express the governing
equations in terms of the so-called pressure and saturation equations:

V- (A(S)kVp) =g, (2.2)
oS
5 v VIS =0, (2.3)

where X is the total mobility, f is the fractional flow of water, ¢ is a source term and v is the total velocity,
which are given by:

krw(S) kro(s) _ kTw(S)/:u’w
/\(S) B Mw + Ho ’ f(S) N krw(S)/,uw + kro(S)/,uo7 (24)
UV =1y + v, = —A(S)k - Vp. (2.5)

The above descriptions are referred to as the fine model of the two-phase flow problem. Typical boundary
conditions for (2.2) considered in this paper are fixed pressure at some portions of the boundary and no-flow
on the rest of the boundary. For the saturation equation (2.3), we impose S = 1 on the inflow boundaries.

3 Multiscale methods

3.1 Multiscale finite element methods for two-phase flow simulations

In this section, we will discuss the applications of multiscale finite element methods to two-phase flow
simulations. We will use the multiscale finite element framework, though a finite volume element method
is chosen as a global solver. Finite volume method is chosen because, by its construction, it satisfies the
numerical local conservation which is important in groundwater and reservoir simulations. Let X" denote
the collection of coarse elements/rectangles K. Consider a coarse element K, and let £x be its center. The
element K is divided into four rectangles of equal area by connecting i to the midpoints of the element’s
edges. We denote these quadrilaterals by K¢, where £ € Z(K), are the vertices of K. Also, we denote
Zn =Ug Zn(K) and Z) C Zj, the vertices which do not lie on the Dirichlet boundary of 2. The control
volume V¢ is defined as the union of the quadrilaterals K¢ sharing the vertex &.

The key idea of the method is the construction of basis functions on the coarse grids, such that these
basis functions capture the small-scale information on each of these coarse grids. The method that we use
follows its finite element counterpart presented in [22]. The basis functions are constructed from the solution
of the leading order homogeneous elliptic equation on each coarse element with some specified boundary
conditions. We consider a coarse element K that has d vertices, the local basis functions ¢;,7 =1,--- ,d are
set to satisfy the following elliptic problem:

~V-(k-V¢;)=0 inK

3.1
¢; =g; ondKk, 31)

for some function g; defined on the boundary of the coarse element K. Hou et al. [22] have demonstrated
that a careful choice of boundary conditions would improve the accuracy of the method. In previous findings,
the function g; for each 4 is chosen to vary linearly along 0K or to be the solution of the local one-dimensional
problems [25] or the solution of the problem in a slightly larger domain is chosen to define the boundary con-
ditions. In this paper, we will consider linear boundary conditions and also discuss the boundary conditions
obtained from a global solution. We will require ¢;(z;) = ¢;;. Finally, a nodal basis function associated with
the vertex z; in the domain €2 is constructed from the combination of the local basis functions that share
this z; and zero elsewhere. We would like to note that one can use an approximate solution of (3.1) when
it is possible. For example, in the case of periodic or random homogeneous cases, the basis functions can
be approximated using homogenization expansion ¢; = ¢? + eNV#?, where Ny, is the solution of the cell
problem and ¢? is standard finite element basis on the coarse mesh (see [17]). This type of simplification is
not applicable for problems considered in this paper.



Next, we denote by V" the space of our approximate pressure solution, which is spanned by the basis
functions {gbj}zje 79 Then we formulate the finite dimensional problem corresponding to finite volume
element formulation of (2.2). A statement of mass conservation on a coarse-control volume V, is formed from
(2.2), where the approximate solution is written as a linear combination of the basis functions. Assembly of
this conservation statement for all control volumes would give the corresponding linear system of equations
that can be solved accordingly. The resulting linear system has incorporated the fine-scale information
through the involvement of the nodal basis functions on the approximate solution. To be specific, the
problem now is to seek p € V" with p" = szezg p;¢; such that

/ AS)k - Vph -ndl =0, (3.2)

for every control volume V; C ). Here n defines the normal vector on the boundary of the control volume,
OVe and S is the fine-scale saturation field at this point. The resulting multiscale method differs from the
multiscale finite element method, since it employs the finite volume element method as a global solver, and
it is called multiscale finite volume element method (MsFVEM). We would like to note that the coarse-scale
velocity field obtained using MsFVEM is conservative in control volume elements V¢ (not in K"). Due to
Dirichlet boundary conditions, the fine-scale velocity field is not conservative, in general. We employ local
solvers with Neumann boundary conditions to obtain conservative fine-scale velocity field everywhere. In
general, one can resort to simpler reconstruction steps.

In this paper, we will consider two procedures for solving the saturation equation. One of them is a
simple/primitive model, where only the coarse scale velocity is used to update the saturation field on the
coarse grid, i.e.,

§+5~Vf(§):(). (3.3)

ot
Here T denotes the coarse-scale velocity field obtained using MSFVEM. In (3.3), no upscaling of the saturation
equation is performed. These kinds of upscaling techniques in conjunction with the upscaling of absolute
permeability is commonly used in applications (see e.g. [13, 12, 11]). The difference of our approach is
that the coupling of the small scales is performed through the finite volume element formulation of the
global problem and the small scale information of the velocity field can be easily recovered. The recovery of
small scale information is important if one uses the upscaled models for the saturation equation involving
macro-diffusion term. The macro-diffusion term contains two-point correlation function and its calculation
requires the fine-scale velocity. We note that the saturation equation is solved on dual grid, because the
coarse-scale velocity field is conservative on dual grid. If the saturation profile is smooth this approximation
is of first order. In the coarse blocks where the discontinuities of S are present we need to modify the stiffness
matrix corresponding to these blocks. The latter requires the values of the fine scale saturation. In a simple
upscaling framework, we can not do this because the fine-scale features of the saturation are not available.
Instead, we simply use A(S) in (3.2). This approximation introduces errors. We would like to note that this
simple procedure is inexpensive.

In the second approach, the saturation equation is solved on the fine-grid using the reconstructed fine-
scale velocity field. These types of approaches have been used previously, e.g., [23] (cf. [25]). When using
MsFVEM for two-phase flow, one can update the basis functions near the sharp fronts. Indeed, sharp fronts
modify the local heterogeneities and this can be taken into account by re-solving the local equations, (3.1),
for basis functions. If the saturation is smooth in the coarse block, it can be approximated by its average
in (3.1), and consequently, the basis functions are not needed to be updated. It can be shown that this
approximation yields first-order errors (in terms of coarse mesh size). In our simulations, we have found only
a slight improvement if the basis functions are updated, thus the numerical results for MSFVEM presented
in this paper do not include the basis function update near the sharp fronts. We would like to note that
the basis function update becomes more important for the cases po/p, << 1 (i.e., water phase viscosity is
much smaller than oil phase viscosity). In this paper, we consider the cases o/ > 1. For two-phase flow
simulations, we will use IMPES formulation (implicit pressure and explicit saturation) for the computations.
At each time the velocity is computed. Then the velocity is used to update the saturation.
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Figure 1: Fractional flow comparison for a permeability field generated using two-point geostatistics.

We note that the upscaling of transport equation, which is purely hyperbolic, is difficult, in general.
There are a number of upscaling methodologies are developed for the transport equation arisen in porous
media flows, e.g., [30, 31, 16, 15]. However, we will not be using any subgrid treatment for the transport
equation in this paper.

Next, we present a representative numerical example for a permeability field generated using two-point
geostatistics. To generate this permeability field, we have used GSLIB algorithm [9]. The permeability is
log-normally distributed with prescribed variance 0% = 1.5 (02 here refers to the variance of log k) and some
correlation structure. The correlation structure is specified in terms of dimensionless correlation lengths in
the x and z-directions, I, = 0.4 and [, = 0.04, nondimensionalized by the system length. Linear boundary
conditions are used for constructing multiscale basis function in (3.1). Spherical variogram is used [9]. In
this numerical example, the fine-scale field is 120 x 120, while the coarse-scale field is 12 x 12 defined in the
rectangle with the length 5 and the width 1. For the two-phase flow simulations, the system is considered
to initially contain only oil (S = 0) and water is injected at inflow boundaries (S =1 is prescribed), i.e., we
specify p =1, § = 1 along the x = 0 edge and p = 0 along the x = 5 edge, and no flow boundary conditions
on the lateral boundaries. Relative permeability functions are specified as k.., = S?, k., = (1 — S)?; water
and oil viscosities are set to pu,, = 1 and p, = 5. Porosity is constant and serves only to nondimensionalize
time. Results are presented in terms of the fraction of oil in the produced fluid (i.e., oil cut, designated F')
against pore volume injected (PVI). PVI represents dimensionless time and is computed via [ Qdt/V, where
V, is the total pore volume of the system and @ is the total flow rate.

In our first numerical test, Figure 1, we compare the fractional flows. The dashed line corresponds to
the calculations performed using a simple saturation upscaling (no subgrid treatment), while dotted line
corresponds to the calculations performed by solving the saturation equation on the fine grid using the
reconstructed fine-scale velocity field. We observe from this figure that the second approach is very accurate,
while the first approach over-predicts the breakthrough time. We have also observed very good agreement
between the saturation fields when the second approach for solving the saturation equation is used.

In the next set of numerical results, we consider strongly channelized permeability fields. These perme-
ability fields are proposed in some recent benchmark tests, such as the SPE comparative solution project [8].
In Figure 2, one of the layers of this 3-D permeability field is depicted. All the layers have 220 x 60 fine-scale
resolution, and we take the coarse grid to be 22 x 6. As it can be observed, the permeability field contains
a high permeability channel, where most flow will occur in our simulation. In Figure 3, the fractional flows



Figure 2: Log-permeability for one of the layers of upper Ness.

are compared. The boundary conditions are taken to be p = 1, S = 1 along the x = 0 edge and p = 0
along the z = 5 edge, and no flow boundary conditions on the lateral boundaries. Again, the dashed line
corresponds to the calculations performed using a simple saturation upscaling (no subgrid treatment), while
dotted line corresponds to the calculations performed by solving the saturation equation on the fine grid
using the reconstructed fine-scale velocity field. We observe from this figure that the second approach is
not very accurate in contrast to the permeability field generated using two-point geostatistics [9]. This is
because the local basis functions can not account accurately the global connectivity of the media. Indeed,
in the next figure, Figure 4, the saturation fields at time PVI = 0.5 are compared. We see that multiscale
finite element methods with local basis functions introduce some errors. In the bottom left corner, there is
a saturation pocket which is not in the reference solution computed using a fine grid. The reason for this is
that the local basis functions in the lower left corner contains high permeability region. However, this high
permeability region does not have global connectivity, and the local basis functions can not take this effect
into account. Next, we discuss how global information can be incorporated into multiscale basis functions
to improve the accuracy of the computations.

3.2 Multiscale methods using limited global information

The main idea of the modified multiscale finite volume element method (MsFVEM) is to use the solution
of the fine-scale problem at time zero to determine the boundary conditions for the basis functions. This
approach is proposed in [18] to handle the permeability fields which are strongly channelized. For this type of
permeability fields, some type of global information is needed. Next, we describe the method. We denote the
solution of (2.2) at time zero by p™*(z). In defining p™*(x), we use the actual boundary conditions of the
global problem. p™(z) depends on global boundary conditions, and, generally, is updated each time when
global boundary conditions are changed. The boundary conditions in (3.1) for modified basis functions are
defined in the following way. For each rectangular element K with vertices z; (i = 1,2, 3,4) denote by ¢;(x) a
restriction of the nodal basis on K, such that ¢;(z;) = d;;. At the edges where ¢;(z) = 0 at both vertices, we
take boundary condition for ¢;(z) to be zero. Consequently, the basis functions are localized. We only need
to determine the boundary condition at two edges which have the common vertex z; (¢;(z;) = 1). Denote
these two edges by [z;—1, ;] and [z;, z;11] (see Figure 5). We only need to describe the boundary condition,
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Figure 3: Fractional flow comparison for a channelized permeability field.
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Figure 4: Saturation maps at PVI=0.5 for fine-scale solution (left figure) and standard MSFVEM (right
figure).



¢, ()= 9 K41 )=0
X i+1

[ x)=

i-1
@, (x i—l):0

Figure 5: Schematic description of nodal points.

gi(x), for the basis function ¢;(x), along the edges [z;, 7;11] and [x;, z;_1]. If ¥ (x;) # p"™(2541), then
pinit (I) _ pinit (IiJrl) pinit (I) _ pinit (331'71)
P () — Pt (z41) Pt () — pinit(z;_1)

If pinit (z;) = p™™it(z;41) # 0, then

gi('r)|[$i713i+1] = gi(x)hwi#ﬂi—l] =

1 - -
0 int int
gi(‘r)l[miqzi+l] = ¢z (JJ) + 2pi"it($i) (p t(‘r) -p t($i+1)),
where ¢?(z) is a linear function on [z;,z;+1] such that ¢?(x;) = 1 and ¢?(z;41) = 0. Similarly,
1 - -
0 init init
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91 (@)l ei0) = Gin (0) + 5o s 07 () — P (@) (3.4)

where ¢?, () is a linear function on [z;, z;41] such that ¢?, (z;41) = 1 and @Y, (z;) = 0. If p™*(x;) =
p™it(x;11) # 0, then one can also use simply linear boundary conditions. If p™®(z;) = p™i(x;11) = 0
then linear boundary conditions are used. In the applications considered in this paper, the initial pressure is
always positive. Finally, the basis function ¢;(z) is constructed by solving (3.1). The choice of the boundary
conditions for the basis functions is motivated by the analysis. In particular, we would like to recover the
exact fine-scale solution along each edge if the nodal values of the pressure are equal to the values of exact
fine-scale pressure. This is the underlying idea for the choice of boundary conditions. Using this property and
Cea’s lemma one can show that the pressure obtained from the numerical solution is equal to the underlying
fine-scale pressure.

We have proposed some analysis for modified multiscale finite element method in [18]. The main idea is to
show that the pressure evolution in two-phase flow simulations is strongly influenced by the initial pressure.
To demonstrate this, we consider a channelized permeability field, where the value of the permeability in
the channel is large. We assume the permeability has the form kI, where I is an identity matrix. In a
channelized medium, the dominant flow is within the channels. Our analysis assumes a single channel and
restricted to 2-D. Here, we briefly mention the main findings. Denote the initial stream function and pressure
by n = (x,t = 0) and ¢ = p(z,t = 0) (C is also denoted by p*™* previously). The stream function is defined

8¢/6x1 = —2, a’lﬁ/al'g = V1. (35)



Then the equation for the pressure can be written as

a% <|k|2/\(S)g—§) + a% (A(S)g—g) ~0. (3.6)

For simplicity, S = 0 at time zero is assumed. We consider a typical boundary condition that gives high
flow within the channel, such that the high flow channel will be mapped into a large slab in (7, {) coordinate
system. If the heterogeneities within the channel in 7 direction is not strong (e.g., narrow channel in Cartesian
coordinates), the saturation within the channel will depend on (. In this case, the leading order pressure
will depend only on (, and it can be shown that

p(n, ¢, t) = po(¢,t) 4+ high order terms,

where po(¢,t) is the dominant pressure. This asymptotic expansion shows that the time-varying pressure
strongly depends on the initial pressure (i.e., the leading order term in the asymptotic expansion is a function
of initial pressure and time only). Because the global basis functions can recover the initial pressure exactly,
the modified basis can capture the global pressure more accurately. We would like to note that one can also
show that the dominant velocity field is ve = A(S )g_?

Next, we show the numerical results obtained using modified multiscale finite element type methods for
the permeability layer depicted in Figure 2 and two-phase flow parameters presented earlier. We consider two
types of boundary conditions in a rectangular region [0, 5] x [0, 1]. For the first type of boundary conditions,
we specify p =1, S = 1 along the x = 0 edge and p = 0 along the z = 5 edge. On the rest of the boundaries,
we assume no flow boundary condition. We call this type of the boundary condition as side-to-side. The
other type of boundary conditions is obtained by specifying p = 1, S = 1 along the z = 0 edge for 0.5 < 2z <1
and p = 0 along the z = 5 edge for 0 < z < 0.5. On the rest of the boundaries, we assume no flow boundary
condition.

In Figure 6, the fractional flows are plotted for standard and modified MsFVEM. We observe from this
figure that modified MSFVEM is more accurate and provides nearly the same fractional flow response as
the direct fine-scale calculations. In Figure 7, we compare the saturation fields at PVI=0.5. As we see, the
saturation field obtained using modified MsFVEM is very accurate and there is no longer the saturation
pocket at the left bottom corner. Thus, the modified MsFVEM captures the connectivity of the media
accurately.

In the next set of numerical results, we test the modified multiscale finite element methods for a different
layer (layer 40) of SPE comparative solution project. In Figure 8 and 9, the fractional flows and total
flow rates (Q)) are compared for two different boundary conditions. One can see clearly that the modified
MsFVEM method gives nearly exact results for these integrated responses. The standard MsFVEM tends
to over-predict the total flow rate at time zero. This initial error persists at later times. This phenomena is
often observed in upscaling of two-phase flows. More numerical results and discussions can be found in [18].
These numerical results demonstrate that modified multiscale finite element methods which use a limited
global information are more accurate. Moreover, modified multiscale finite element methods are capable of
capturing the long-range flow features accurately for channelized permeability fields.

4 Applications of multiscale methods to dynamic data integration

In this section, we present some applications of multiscale finite element methods to inverse problems. The
results described in this section summarize the results presented in [19, 10]. The problem under consideration
consists of sampling permeability field given fractional flow measurements. Here, by measurements we mean
the fractional flow data given as a function of time. Typically, it is assumed that the permeability field is
known at some locations. This information can be incorporated into the prior models (distributions). Since
the fractional flow is an integrated response, the map from the permeability field to the fractional flow is
not one-to-one. Hence this problem is ill-posed in the sense that there exist many different permeability
realizations for the given production data.
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Figure 8: Fractional flow (left figure) and total production (right figure) comparison for standard MsFVEM
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From the probabilistic point of view, this problem can be regarded as the conditioning of the permeability
field to the fractional flow data with measurement errors. Consequently, our goal is to sample from the
conditional distribution P(k|F'), where k is the fine-scale permeability field and F is the fractional flow curve
measured from production data. Using the Bayes theorem we can write

P(k|F) x P(F|k)P(k). (4.1)

In the above formula, P(k) is the unconditioned (prior) distribution of the permeability field, which is
assumed to be log-normal. P(F|k) denotes the conditional probability that the outcome of the measurement
is F when the true permeability is k. In practice, the measured fractional flow contains measurement errors.
In this paper, we assume that the measurement error satisfies a Gaussian distribution, thus, the likelihood
function P(F|k) takes the form
2
P(F|k) x exp(—w),

(4.2)
¥

where Fy; is the fractional flow computed by solving the nonlinear PDE system (2.1)-(2.3) on the fine-grid
for the given k, and o is the measurement precision. Since both F' and Fj, are functions of ¢, we take the

norm ||F — Fg||? to be the Ls norm, i.e.,

IF — Fyl? = / (F(t) — Fu(t))?dr.

We note that the methods discussed in this paper are not limited to Gaussian error functions, and any
general covariance describing measurement errors can be used in the simulations. We also note that different
permeability fields may produce the same fractional flow curve, the likelihood distribution P(F|k) is a
multi-modal function of k (i.e. has multiple local maxima).
Denote
IFE = Fl?
o}

Sampling from the distribution 7(k) can be accomplished by using the Markov chain Monte Carlo (MCMC)
method. The main idea of MCMC is to generate a Markov chain with 7 (k) as its stationary distribution. A
key step to this approach is to construct the desired transition probability distribution for the Markov chain.
In this paper, we use the Metropolis-Hasting algorithm. Suppose ¢(y|z) is a general transitional probability
distribution, which is easy to sample and has an explicit form. The Metropolis-Hasting MCMC algorithm
(see, e.g., [29]) consists of the following steps.

7(k) = P(k|F) exp( )P(k). (4.3)

Algorithm (Metropolis-Hasting MCMC [29])

e Step 1. At k,, generate k from q(k|ky).

e Step 2. Accept k as a sample with probability

p(kn, k) = min <1 a(kn k) (k) ) , (4.4)

’ Q(klkn)w( n)

i.e. take k,4+1 = k with probability p(k,, k), and k,+1 = k, with probability 1 — p(k,, k).

Starting with an arbitrary initial permeability sample ko, the MCMC algorithm generates a Markov chain
{kn}. At each iteration, the probability of moving from state k, to a next state k is q(k|k,)p(kn, k), so the
transition kernel for the Markov chain {k,} is

K (s ) = (ko R)a(bk) + (1= [ ol E)a(hlkn )3, (1)
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Using the explicit formula of the transition kernel, it is not difficult to prove that the target distribution
7(k) is indeed the stationary distribution of the Markov chain {k,}. As a result, we can take k, as samples
of the distribution 7 (k) after the chain reaches steady state.

In the Metropolis-Hasting MCMC algorithm, the major computational cost is to compute the value of
the target distribution 7(k), which involves solving the coupled non-linear PDE system (2.1)-(2.3) on the
fine-grid. Generally, the MCMC method requires thousands of iterations before it converges to the steady
state. To quantify the uncertainty of the permeability field accurately, one also needs to generate a large
number of different samples. Thus, the direct (full) MCMC simulations are usually prohibitively expensive.
Moreover, the acceptance rate of the direct MCMC method is very low (less than 1%), due to the large
dimensions of the permeability field. As a result, most of the CPU time is spent on rejected samples.

An important way to improve the direct MCMC method is to increase the acceptance rate by modifying
the proposal distribution ¢(k|k,). We discuss algorithms that use approximate and inexpensive coarse-scale
simulations to speed-up MCMC calculations. In particular, we consider an approach where the saturation
equation is upscaled using a simple volume averaging (3.3) and the pressure equation is upscaled using
MsFVEM. Though, we have observed that this type of upscaling can introduce large errors, it can be
used in dynamic data integration problems for the following reasons. First, this approach which combines
MsFVEM for the pressure equation and (3.3) for the saturation equation, is very inexpensive. Secondly, we
have observed that there is a strong correlation between fine and coarse-scale fractional flows. Correlation
coefficient computed using 5000 independent permeability realizations is approximately 0.9 (cf. [19]). Denote
F* as the coarse-scale reference fractional flow curve corresponding to the observed fine-scale one. Then
7*(k) = P(k|F*) is a coarse-scale approximation to the target distribution (k). Similarly, we have

7 (k) = P(k|F*) o< P(F*|k)P(k). (4.5)

As before, we assume a Gaussian error model for the likelihood function P(F™*|k), that is

2
o¢

P(F*|k) exp(—w), (4.6)

where F}" is the fractional flow curve computed by solving the coarse-scale model of (2.1)-(2.3) for the given
k, and o, is the precision associated with the reference coarse-scale fractional flow F*. o, is usually taken to
be slightly larger than oy (see [19]). Using the coarse-scale distribution 7*(k) as a filter, the preconditioned
MCMC can be described as following ([19]).

Algorithm I (preconditioned MCMC)

e Step 1. At k,, generate a trial proposal k¥’ from distribution ¢(¥'|k,).

e Step 2. Take the proposal as

b — k' with probability g(kn, k'),
| k.  with probability 1 — g(kn, k'),

where

ol ) = min (1, L EITEEL ),

’ Q(k/“fn)ﬂ* (kn)

Here 7*(k) represents the coarse-scale approximation to the target distribution 7(k). Therefore, the
final proposal k is generated from the effective instrumental distribution

Qklk) = gk, K)aklkn) + (1= [ gl ki) ), (1) (4.7)
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e Step 3. Accept k as a sample with probability

p(kn, k) = min (1 Qlkn| ) (k) ) , (4.8)

" Q(k|kn ) (ky)
i.e. kp41 = k with probability p(k,, k), and k,4+1 = k, with probability 1 — p(k,, k).

There are a number of facts we would like to note about the preconditioned MCMC algorithm. If &’ is
rejected by the coarse-scale test (step 2), then k,, will be passed to the fine-scale model as the proposal. Since
plkn, kn) =1, no further (fine-scale) computation is needed and k,, will be accepted for one more time. On
the contrary, the regular MCMC method requires a fine-scale simulation for every proposal k, even though
it is rejected. Furthermore,, there is no need to compute Q(k|k,) and Q(k,|k) in (4.8) by formula (4.7). The
acceptance probability(4.8) can be simplified as

(4.9)

p(Fn, ) = min <1, M) .

7 (kn )7 (F)

Since the computation of the coarse-scale solution is very cheap, the step 2 can be implemented very fast
to decide whether or not to run fine-scale simulations. The second step of the algorithm serves as a filter
that avoids unnecessary fine-scale runs for the rejected samples. In [19], we show that the modified Markov
chain is ergodic and converges to the correct distribution.

Next, we demonstrate some numerical examples. Suppose the permeability field k(z) is defined on the
unit square Q = [0,5] x [0,1]. We assume that the permeability field k is known at some spatial locations
and that the covariance of the permeability is also known. We discretize the domain 2 by a rectangular
mesh and hence the permeability field k is represented by a matrix (thus k is a high dimensional vector).
As for the boundary conditions, we have tested various boundary conditions and observed similar results for
the preconditioned MCMC. In our numerical experiments we will assume side-to-side boundary conditions,
p=1land S=1onx=0and p=0on x =25, and no flow boundary conditions on the lateral boundaries.
We have chosen this type of boundary conditions because they provide a large deviation between coarse-
and fine-scale simulations for permeability fields considered in the paper.

Using the Karhunen-Loeve expansion [32], the permeability field can be expanded in terms of an optimal
L? basis. By truncating the expansion we can represent the permeability matrix by a small number of
random parameters. To impose the hard constraints (the values of the permeability at prescribed locations),
we will find a linear subspace of our parameter space (a hyperplane) which yields the corresponding values
of the permeability field. Denote Y (z,w) = log[k(x,w)], where w denoting an elementary random event is
included to remind us that k is a random field. Suppose Y (z,w) is a second order stochastic process, that is,
Y (z,w) € L?(Q2) with probability one. We will assume that E[Y (z,w)] = 0. Denote the covariance function
of Y as R(z,y) = E[Y(2)Y (y)]. Then, there exist basis functions {¢} that satisfy

A R(z,y)or(y)dy = Meon(x),  k=1,2,..., (4.10)

where Ay = E[Y}?] > 0. Furthermore, we have
R(z,y) = i B (2) Dk (y)- (4.11)
k=1
Denote 6y = Yi/\/ Ak, then 6y satisfy E(0;) = 0 and F(6,;6;) = d;;. It follows that
Virw) = 3 Vb)), (112)
k=1

where ¢y and Ay satisfy (4.10). We assume that eigenvalues Ay are ordered so that A\;y > Ay > .... The
expansion (4.12) is called Karhunen-Loeve expansion (KLE).
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Suppose the permeability field k(z,w) is a log normal homogeneous stochastic process, then Y (x,w)
is a Gaussian process and 6 are independent standard Gaussian random variables. We assume that the
covariance function of Y (z,w) bears the form

| 2

_ |2
I e o T 7] ) (4.13)

2

R(z,y) = 0% exp ( 2r2 o2
In the above formula, L, and L, are the correlation lengths in each dimension, and 02 = E(Y?) is a constant.
We first solve the eigenvalue problem (4.10) numerically and obtain the eigenpairs { A, ¢ }. Since eigenvalues
decay fast, the truncated KLE should approximate the stochastic process Y (z,w) fairly well in L? sense.
Therefore, we can sample Y (z,w) from the truncated KLE (4.12) by generating Gaussian random variables
O

Next, we present some numerical examples to demonstrate the efficiency of preconditioned MCMC meth-
ods. More detailed numerical studies of preconditioned MCMC method can be found in [19]. In the simu-
lation, we first generate a reference permeability field using all eigenvectors and compute the corresponding
fractional flows. To propose permeability fields from the prior (unconditioned) distribution, we maintain 20
terms in the KLE. Suppose the permeability field is known at 9 distinct points. This condition is imposed
by setting

20
>V Abkoi(x;) =y, (4.14)
k=1

where a; (j = 1,...,9) are prescribed constants. For simplicity, we set a; = 0 for all j = 1,...,9. In the
simulations we propose eleven 6; and calculate the rest of 6; by solving the linear system (4.14). In all the
simulations, we test 50000 proposals and iterate the Markov chain 50000 times.

We have considered two types of instrumental proposal distributions, independent sampler and random
walk sampler. In the case of independent samplers, the proposal distribution ¢(k|k;,) is chosen to be inde-
pendent of k,, and equal to the prior (unconditioned) distribution. In the random walk sampler, the proposal
distribution depends on the previous value of the permeability field and is given by

Q(k|kn) =kn + €n, (415)

where €, is a random perturbation with prescribed variance. If the variance is chosen to be very large, then
the random walk sampler becomes similar to the independent sampler. Although the random walk sampler
allows us to accept more realizations, it often gets stuck in the neighborhood of a local maximum of the
target distribution. For both proposal distributions, we have observed consistently several times of increase
in the acceptance rate when the preconditioned MCMC is used.

We present numerical experiments for two-phase flow simulations. We consider i,/ 1y, = 5, ko (S) = S2,
kro(S) = (1—S5)2, 40 x 40 fine-scale log-normal permeability field with L, = L, = 0.1 and 10 x 10 coarse-scale
models. In Figure 10, the acceptance rate for O']% = 0.001 is plotted for various values of o.. We observe
several times increase in the acceptance rate. The preconditioned MCMC method accepts the same number
of samples as in the full MCMC with only 10% of the fine-scale runs. To study the relative convergence of the
preconditioned MCMC method, in Figure 11 we plot fractional flow error for both full and preconditioned
MCMC simulations. It can be seen from this figure that both the full and preconditioned MCMC methods
reach the steady state within 20 accepted iterations. This indicates that both direct and preconditioned
MCMC methods have similar convergence properties.

An important type of proposal distribution can be derived from the Langevin diffusion, as proposed by
Grenander and Miller [21]. The Langevin diffusion is defined by the stochastic differential equation

di(r) = %v log 7(k(r))dr + W, (4.16)

where W is the standard Brownian motion vector with independent components. It can be shown that the
diffusion process k(7) has w(k) as its stationary distribution. The actual implementation of the Langevin
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Figure 10: Acceptance rate vs. coarse-scale precision of MCMC using 10 x 10 coarse-scale models (O'J%

0.001).
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diffusion requires a discretization of the equation (4.16),

ki1 = kn + %Vlogw(kn) +VATe,,

where €,, are independent standard normal distributions. However, the discrete solution k, can have vastly
different asymptotic behavior from the continuous diffusion process k(t) [29]. In general, the discrete solution
ky, does not necessarily have (k) as its stationary distribution. Instead of taking k,, as samples directly, we
use them as proposals which are further tested and corrected by the Metropolis accept and reject step. In
particular, we choose the instrumental proposal ¢(Y'|k,,) as

Y =k, + %Vlogw(kn) +VAten. (4.17)

The transition distribution of the proposal (4.17) is

2AT
kn — Y — %vmgﬁmw)

Y -k, — &7V 1 k)|
q(Y k) o< exp (—” 2 V1og (ko) )

(4.18)

q(kn|Y') o< exp (— AT

The use of the gradient information in inverse problems for subsurface characterization is not new. In [28],
the authors use the gradient information of the target distribution and propose the randomized maximum
likelihood method. This approach uses unconditional realizations of the production and permeability data
and solves a deterministic gradient-based minimization problem. The solution of this minimization problem
is taken as a proposal and is accepted with probability one because the rigorous acceptance probability is
very difficult to estimate. Besides the need to solve a gradient-based inverse problem, this method does
not properly sample the posterior distribution. Thus, developing efficient rigorous MCMC calculations with
high acceptance rate remains a challenging problem. Though the Langevin proposal (4.17) resembles the
proposal used in the randomized maximum likelihood method, it is more efficient and rigorous, e.g., one
can compute the acceptance probability. The Langevin algorithms also allow us to achieve high acceptance
rates. However, the gradient computations are very expensive. In [10], we, jointly with P. Dostert and W.
Luo, propose to use the coarse-scale solutions in the calculations of the gradients to speed up the Langevin
algorithms. Next, we briefly describe this algorithm.

Algorithm II (Preconditioned coarse-gradient Langevin algorithm)
e Step 1. At k,, generate a trial proposal Y from the coarse Langevin distribution ¢*(Y'|k,,).

e Step 2. Take the proposal k as

b Y with probability g(k,,Y),
|k, withprobability 1 — g(k,,Y),

where

g(kn,Y) = min <1, q* (kn|Y)T* (Y) ) '

q* (Ylkn)ﬂ'* (kn)

Here 7* stands for a coarse-scale approximation of w. Therefore, the proposal k is generated from the
effective instrumental distribution

QKlkn) = gk, K)a" (klhn) + (1 - [ st k)q*(kmn)dk) 5o, (k). (4.19)
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e Step 3. Accept k as a sample with probability

p(kn, k) = min <1 QUkn| ) (k) > , (4.20)

’ Q(k|kn )7 (k)
i.e., knt1 = k with probability p(kn, k), and k.1 = k, with probability 1 — p(ky, k).

The transition distribution of the coarse-grid proposal is

2AT

Y — k, — A2V log 7* (k) ||
q*(mn)mxp(_n >V log * (k)| )

(4.21)

2AT

kn—Y—£V1 * Y 2
q" (kn|Y) o< exp <—| 5 Vlogm (V) )

To compute the gradient of 7*(k,) numerically, we only need to solve the PDE system (2.1)-(2.3) on
the coarse-grid. Again, we use an inexpensive approximate model that combines MsFVEM for the pressure
equation and (3.3) for the saturation equation. The coarse-scale distribution 7*(k) serves as a regularization
of the original fine-scale distribution 7 (k). By replacing the fine-scale gradient with the coarse-scale gradient,
we can reduce the computational cost dramatically but still direct the proposals to regions with larger
probabilities. The analysis of preconditioned coarse-gradient Langevin algorithm is presented in [10].

Next we present some numerical results. The permeability field is assumed to have Gaussian covariance
with L, = L, = 0.3, 02 = 2. We consider p1,/pw = 5, krw(S) = S?, kro(S) = (1 — S)%. Nine values of the
permeability field are assumed to be 1. We assume side-to-side boundary conditions. In Karhunen-Loeve
expansion, first 20 eigenfunctions are kept. In our computations the fine grid is 60 x 60, and the coarse-grid
is 6 x 6, UJ% = 0.003 and A7 = 0.05. In Figure 12, the response surface for 7 and 7* (defined by (4.3) and
(4.3)) restricted to two dimensional hyperplane in 6 are shown. We observe that 7* approximates 7 very
well in large scales, though 7 has more variations on small scales. The proximity of 7 and #* guarantees
the efficient sampling if 7* is used in preconditioning step. In Figure 13, the acceptance rate for the direct
fine-scale Langevin and the preconditioned coarse-gradient Langevin are compared. As we see from this
figure, the acceptance rates of the preconditioned coarse-gradient Langevin is slightly higher than that of the
direct Langevin algorithm. This indicates that preconditioned coarse-gradient Langevin algorithm accepts
approximately the same number of proposals as the direct Langevin algorithm. However, the gradient
computations in the preconditioned coarse-gradient Langevin algorithm is performed using the solution on
the coarse grid. Thus, the speedup of the preconditioned coarse-gradient Langevin algorithm approximately
equals to the speedup gained in coarse-scale computations. If the fine-scale model is upscaled 6 times in
each direction, as we did in the numerical experiment, then the coarse-scale model is at least 36 times faster
than the fine-scale model. Indeed, at each time step solving the pressure equation on the coarse grid is
approximately 36 times faster than on the fine grid. Moreover, the update of the saturation is performed
with the time step corresponding to the coarse mesh size. Thus, we perform less pressure updates in the
coarse-scale simulations compared to the fine-scale simulations. As a result, we have observed two order of
magnitude of CPU speedup if the preconditioned coarse-gradient Langevin algorithm is used. In Figure 14,
the fractional flow errors and fractional flows are plotted. The results in Figure 14 indicates that Langevin
and direct MCMC methods have similar convergence properties. In the computations, A7 = 0.05 is kept
fixed. Because the fine-scale response surface, 7, varies on smaller scales, we observe some irregular behavior
in fractional flow error for early proposals. On the right figure, the fractional flow curves are plotted for
accepted realizations after the chain has reached a steady state. We observe that these samples provide
nearly the same fractional flow response as the reference permeability field. More discussion and numerical
examples on the performance of coarse-gradient Langevin algorithms can be found in [10].

The MCMC method used in the paper employs multiscale finite volume element methods in the pre-
conditioning step. If a proposal is accepted by the preconditioning step, the proposed algorithms compute
the fine-scale solutions corresponding to the proposed permeability field. At this stage, we have already
precomputed basis functions that can be further used to re-construct the velocity field on the fine-scale.
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Figure 12: Left: Coarse-scale response surface 7* restricted to 2-D hyperplane. Right: Fine-scale response
surface 7 restricted to the same 2-D hyperplane
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Figure 13: Acceptance rate comparison for direct fine-scale Langevin and preconditioned coarse-gradient
Langevin algorithms for two-phase flow, A7 = 0.05, szc = 0.003.
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Figure 14: Left: The fractional flow errors for direct fine-scale Langevin algorithm compared with precon-
ditioned coarse-gradient Langevin algorithm. Right: The fractional flow curves of sampled realizations and
the reference fractional flow. In these numerical tests, A7 = 0.05, a? = 0.003 and 6 x 6 coarse-scale model
is used. '

Then the transport equation can be solved on the fine-grid coupled with the coarse-grid pressure equation.
This approach provides an accurate approximation to the production data on the fine-grid (cf. [18,25,1]) and
can be used to replace the fine-scale computation in the last stage. In this procedure, the basis functions
are not updated in time, or updated only in a few coarse blocks. Thus the fine-scale computation in the
last stage of MCMC algorithms can also be implemented fast. Since the basis functions from the first-stage
is re-used for the fine-scale computation, this combined multiscale approach can be very efficient for our
sampling problem.

5 Conclusion

In this paper, we discuss some applications of multiscale finite element methods to two-phase immiscible flow
simulations in heterogeneous porous media. We discuss some extensions of multiscale finite element methods
which take into account some limited global information. These methods are well suited for channelized
porous media, where the long-range effects are important. This is typical for some recent benchmark tests,
such as the SPE comparative solution project [8], where porous media has a channelized structure. The
applications of multiscale finite element methods to inverse problems arisen in subsurface characterization is
also discussed in the paper. In particular, we show that using inexpensive coarse-scale models involving mul-
tiscale finite element methods, one can perform efficient sampling from a complicated posterior distribution
arisen in inverse problems.

The MCMC method used in the paper employs multiscale finite volume element methods in the pre-
conditioning step. If a proposal is accepted by the preconditioning step, the proposed algorithms compute
the fine-scale solutions corresponding to the proposed permeability field. At this stage, we have already
precomputed basis functions that can be further used to re-construct the velocity field on the fine-scale.
Then the transport equation can be solved on the fine-grid coupled with the coarse-grid pressure equation.
This approach provides an accurate approximation to the production data on the fine-grid and can be used
to replace the fine-scale computation in the preconditioning stage. In this procedure, the basis functions
are not updated in time, or updated only in a few coarse blocks. Thus the fine-scale computation in the
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last stage of MCMC algorithms can also be implemented fast. Since the basis functions from the first-stage
is re-used for the fine-scale computation, this combined multiscale approach can be very efficient for our
sampling problem.
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