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In this paper, we consider multiple signals sharing the same instantaneous frequen-
cies. This kind of data is very common in scientific and engineering problems. To take
advantage of this special structure, we modify our data-driven time-frequency analy-
sis by updating the instantaneous frequencies simultaneously. Moreover, based on the
simultaneous sparsity approximation and the Fast Fourier Transform, we develop several
efficient algorithms to solve this problem. Since the information of multiple signals is
used, this method is very robust to the perturbation of noise and it is applicable to the
general nonperiodic signals even with missing samples or outliers. Several synthetic and
real signals are used to demonstrate the robustness of this method. The performances
of this method seems quite promising.

Keywords: Sparse time-frequency decomposition; instantaneous frequency; multiple
measurements; simultaneous sparsity approximation.

1. Introduction

Data provide a lot of important information for us to understand the world around
us. In many applications, the frequencies of a signal are usually very useful to
reveal the underlying physical mechanism. Therefore, in the past several decades, a
lot of effort has been devoted to find efficient time frequency analysis methods and
powerful methods. These numerical methods include the windowed Fourier trans-
form [Mallat (2009)], the wavelet transform [Daubechies (1992); Mallat (2009)], the
Wigner—Ville distribution [Flandrin (1999)], etc. In particular, the Empirical Mode
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Decomposition (EMD) method developed by Professor Huang et al. [1998] and Wu
and Huang [2009] provides an efficient and fully adaptive method to extract fre-
quency information from complicate multiscale data. The EMD method has found
many applications in many scientific and engineering disciplines and has inspired
a number of subsequent developments, see, e.g. the synchrosqueezed wavelet trans-
form [Daubechies et al. (2011)], the Empirical wavelet transform [Dragomiretskiy
and Zosso (2014)], and the variational mode decomposition [Gilles (2013)].
Inspired by the EMD method and compressive sensing [Candes et al. (2006);
Candeés and Tao (2006); Donoho (2006)], Hou and Shi proposed a data-driven
time-frequency analysis method based on the sparsest time-frequency representa-
tion [Hou and Shi (2013); Hou et al. (2014)]. In this method, we decompose signals
that consist of a finite number of intrinsic mode functions in the following form:

Zak ) cos O (t t €10,1], (1)

where a(t),0x(t) are smooth functions, 6;.(t) > 0,k = 1,..., M. We assume that
ar(t) and 6}, are “less oscillatory” than cos@(t). We say that a signal f(¢) is less
oscillatory than g(¢) if || £ f(t)]z2 < A|[&g(t)]| 12 for some positive constant A <
1/2. After applying a change of variable in time, we can always map the time domain
of this signal into the time interval [0, 1]. Without loss of generality, we may assume
that the time span of the interval is [0, 1]. We borrow the terminology in the EMD
method and call ag(t) cos 0y (t) as the Intrinsic Mode Functions (IMFs) Huang et al.
[1998]. This model is also known as the Adaptive Harmonic Model (AHM) and
has been widely used in the time-frequency analysis literature [Chui and Mhaskar
(2016); Daubechies et al. (2011)].
How to compute the decomposition in the AHM model is a major challenge.
A major difficulty is due to the fact that there are a large number of degrees of
freedom in a signal. As a result, the decomposition of a signal using the AMH model
is typically not unique. One essential problem is how to set up a criterion to pick up
the “best” decomposition and this criterion should be easy to compute in practice.
Inspired by the compressive sensing, we proposed to decompose a multiscale signal
by looking for the sparsest decomposition in Hou and Shi [2013]. And the sparsest
decomposition is obtained by solving a nonlinear optimization problem formulated
as follows:
K
min K, Subject to: f= Z apcosly, apcosb, €D, (2)
(ar)1<r<r,(Ok)1<r<m =1
where D is the dictionary consisting of all IMFs. By choosing the dictionary this
way, we automatically impose the AHM model in our decomposition (see Hou and
Shi [2013] for precise definition of the dictionary).
We proposed two different methods to solve the optimization problem (2). The
first one is based on matching pursuit [Hou and Shi (2013); Mallat and Zhang
(1993)] and the other one is based on basis pursuit [Chen et al. (1998); Hou and
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Shi (2016)]. The convergence of the algorithm based on matching pursuit has been
established under the certain scale separation assumption [Hou et al. (2014)].

In our previous works, we focussed on the case when only one signal is given.
However, in many applications, we can obtain many different signals and these sig-
nals have the same frequency structure. For example, when monitoring the safety
of a building, people usually put many sensors in different locations of the same
building to measure the vibration. From these sensors, many measurements of the
vibration are obtained. Since the signals from different sensors measure the same
building, they should have the same instantaneous frequencies associated with the
natural frequencies of the building. If we analyze the signals from different sensors
individually, we would not take full advantage of the property that these signals
share the same instantaneous frequencies. By analyzing these different signals simul-
taneously, we can take full advantage of this property to obtain more robust and
efficient decomposition methods.

The main purpose of this paper is to introduce several novel decomposition
methods that simultaneously decompose different signals that share the same fre-
quency structure. To begin with, we assume that we are given multiple signals that
share the same instantaneous frequencies. To take advantage of this special prop-
erty, we first modify the adaptive harmonic model (1) to deal with this kind of
signals.

K

= al(t)cosOi(t), te[0,1], j=1,...,M, (3)

k=1
where M is the number of signals, f7 is the jth signal. For each j = 1,..., M fixed,
it is the AHM model (1), i.e. ai(t), 0 (t) are smooth functions, and we assume that
the instantaneous frequencies are positive, i.e. 0}(t) > 0,k = 1,..., K. As before,
we assume that ai(t) and ), are “less oscillatory” than cos 6 (t). The main feature
of this model is that different signals f7 have the same phase functions 6. We
call (3) the Multiple Adaptive Harmonic Model (MAHM).

Inspired by our previous work for a single signal, we also look for the sparsest
decomposition that satisfies the MAHM model (3) by solving the following opti-
mization problem:

min K (4)

1,...,M
(ak’ek)i 1,..,K

K
Subject to:  fI(t) = Zai( ) cos Oy (t), al(t)cosby(t) € D.

k=1
The dictionary D that we will use in this paper is the same as that in Hou and Shi
[2013]. It can be written as

D ={acosO:acV(0,\),0 €V(0,N), and 0'(t) >0, ¥t [0,1]}.  (5)

Here, V (6, A) is the collection of all the functions that are “less oscillatory” than
cos@(t). In general, it is most effective to construct V (6, \) as an over-complete
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Fourier basis given below:

ko ko
V(0,\) =spany 1, (cos <—>) , (sin <—>) . (6)
{ 2L 1<k<2ALg 2L 1<k<2ALg

where Ly = LWL |z] is the largest integer less than =, and A < 1/2 is a

parameter that controls the smoothness of V(6, \). In our computations, we typi-
cally choose A = 1/2.

In the rest of the paper, we will introduce several algorithms to approximately
solve the above optimization problem (4). First, we give a generic algorithm based
on matching pursuit and nonlinear least squares in Sec. 2. This algorithm can be
accelerated by the Fast Fourier transform (FFT) if the signal is periodic. This
will be reported in Sec. 3. In Sec. 4, we develop an efficient algorithm for general
nonperiodic signals based on the group sparsity and the algorithm introduced in
Sec. 2. In Sec. 5, we generalize this algorithm to deal with signals that have outliers
or missing samples. Finally, we present several numerical results including both
synthetic and real signal to demonstrate the performance of our method in Sec. 6.
Some concluding remarks are made in Sec. 7.

2. Method Based on Matching Pursuit

In this section, we introduce a method based on matching pursuit to get the sparsest
decomposition. This is inspired by a similar algorithm that was proposed in Hou
and Shi [2013]. This decomposition method is described in Algorithm 1 given below.

Algorithm 1. A decomposition method based on matching pursuit

Input: Signals f/(t), j =1,..., M.

Output: Phase functions and the corresponding envelopes: Hk.,ai, k =
1,....K,j=1,..., M.

cSet v = fi(t),j=1,....M and k = 1.

: while max(||r]||;2) > € do

N =

J
3:  Solve the following nonlinear least-square problem:

M
min Z 7 — a, cos Oy ||% (7)
az, 0 j=1

Subject to: 0, >0, al(t)€V(by), j=1,..., M.
4:  Update the residual
riﬂ = 7‘{; —ai(t) cosb, j=1,...,M.

Set k=Fk+ 1.
6: end while

@
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Algorithm 2. A Gauss-Newton iteration to solve the nonlinear least-squares
problem

Input: Initial guess of the phase function 69 = 6.

Output: Phase functions and the corresponding envelopes: 0y, ai, j=1,...,M.

1: while || — 072 > €9 do
2. Solve the following least-square problem for each signal r],_,, j =1,...,M:
7l —al" T () cos O (1) — LT (t) sin O ()2 (8)

jin+1 g3j,n+1
ay, ,b7,

Subject to  al" T (t), BTN (E) € V(O]).
3:  Calculate the averaged update of the instantaneous frequencies:
M 41

M J,n+1
Ej:l Fk

jnt+1 d (3d,mn+1 j,n+1 d j,n+1
PN G 1 i U A 1 )

(@ T+ ()2

where I‘i’"“ — (ai,n+1)2 + (bi,n+1)2.
4:  Update 0}

, Aw . (9)

t
A = / Aw(s)ds, O =0p — BAG,
0
where 3 € [0,1] is chosen to make sure that 92“ is monotonically increasing:

ﬂ:max{ae[o,l}:%(92—(1A9)>0}.

5: end while

To solve the nonlinear least-squares problem (7) in Algorithm 1, we use the well-
known Gauss—Newton type iteration. This algorithm is very similar to the one used
in Hou and Shi [2013]. The only difference is the update of the phase function. In
this new model, different signals share the same phase function. As a result, we only
update one common phase function by taking some average among different signals.

By integrating Algorithm 1 with 2, we can obtain a complete algorithm to
compute the sparsest decomposition. The key step and also the most expensive
step is to solve the least-squares problem (8). It does not need too much time to
solve (8) for one time, however, we have to solve this least-squares problem many
times to get the final decomposition. This makes the above algorithm not very
practical in real world applications. In the next two sections, we will propose some
acceleration algorithms to speed up the above algorithm.

3. Periodic Signals

We first consider a special case when the signals are periodic in time. If the signals
are periodic, we can use a standard Fourier basis to construct the V' (6, \) space
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instead of the over-complete Fourier basis given in (6).

Vp(0,)\) = span< 1, (cos (ﬁ)> , (sin <k—0>) , (10)
Ly 1<k<ALg Ly 1<k<ALgy

where A < 1/2 is a parameter to control the smoothness of functions in V, (6, \)
and Ly = (6(1) — 6(0))/27 is a positive integer.

In Hou and Shi [2013], we already developed an efficient algorithm based on
the FFT to solve the least-squares problem (8) for periodic signals. For the sake of
completeness, we include this algorithm below.

Suppose that the signal r;_; is measured over a uniform grid ¢; = j/N, j =
0,...,N — 1. Here, we assume that the sample points are fine enough such that
ri_1 can be interpolated to any grid with a small error. Let § = %(00()0) be the

0(1)—06(0)
27

normalized phase function and Ly = , which is an integer.

The FFT-based algorithm to approximately solve (8) is given below:

Step 1: Interpolate 74_1 from {t;}}¥, in the physical space to a uniform mesh in
the 6}'-coordinate to get Ton and compute the Fourier transform ?ggl

ror,; = Interpolate(ry—1, 0 ;), (11)

where Qg’j7j =0,...,N —1 are uniformly distributed in the 6}'-coordinate,
ie. 01?,]‘ = 2mLgj/N. And the Fourier transform of rg» is given as follows:

N

R 1 . an

Tor (W) = N E ro e 0% i w=—-N/2+1,...,N/2, (12)
i=1

n n
ek',j_ek',o

27rL%z

where gz,j =
Step 2: Apply a cutoff function to the Fourier Transform of rg» to compute a and
b on the mesh of the 0}'-coordinate, denoted by agr and bgn:

agy = F{(Fop (w+ Lop) + Top (w — Lap)) - xa(w/Lep)], (13)
bop = F'[i- (Fop (w + Lop) — Pop (w — Lop)) - xa(w/Lop)],  (14)

where F~1 is the inverse Fourier transform defined in the 6 coordinate:

N/2
— 1/~ 1 ~ 27wl . .
F 1(7"9;;):N E 7"9;}62 %i, j=0,...,N—1. (15)
w=—N/2+1

Step 3: Interpolate ag and by from the uniform mesh {02, ; }5\/:1 in the #}-coordinate
back to the physical grid points {t;}¥ ,:

a(t;) = Interpolate (ag,t;), ¢=0,...,N—1, (16)
b(t;) = Interpolate (bg,t;), ¢=0,...,N —1. (17)
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The low-pass filter xx(w) in the second step is determined by the choice of
Vp(8,A). In this paper, we choose the following low-pass filter xx(w) to define
Vo (0, 0):

Xa(w) = (18)

1+ cos(mw/A), —A<w<A
0, otherwise.

By incorporating the FFT-based solver in Algorithm 2, we get an FFT-based
iterative algorithm, which is summarized in Algorithm 3.

Remark 1. We remark that the projection operator Py (9., is in fact a low-pass
filter in the #-space. For nonperiodic data, we apply a mirror extension to A8 before
we apply the low-pass filter.

Algorithm 3. (FFT-based algorithm to solve the nonlinear least-squares problem)

Input: Initial guess of the phase function 69 =6y, 7 =0.

Output: Phase functions and the corresponding envelopes: 0y, ai, j=1,...,M.
1: while n < A do
2. while [|07T" —07|2 > ¢ do

3: Interpolate rx—1 to a uniform mesh in the 6-coordinate to get rop and
compute the Fourier transform 7gn.

4: Apply a cutoff function to the Fourier Transform of rgr to compute a and
b on the mesh of the #)’-coordinate, denoted by agr and byp.

5: Interpolate ap and bg;; back to the uniform mesh of ¢.

6: Calculate averaged update of the instantaneous frequencies:

Al d i1y pintld (]
Aw; = a" g (O T) o g (@)

(@ T )2

M dml
-~ D=1 Aw;y

Aw EM pint
j=11%

) )

(19)

where I‘i’"“ = (a%nﬂ)z + (bi:,n+1)2.
T Update 0}

t
AY = Py (g (Aw), AO(E) = / AO (s)ds, 07" =07 — BAW,
0

where 3 € [0,1] is chosen to make sure that 6" is monotonically increas-
ing:
d n
B =maxqae€l0,1]: E(ak —alAf) >0
and Py, (g, is the projection operator to the space V),(6;7).
8: end while
99 n=n+An
10: end while
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The Gauss—Newton type iteration is sensitive to the initial guess. In order to
abate the dependence on the initial guess, we gradually increase the value of 7 to
improve the approximation to the phase function so that it converges to the correct
value. The detailed explanation can be found in Hou and Shi [2013].

4. Nonperiodic Signals

As we know, the signals that we deal with in practice are in general not periodic.
To apply the FFT-based algorithm described in the previous section, we have to
perform a periodic extension for general nonperiodic signals. In this paper, the sig-
nals are assumed to satisfy the MAHM model (3). One consequence of the MAHM
model is that the phase function can be used as a coordinate and the signals are
sparse over the Fourier basis in the #-coordinate. Then, one natural way to perform
the periodic extension is to look for the sparsest representation of a signal over an

over-complete Fourier basis defined in the #-coordinate.
More precisely, the extension is obtained by solving an [; minimization problem.
min ||x||;, subject to Py -x =", (20)

x€RNo

where f is the sample of the signal at t;,7 = 1,..., Ny, and N is the number of
sample points. The grid points, ¢;, may not be uniformly distributed, however, we
assume that the sample points are fine enough such that f can be interpolated over
any other grids without loss of accuracy. Here ® € CV+*™ is a matrix consisting
of basis functions, N, is the number of Fourier modes, ®,(j, k) = e*0t:)/Le 5 —
1,...,Ng,k=—Ny/2+1,...,Np/2, and Ly is a positive integer determined by the
length of the period of the extended signal, which will be discussed later.

To get the periodic extension of M signals, one way is to solve (20) M times
independently. However, these M signals are not independent. They share the
same phase functions. Inspired by the methods that perform simultaneous sparsity
approximations [Tropp (2006); Tropp et al. (2006)], we propose to solve following
optimization problem to get the periodic extension of M signals simultaneously.

min || X||2,1, subject to Py -X =F, (21)
XGRNbXJ\I
where X is a N, x M matrix, X = (@jx)j=1,. Ny k=1,.m, F = [f1,... fM] is a

Ny x M matrix and

Ny /M 1/2
s = 3 (S ) 22)
j=1 \k=1

The remaining task is to solve the optimization problem (21) efficiently. Since the
sample points are fine enough, we can assume that the sample points are uni-
formly distributed in the f-coordinate, i.e. 6(t;) = (j — 1)A# and A = 27 Ly/Ny,.
Otherwise, we could use some interpolation method (for instance the cubic spline
interpolation) to get the signals over the uniformly distributed sample points. Now,
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we define a matrix, ®5 € CNv*Nv consisting of the complete Fourier basis,

_ 1 . .
By(j, k) = —==eFUDAO/ Lo 51 N, E=1,...,N,, 23
6.0 = 75 (23)
where ®¢ (7, k) represents the element of ® at jth row and kth column. Using the
property of the Fourier basis, we know that ® is an orthonormal matrix, which is
a very desirable property for us to derive a fast algorithm.

We denote (2 as the index set of F,

Q={(Gk):j=1,...,Np(j — )AI < O(1) —0(0),k=1,....Ny}.  (24)

Then, for any (j, k) € Q, F(j,k) is a sample point. We also define an extension of
F by zero padding,

— F(]7k)’ (]7k) 6 Q7
F(j, k) = 25
U k) {0, otherwise. (25)
where j,k=1,..., Np.
First, we remove the constraint in (21) by introducing a penalty term,
min X2 + 5|0 - X~ F3,. (26)
x€RNb 2

Here, ;1 > 0 is a parameter of penalty. We will let p go to infinity later. Then the
solution of (26) will converge to the solution of (21).

Let Y = ®y-X—F,and Y = Y| = ®-X —F. Using the Augmented Lagrange
Multiplier method (ALM) to solve the unconstrained optimization problem (26),
we obtain the following algorithm. Let Q° = 0, and repeat the following two steps
until the algorithm converges.

° (Xk+17Yk+1) = arg minyg yepnyxm [ Xll2,1 + Y
Qk/W’ %,2'
o QFFl = QF 4~ (YHH — &, XM 4 F).

52T 2Y —®) X+ F+

Here, v > 0 is a parameter. In the above ALM iteration, the main computational
load is to solve the optimization problem in the first step. Note that the objective
functional depends on two terms, X and Y. It is natural to minimize the functional
alternately by optimizing one of these two terms when the other one is fixed, which
is similar in spirit to the split Bregman iteration [Goldstein and Osher (2009)].
Using this idea, we get the following iterative algorithm to solve (26).

Let Q° =0, Y° = 0 and repeat

o XM = argming cpwy x| X2 + 2| Y — @9 - X+ F + Qk/W”g,m
o Y5 argming v, e B Y35 + 31T - B0 X 4 B+ Q42
o Qk+1 — Qk +,y ) (Yk+1 _ ée .Xk?+l +F)
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The good news is that the optimization problems in the first and the second
step can be solved explicitly and we can use the FFT to accelerate the computation.
To see this, we consider the first optimization problem. Using the fact that ® is
an orthonormal matrix, we have

. VX — & (TF 4 F
XM =arg  min [ X[la1 + S IX =@ (YE+F+Q /)35

XeRNyx M
=8,(®y- (Y +F+Q"/y)), (27)

where ®, is the conjugate transpose of ®4. Here S, is a shrinkage operator, which
is defined as follows. For any v € CM

S,(v)=14 IVl (28)
0, vll2 <.

If V is a matrix and v; is its jth row, then S, (V') is a matrix of the same size as
V and the jth row is defined as S, (v;). Notice that @, is the matrix consisting of
the Fourier basis in the 6-coordinate, so the matrix—matrix multiplication can be
evaluated by applying the discrete Fourier transform of each column of the second
matrix, which can be accelerated by FFT.

In the second optimization problem, recall that © > 0 is a penalty parameter in
(26). The larger this parameter is, the better the performance will be. By letting u
go to infinity, we can solve

5, . X+l _ | _ Ok : ;
Yk+1(j, k) _ {(QO X F Q /7)(]7k)v (]ak) € Qa (29)

0, otherwise.
Summarizing the above derivation, we get a fast algorithm to solve (21), see Algo-
rithm 4. By combining Algorithm 4 and the algorithm in previous section, we
can get a complete algorithm to deal with nonperiodic data. Before giving the
complete algorithm, there is still one issue we need to address. In the derivation

Algorithm 4. (Fourier extension by group sparsity)
Input: Q°=0,Y%=0.
Output: Fourier coefficients on over-complete Fourier basis X.
1: while [|Q" — Q" ![j22 > ¢ do
2. XM =8 (F(Y*+F+Q"/v)), where F,. is an operator that applies the
Fourier transforr% to )e(ezcill col%mn. . - eq
T k) = (Po - -F-Q%/)(, k), (j,k) e,
, otherwise.
Q! = QF + - (YF! — &y - XM 1 F)
end while
6: X = Xkt

@
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of Algorithm 4, we assume that the sample points are uniformly distributed in
the #-coordinate with a given 6. For a general signal that may not be uniformly
sampled in the #-coordinate, we need to perform interpolation before applying
Algorithm 4.

In order to perform interpolation, we first need to provide the interpolation
points that are uniformly distributed in the -coordinate. In this paper, the inter-
polation points are chosen as 6(0) + (j — 1)A0,5 = 1,..., Ny, A0 = 2wLy/Np.
We set Ly = 2Lg and Ly = LW} This choice corresponds to the two-fold
over-complete Fourier basis used in (6). Here, N, = 2N, and N is the number of
sample points of the original signal. The original signals are interpolated over the
interpolation points by using the cubic spline interpolation.

Algorithm 5. (Algorithm for a nonperiodic signal)

Input: Initial guess of the phase function 69 =6y, 7 =0.

Output: Phase functions and the corresponding envelopes: 0y, ai, j=1,...,M.
1: while n < A do
2: while [|07T!" —07|2 > ¢ do

3: Interpolate r;_; to a uniform mesh in the 6}-coordinate to get o
4: Using Algorithm 4 to get the Fourier coefficients of 79r on the over-complete
Fourier basis.
5: Apply a cutoff function to the Fourier Transform of rgr to compute a and
b on the mesh of the #)’-coordinate, denoted by agr and byp.
6: Interpolate ap and bg;; back to the uniform mesh of ¢.
7: Calculate the averaged update of frequency:
jn 1 1 1 M jnt1
A G g et AT
wj = (aF n+1) YT ) w = M pintl
k Zj:l k
(30)
where T2 = (a7 *1)2 4 (27 11)2.
8: Update 0}
A0 = Py 9. (Aw), / AY (s)ds, 0T =07 — BAG,

where 3 € [0,1] is chosen to make sure that 6" is monotonically increas-
ing:

8= max{a €10,1] : %(92 — alf) > 0}

and Py, (g, is the projection operator to the space V),(6;7).
9: end while
10 n=n+An.
11: end while
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Algorithm 6. (Algorithm for signals with outliers)
Input: Q°=0,Y%=0.
Output: Fourier coefficients on over-complete Fourier basis X, estimate of out-
liers Z.
1: while [|Q" — Q" !|s2 > ¢ do
2 XM =8 1 (F(YF—Z"+F+QF/v)), where F, is an operator that applies
the Fourier transform to each column.
5 YR k) = {(% XML ZF —F - QF/v)( k), (k) €9,

4 ZMU =T, 1 (YM' +F +QF/y — @, - X), where 7, is a shrinkage operator.
For any x € R,

otherwise.

)

|z =~
T,(2) = ¢ 17l
0, lz| <.
For any matrix A = (a;), 7,(A) = (75 (ax)).
5. QFFL=QF 4y (ZMT — &, XM L F)
6: end while
7. X = XFH Z = ZFHL o, Q is defined in (24).

z, |z] >,

Now, we have an algorithm for nonperiodic signals, which is summarized in
Algorithm 5.

5. Signals with Outliers or Missing Samples

To deal with the signal with outliers, we need to enlarge the dictionary to include
all the impulses. In this case, the optimization problem is reformulated as follows:
min IXll21 + [|Z]|1,1, subject to: ®p-X+Z=F, (31)

XeCNexM
ZcRNs X M

where @y and F are the same as those in (21).

Following the derivation similar to that in Sec. 4, we obtain Algorithm 6 to solve
the above optimization problem (31). By using the same interpolation procedure
as in Sec. 4, we can integrate Algorithm 6 with the algorithm in Sec. 3 to get the
method to deal with signals with outliers.

For the signals with missing samples, we first assign the value of the signal as
the average of the signal at the locations where the sample is missing and then treat
the missing sample as the outliers.

6. Numerical Results

In this section, we use two numerical examples, one is synthetic and one is real
data, to demonstrate the performance of the method proposed in this paper. The
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first example is a simple synthetic signal, which is used to test the robustness of
the method to the perturbation of white noise.

Example 1. A synthetic signal with white noise
In this example, the signals are generated as follows:

f(t) = cos(40m(t + 1)), fI(t) = f(t) +5X?(t), j=1,...,10, t €[0,1], (32)

where X7 (t),7 = 1,...,10 are independent white noise with standard deviation
02 = 1. The number of sample points is 512 and the sample points are uniformly
distributed over [0, 1].

The original signals are plotted in the left figure of Fig. 1. As we can see, the
noise is so large that we cannot see any pattern of the original clean signal. The
recovered instantaneous frequency is shown in the right figure of Fig. 1. If we recover
the frequency from each signal separately, the frequencies are totally wrong due to
the large amplitude of the noise. However, if we use the special structure that these
10 signals have the same instantaneous frequency, the frequency that we recover is
much better.

Example 2. Cable tension estimate®

This example is a real world application in which one would like to estimate the
tension of the cables in a cable bridge. Before demonstrating the numerical results,
we give some backgrounds first.
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Fig. 1. (Color online) Left: 10 measurements generated by f(t) + 5X(t). Bold black: the signal
without noise; thin lines: 10 measurements with larger noise; Right: the instantaneous frequency
recovered from 10 different measurements with larger noise. Bold blue: the exact frequency; bold
black: the recovered frequency from 10 signals; the thin lines: the frequency obtained from 10
signals separately.

2The authors would like to thank Prof. Yuequan Bao of the School of Civil Engineering of Harbin
Institute of Technology for the experimental data and for permission to use it in this paper.

1750010-13



T. Y. Hou & Z. Shi

For a large span bridge, such as a cable-stayed bridge and suspension bridge,
the collection of the cables is a crucial element for the overall structural safety. Due
to the moving vehicles and other environmental effects, the cable tension forces
vary over time. This variation in cable tension forces may cause fatigue damage.
Therefore, the estimation of the time-varying cable tension forces is important for
the maintenance and safety assessment of cable-based bridges.

One commonly used method to estimate the cable tension force is based on the
instantaneous frequency estimate of the cable vibration signal. According to the
flat taut string theory that neglects both sag-extensibility and bending stiffness,
the cable tension force, F', can be calculated by

i) = amz? (2O 33
(0= (22 (33)
where wy,(t) is the time-varying nth natural frequency in radius/s and m, L are
mass density and length of the cable.

Also from the flat taut string theory, an important and useful feature of the
vibrations of the cable is that the natural frequencies of the higher modes are
integer multiples of the fundamental frequency, that is w,(t) = nwi (). This feature
implies that we can combine the information of different modes together to recover
the instantaneous frequency. Then the method developed in this paper for multiple
signals applies after some minor modifications. In step 5 of Algorithm 5, we can
extract several modes based on the relation w, () = nwi (t). More specifically, the
multiple modes are extracted as follows

agg = fﬁl[(?gg(w + Lg;}) —|—?gg(w — Lg;})) “xa(g ~w/L9£)}, j=1...,M
Voo = F i - (Fop (w + Lag) — P (w — Lop)) - xa(G - w/Lop)l. j=1,..., M,

where M is the number of models that we use. The only difference between the
above extraction and the original one (13)—(14) is that an integer j is multiplied in
the cutoff function x . The integer j corresponds to a different mode since we have
the relation wy, (t) = nw. (t).

Accordingly, the calculation of the instantaneous frequency requires a minor
modification. In the calculation of Aw;, we need to divide it by integer j to get the
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Fig. 2. Left: vibration signal of the cable; Right: zoom in of the signal to demonstrate the missing
samples (flat segments).
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Fig. 3. The cable force estimated by a single natural mode 1-5 from the top to the bottom.

correct fundamental frequency.
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The original experimental signal is given in Fig. 2. Obviously, the signal has some
outliers. In the original signal, about 10% of the samples were lost, which is
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Fig. 4. The cable force estimated by using 1-5 natural modes simultaneously.

demonstrated very clearly in the zoom-in picture in Fig. 2. The tension force esti-
mated by our method is given in Figs. 3 and 4. The tension forces obtained from
different modes are shown in Fig. 3. If only one mode is used, the estimation of the
force is not very accurate. There are many oscillations although the overall picture
matches roughly the measured force. Figure 4 shows the result obtained using 1-5
modes together. As we can see, the estimated force fits the measured force much
better.

7. Conclusion

In this paper, we study how to extract instantaneous frequencies from multiple
signals that share the same instantaneous frequencies. This kind of signals arises in
many scientific and engineering problems. In some applications, although we have
only one signal, different components have a fixed relation in frequencies, as in the
example of tension force estimate that we considered in this paper. By exploiting
the special property that these signals share the same instantaneous frequencies,
we formulated this problem as a I' optimization problem and developed several
algorithms to find the sparsest time-frequency decomposition. The results that we
obtained using our algorithms are much better than extracting the instantaneous
frequencies one by one. We further proposed FFT-based algorithms to accelerate
the convergence of these algorithms. As a result, the FFT-based algorithms are
very efficient. By using the group sparsity algorithm, our algorithms can also han-
dle the nonperiodic signals and incomplete signals such as signals with outlier or
missing data. In both synthetic and real data tests, we have demonstrated that the
algorithms are very efficient and robust.
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