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A direct numerical solution of the multiple scale prob-
lems is difficult even with modern supercomputers. TheIn this paper, we study a multiscale finite element method for

solving a class of elliptic problems arising from composite materials major difficulty of direct solutions is the scale of computa-
and flows in porous media, which contain many spatial scales. The tion. For groundwater simulations, it is common to have
method is designed to efficiently capture the large scale behavior millions of grid blocks involved, with each block having aof the solution without resolving all the small scale features. This

dimension of tens of meters, whereas the permeabilityis accomplished by constructing the multiscale finite element base
functions that are adaptive to the local property of the differential measured from cores is at a scale of several centimeters
operator. Our method is applicable to general multiple-scale prob- [23]. This gives more than 105 degrees of freedom per
lems without restrictive assumptions. The construction of the base spatial dimension in the computation. Therefore, a tremen-
functions is fully decoupled from element to element; thus, the

dous amount of computer memory and CPU time are re-method is perfectly parallel and is naturally adapted to massively
quired, and they can easily exceed the limit of today’sparallel computers. For the same reason, the method has the ability

to handle extremely large degrees of freedom due to highly hetero- computing resources. The situation can be relieved to some
geneous media, which are intractable by conventional finite element degree by parallel computing; however, the size of discrete
(difference) methods. In contrast to some empirical numerical problem is not reduced. The load is merely shared by moreupscaling methods, the multiscale method is systematic and self-

processors with more memory. Some recent direct solu-consistent, which makes it easier to analyze. We give a brief analysis
of the method, with emphasis on the ‘‘resonant sampling’’ effect. tions of flow and transport in porous media are reported
Then, we propose an oversampling technique to remove the reso- in [1, 25, 9, 22]. Whenever one can afford to resolve all the
nance effect. We demonstrate the accuracy and efficiency of our small scale features of a physical problem, direct solutionsmethod through extensive numerical experiments, which include

provide quantitative information of the physical processesproblems with random coefficients and problems with continuous
at all scales. On the other hand, from an engineering per-scales. Parallel implementation and performance of the method are

also addressed. Q 1997 Academic Press spective, it is often sufficient to predict the macroscopic
properties of the multiple-scale systems, such as the effec-
tive conductivity, elastic moduli, permeability, and eddy

1. INTRODUCTION diffusivity. Therefore, it is desirable to develop a method
that captures the small scale effect on the large scales, butMany problems of fundamental and practical impor-
which does not require resolving all the small scale fea-tance have multiple-scale solutions. Composite materials,
tures.porous media, and turbulent transport in high Reynolds

Here, we study a multiscale finite element methodnumber flows are examples of this type. A complete analy-
(MFEM) for solving partial differential equations withsis of these problems is extremely difficult. For example,
multiscale solutions. The central goal of this approach isthe difficulty in analyzing groundwater transport is mainly
to obtain the large scale solutions accurately and efficientlycaused by the heterogeneity of subsurface formations span-
without resolving the small scale details. The main idea isning over many scales [7]. The heterogeneity is often repre-
to construct finite element base functions which capturesented by the multiscale fluctuations in the permeability
the small scale information within each element. The smallof the media. For composite materials, the dispersed phases
scale information is then brought to the large scales(particles or fibers), which may be randomly distributed
through the coupling of the global stiffness matrix. Thus,in the matrix, give rise to fluctuations in the thermal or
the effect of small scales on the large scales is correctlyelectrical conductivity; moreover, the conductivity is usu-
captured. In our method, the base functions are con-ally discontinuous across the phase boundaries. In turbu-
structed from the leading order homogeneous elliptic equa-lent transport problems, the convective velocity field fluc-
tion in each element. As a consequence, the base functionstuates randomly and contains many scales depending on

the Reynolds number of the flow. are adapted to the local properties of the differential opera-
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tor. In the case of two-scale periodic structures, Hou, Wu, although the homogenization theory helps reveal the cause
of the problem. This makes it possible to generalize ourand Cai have proved that the multiscale method indeed

converges to the correct solution independent of the small method to problems with continuous scales. We will dem-
onstrate through extensive numerical experiments that thisscale in the homogenization limit [21].

In this paper, we continue the study of the multiscale simple technique is very effective for a wide range of appli-
cations, including problems with random coefficients andmethod, with emphasis on problems with continuous scales

from composite materials and flows in porous media. Ex- problems with continuous scales.
In practical computations, a large amount of overheadtensive numerical tests are performed on these problems.

The error analysis of the method is reviewed briefly time comes from constructing the base functions. These
multiscale base functions are constructed numerically,for problems with scale separation. The accuracy of our

method for problems with continuous scales is then studied except for certain special cases. Since the base functions
are independent of each other, they can be constructednumerically. Moreover, we compare our method with tra-

ditional finite element (difference) methods as well as ex- independently and this can be done perfectly in parallel.
This greatly reduces the overhead time in constructingisting numerical upscaling methods in terms of operation

counts and memory requirement. We give two simple par- these bases. On a sequential machine, the operation count
of our method is about twice that of a conventional finiteallel implementations of our method and study their paral-

lel efficiency computationally. element method (FEM) for a 2D problem. The difference
is reduced significantly for a massively parallel computer.A common difficulty in numerical upscaling methods is

that large errors result from the ‘‘resonance’’ between the For example, running on 256 processors, our method only
spends 9% more CPU time than a FEM using 1024 3 1024grid scale and the scales of the continuous problem. This

is revealed by our earlier analysis [21]. For the two-scale linear elements (see Section 4.6).
Another advantage of our method is its ability to reduceproblem, the error due to the resonance manifests as a

ratio between the wavelength of the small scale oscillation the size of a large scale computation. This offers a big
saving in computer memory. For example, let N be theand the grid size; the error becomes large when the two

scales are close. A deeper analysis shows that the boundary number of elements in each spatial direction, and let M
be the number of subcell elements in each direction forlayer in the first-order corrector seems to be the main

source of the resonance effect. By a judicious choice of solving the base functions. Then there are total (M N)n

(n is the dimension) elements at the fine grid level. For aboundary conditions for the base function, we can elimi-
nate the boundary layer in the first-order corrector. This traditional FEM, the computer memory needed for solving

the problem on the fine grid is O(M n N n ). In contrast,would give a nice conservative difference structure in the
discretization, which in turn leads to cancellation of reso- MFEM requires only O(M n 1 N n ) amount of memory.

If M 5 32 in a 2D problem, then traditional FEM needsnance errors and gives an improved rate of convergence
independent of the small scales in the solution. about 1000 times more memory than MFEM.

Since we need to use an additional grid to compute theMotivated by our earlier analysis [21] mentioned above,
here we propose an over-sampling method to overcome base function numerically, it makes sense to compare our

multiscale FEM with a traditional FEM at the subcell grid,the difficulty due to scale resonance. The idea is quite
simple and easy to implement. Since the boundary layer hs 5 h/M. Note that the multiscale FEM only captures the

solution at the coarse grid h, while a traditional FEM triesin the first-order corrector is thin, O(«), we can sample in
a domain with a size larger than h 1 « and use only the to resolve the solution at the fine grid hs 5 h/M. Our

extensive numerical experiments demonstrate that the ac-interior sampled information to construct the bases (see
Section 3.3). Here, h is the mesh size and « is the small curacy of our multiscale FEM on the coarse grid h is com-

parable to that of FEM on the fine grid. In some cases,scale in the solution. By doing this, the boundary layer in
the larger domain has no influence on the base functions. MFEM is even more accurate than FEM (see Sections 4.3

and 4.4).Now the corresponding first-order correctors are free of
boundary layers. As a result, we obtain an improved rate At this point, we would like to emphasize that the pur-

pose of our method is to solve practical problems which areof convergence which is independent of the small scale.
From practical considerations, this improvement is cru- too large to handle by direct methods on given computing

resources. Our method gives a systematic and self-consis-cial. For problems with many scales or continuous scales,
it is inevitable to have the mesh size h coincide with one of tent approach to capture the large scale solution correctly

without resolving the small scale details and withoutthe physical scales. Without this improvement, we cannot
guarantee that our method converges completely indepen- resorting to closure arguments. We show that at a reason-

able cost, the multiscale FEM has the ability to solve verydent of the small scale features in the solution. It is also
important that our oversampling technique does not rely large scale practical problems with accuracy comparable

to the corresponding direct simulations at the fine grid.on the homogenization theory (like solving a cell problem),
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This gives hope to solving some large scale computational scale and the physical scale never occur in the correspond-
ing 1D problems.problems that are otherwise intractable using direct

This paper is organized as follows. The formulation ofmethods.
the 2D multiple-scale elliptic problem and the multiscaleIt should be mentioned that many numerical methods
finite element method are given in the next section. Inhave been developed with goals similar to ours. These
Section 3, we present the rationale behind the method,include methods based on the homogenization theory
including a brief review of the homogenization theory and(cf. [14, 10]), and some upscaling methods based on simple
convergence analysis. The resonance effect is analyzed andphysical and/or mathematical motivations (cf. [12, 23]).
the oversampling technique is proposed. More detailedThe methods based on the homogenization theory have
numerical analysis of the method is given in a separatebeen successfully applied to determining the effective con-
paper [21]. The numerical implementation of the method,ductivity and permeability of certain composite materials
its convergence, and parallel performance are studied inand porous media [14, 10]. However, their range of applica-
Section 4. Section 5 contains the application of thetions is usually limited by restrictive assumptions on the
multiscale method to more practical problems in compositemedia, such as scale separation and periodicity [8]. As
materials and porous media flows, including steady conduc-discussed in Section 4.2, they are also expensive to use for
tion through fiber composites and flows through randomsolving problems with many separate scales since the cost
porous media with normal and fractal porosity distribu-of computation grows exponentially with the number of
tions. Using these examples, we show the adaptability ofscales. But for the multiscale method, the number of scales
the method, its ability to solve large practical problems,is irrelevant to the computational cost. The upscaling meth-
and its accuracy for general problems. Section 6 is reservedods are more general and have been applied to problems
for some concluding remarks and discussion of futurewith random coefficients with partial success (cf. [12, 23]).
work.But the design principle is strongly motivated by the

homogenization theory for periodic structures. Their appli-
2. FORMULATIONScations to nonperiodic structures are not always guaran-

teed to work.
In this section, we introduce the elliptic problem andThere has also been success in achieving numerical ho-

the multiscale method. First, we state some notations andmogenization for some semilinear hyperbolic systems, the
conventions to be used in the paper. In the following,incompressible Euler equations, and 1D elliptic problems
the Einstein summation convention is used; summation is

using the sampling technique; see, e.g., [17, 15, 2]. This
taken over repeated indices. Some notations of functional

technique has its own limitations. Its application to general
spaces will be used occasionally for the convenience of

2D elliptic problems is still not satisfactory. For fully ran- expressing the formulation and some relevant analytical
dom media, statistical theory and renormalization group estimates about the multiscale method. L2(V) denotes the
theory have been used to obtain the effective properties. space of square integrable functions defined in domain V.
However, these methods usually become difficult to apply We use L2(V) based Sobolev spaces Hk(V) equipped with
when the integral scale of correlation is large (Ref. [23] norms and seminorms given by
and references therein). Moreover, certain simplifying as-
sumptions in the underlying physics are usually made in

iui2
k,V 5 E

V
O

uau#k
uDauu2, uuu2k,V 5 E

V
O

uau5k
uDauu2,order to obtain a closure of the effective equations. In

comparison, such a closure problem is not present in the
multiscale method.

where Dau denotes the ath order mixed derivatives of u.We remark that the idea of using base functions gov-
H1

0(V) consists of those functions in H1(V) that vanisherned by the differential equations has been applied to
on ­V.

convection–diffusion equation with boundary layers (see,
e.g., [6] and references therein). With a motivation differ- 2.1. Governing Equations and the Multiscale Finite
ent from ours, Babuska et al. applied a similar idea to 1D Element Method
problems [5] and to a special class of 2D problems with

We consider solving the second-order elliptic equationthe coefficient varying locally in one direction [4]. How-
ever, most of these methods are based on the special prop-

2= ? a(x)=u 5 f in V, (2.1)erty of the harmonic average in one-dimensional elliptic
problems. As indicated by our convergence analysis, there
is a fundamental difference between one-dimensional where a(x) 5 (aij (x)) is the conductivity tensor and is
problems and genuinely multidimensional problems. Spe- assumed to be symmetric and positive definite with upper

and lower bounds. In the context of porous flows, Eq.cial complications such as the resonance between the mesh
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(2.1) is the pressure equation for single phase steady flow element K [ K h, we define a set of nodal basis hfi
K , i 5

1, ..., d j with d being the number of nodes of the element.through a porous medium. Correspondingly, a is the ratio
of the permeability tensor k and the fluid viscosity e, and The subscript K will be neglected when bases in one

element are considered. In our multiscale method, fiu represents the pressure. The steady velocity field is re-
lated to the pressure through Darcy’s law: satisfies

q 5 2
1
e

k=u 5 2a=u (2.2)
= ? a(x)=fi 5 0 in K [ K h. (2.4)

In this paper, we assume e 5 1 for convenience. Equation
(2.1) is also the equation of steady state heat (electrical) Let xj [ K ( j 5 1, ..., d) be the nodal points of K. As
conduction through a composite material, with a and u usual, we require fi(xj) 5 dij . One needs to specify the
interpreted as the thermal (electric) conductivity and tem- boundary condition of fi to make (2.4) a well-posed prob-
perature (electric potential). In practice, a may be random lem (see below). For now, we assume that the base func-
or highly oscillatory; thus the solution of (2.1) displays a tions are continuous across the boundaries of the elements,
multiple scale structure. Since for the transient problem so that
the main difficulty is the same as that for the steady state
problem, i.e., the multiple scales in the solution, we only
consider solving the steady problem here. The multiscale V h 5 spanhfi

K : i 5 1, ..., d; K [ K hj , H1
0(V).

method, however, can be easily extended to solve the tran-
sient problems.

In the following, we study the approximate solution ofTo simplify the presentation of the finite element formu-
(2.3) in V h, i.e., uh [ V h such thatlation, we assume u 5 0 on ­V and that the solution domain

is a unit square V 5 (0, 1) 3 (0, 1). The variational problem
of (2.1) is to seek u [ H1

0(V) such that
a(uh, v) 5 f (v) ;v [ V h. (2.5)

a(u, v) 5 f (v) ;v [ H1
0(V), (2.3)

where Note that this formulation of the multiscale method is not
restricted to rectangular elements. It can also be applied

a(u, v) 5 E
V

aij
­v
­xi

­u
­xj

dx, f (v) 5 E
V

fv dx. to triangular elements (see Fig. 2.1) which are more flexible
in modeling complicated geometries.

A finite element method is obtained by restricting the
weak formulation (2.3) to a finite-dimensional subspace of 2.2. The Boundary Condition of Base Functions
H1

0(V). For 0 , h # 1, let K h be a partition of V by a
The important role of the boundary condition of thecollection of rectangles K with diameter #h, which is de-

base functions is obvious since the base functions satisfyfined by an axi-parallel rectangular mesh (Fig. 2.1). In each
the homogeneous equation (2.4). We will see later that a
good choice of the boundary condition can significantly
improve the accuracy of the multiscale method. In fact,
the boundary condition determines how well the local
property of the operator is sampled into the base functions
(see Section 3). Here, we describe two methods of imposing
the boundary condition, which are easy to implement and
to analyze.

Denote ei 5 fiu­K . One choice is to let ei vary linearly
along ­K, just as in the standard bilinear (linear) base
functions. Another more appealing approach is to choose
ei to be the solution of some reduced elliptic problems on
each side of ­K. The reduced problems are obtained from
(2.4) by deleting terms with partial derivatives in the direc-
tion normal to ­K and having the coordinate normal to
­K as a parameter. It is clear that the reduced problems
are of the same form as (2.4). When a is separable in space,

FIG. 2.1. Rectangular mesh with triangulation. i.e., a(x) 5 a1(x)a2(y), fi can be computed analytically
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Thus, the constant functions belong to V h. Later, we see
that this property is useful in discrete error cancellations.
The generalization of the reduced problems, e.g., (2.6), to
more general elements, such as the triangular elements, is
straightforward.

2.3. Some General Remarks

The multiscale method formulated above is designed to
capture the large scale solutions. Unlike existing numerical
upscaling methods, our method is consistent with the tradi-
tional finite element method in a well-resolved computa-
tion. It is proved in [21] that the multiscale method gives
the same rate of convergence as the linear finite element

FIGURE 2.2 method when the small scales are well resolved, h ! «.
In particular, when the coefficient is a diagonal constant
matrix, the base functions constructed from (2.4) are noth-
ing but the usual bilinear (linear) base functions. When h

from the tensor product of ei along Gi21 and Gi (note that does not resolve the small scales, the multiscale method
G0 ; G4 ; see Fig. 2.2). Furthermore, it can be shown that and the traditional finite element method behave very dif-
this boundary condition is optimum for the space-separa- ferently. It is easy to show that the traditional finite element
ble problems. methods do not converge to the correct solution. By con-

To be more specific, consider an element K [ K h with trast, the multiscale method captures the correct large
nodal points xi 5 (xi , yi) (i 5 1, ..., d), which are labeled scale solutions.
counterclockwise, starting from the lower left corner (Fig. As indicated by our analysis and numerical experiments
2.2). On G1 and G3 , we have ei 5 ei(x) and in [21], the boundary condition of the base functions can

have a big influence on the accuracy of the multiscale
method. From our computational experience, we found­

­x
ae(x)

­ei(x)
­x

5 0, (2.6)
that the oscillatory boundary condition for the base func-
tions in general leads to better accuracy than the linear
boundary condition. However, the multiscale method inwhere ae(x) 5 a11uG1

and a11uG3
, respectively. Note that ae

general may fail to converge when the mesh scale is closeis bounded from above and below by positive constants.
to the physical small scale due to a resonance betweenSimilarly, on G2 and G4 , we have ei 5 ei(y) and
these two scales. For the two-scale problem, the error due
to the resonance manifests as a ratio between the wave-­

­y
ae(y)

­ei(y)
­y

5 0 length of the small scale oscillation and the grid size. Moti-
vated by our earlier analysis [21], we propose in Section
4.4 an oversampling method to overcome the difficulty due

with ae(y) 5 a22uG2
and a22uG4

, respectively. The bound- to scale resonance.
ary condition of these 1D elliptic equations is given by
ei(xj) 5 dij . The equations can be solved analytically. For 3. THEORETICAL BACKGROUND
example, on G1 we have

We use a model elliptic problem to provide some insights
to the multiscale method and the rationale behind the

e1(x) 5 Ex2

x

dt
ae(t) @Ex2

x1

dt
ae(t)

. (2.7) oversampling scheme. Here, we only briefly outline the
analysis. The main concern is how to remove the ‘‘reso-
nance’’ effect.

If ae is a constant, then e1(x) 5 (x2 2 x)/(x2 2 x1) is linear.
3.1. The Model Problem and HomogenizationIn general, eis are oscillatory due to the oscillations in ae.

One may verify that using the above boundary conditions,
In the model problem, the coefficient is chosen as a 5

the base functions are continuous across ­K. Also, with
a(x/«), where « is a small parameter, characterizing the

both types of boundary condition, one has
small scale of the problem. We assume a(y) to be periodic
in Y and smooth. We denote the volume average over Y
as k?l 5 (1/uY u) eY ? dy. As in Section 2, we assume u 5 0Od

i51
fi

K 5 1 ;K [ K h. (2.8)
on ­V.
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By the homogenization theory [8], the solution of (2.1) THEOREM 3.1. Let u and uh be the solutions of (2.1)
and (2.5), respectively. Then there exist positive constantshas an asymptotic expansion; i.e.,
C1 and C2 , independent of « and h, such that

u 5 u0(x) 1 «u1(x, y) 2 «u« 1 O(«2), (3.1)
iu 2 uhi1,V # C1hi f i0,V 1 C2(«/h)1/2 (« , h). (3.7)

where y 5 x/« is the fast variable. Here, u0 is the solution
The key to (3.7) is that the base functions defined byof the homogenized equation

(2.4) have the same asymptotic structure as that of u; i.e.,

= ? a*=u0 5 f in V, u0 5 0 on ­V, (3.2)
fi 5 fi

0 1 «fi
1 2 «ui 1 ? ? ? (i 5 1, ..., d), (3.8)

a* is the constant effective coefficient, given by
where fi

0 , fi
1 , and u i are defined similarly as u0 , u1 , and

u« , respectively. We note that if a* is diagonal (i.e., iso-
tropic), then fi

0 becomes the usual bilinear base function.a*ij 5 kaik(y)(dkj 2
­

­yk
x j )l, (3.3)

We would like to point out that applying the conventional
finite element analysis to our multiscale method gives an

and x j is the periodic solution of overly pessimistic estimate O(h/«) in the H1 norm, which
is only useful for h ! «. It is important that we obtain an
estimate in the form of «/h for our multiscale method. This

=y ? a(y)=yx j 5
­

­yi
aij (y) (3.4) shows that our method converges to the correct homoge-

nized solution in the limit as « R 0. This property is not
shared by the conventional finite element methods withwith zero mean, i.e., kx j l 5 0. It is proved in [8] that a*
polynomial bases, since small scale information is averagedis symmetric and positive definite. Moreover, we have
out incorrectly.

The L2-norm error estimate can be obtained from (3.7)
by using the standard finite element analysis. However,u1(x, y) 5 2x j ­u0

­xj
. (3.5)

again, the error is overestimated. In [21], it is shown that

Since in general u1 ? 0 on ­V, the boundary condition iu 2 uhi0,V # C1h2i f i0,V 1 C2« 1 C3iuh 2 uh
0 il2(V),

uu­V 5 0 is enforced through the first-order correction term
u« , which is given by where uh

0 is the solution of (3.2), using fi
0s as the base

functions and Ci . 0 (i 5 1, 2, 3) are constants independent
= ? a(x/«)=u« 5 0 in V, u« 5 u1(x, x/«) on ­V. (3.6) of « and h. The discrete l2 norm i ? il2(V) is given by

The asymptotic expansion (3.1) has been rigorously justi-
iuhil2(V) 5 SO

i[N

uh(xi )2h2D1/2

,fied in [8]. Under certain smoothness conditions, one can
also obtain point-wise convergence of u to u0 as « R 0.
The conditions can be weakened if the convergence is where N is the set of indices of all nodal points on the mesh.
considered in the L2 (V) space. We will see below that, in general, iuh 2 uh

0il2(V) 5 O(«/h).
As mentioned in Section 1, some numerical upscaling Thus, we have

methods are directly based on (3.2), (3.3), and (3.4); see,
e.g., [14, 10]. We use these results only for the convenience iu 2 uhi0,V 5 O(h2 1 «/h).
of analysis. Indeed, the asymptotic structure (3.1) is used
to reveal the subtle details of the multiscale method and It is now clear that when h p « the multiscale method
obtain sharp error estimates [21]. Without using this struc- attains large error in both H1 and L2 norms. This is what
ture, the conventional finite element analysis does not give we call the resonance effect between the grid scale (h) and
correct answers. An extension of the convergence analysis the small scale («) of the problem. This estimate reflects
to the multiple scale problems is given in [16]. the intrinsic scale interaction between the two scales in

the discrete problem. Our extensive numerical experiments
3.2. Error Estimates and the Resonance Effect

confirm that this estimate is indeed generic and sharp. It
should be pointed out that the estimate only provides theIn [21], we prove that the multiscale method converges

to the correct homogenized solution in the « R 0 limit. rate of convergence; the actual numerical error of the
multiscale method in the resonant regime can still be smallThis can be summarized from the following estimate:
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due to a small error constant in O(«/h). This is indeed the Letting Gh 5 (Ah
0 )21, we have U h

1 5 Gh f h
1 2 GhAh

1U h
0 .

Note that Gh consists of the nodal values of the finitecase as shown by our numerical tests in [21]. However, by
removing the resonance effect, we can greatly improve the element projection of G(x, j), the continuous Green’s

function for the homogenized equation (3.2). The proper-accuracy and the convergence rate. Such an improvement
is especially important for problems with continuous scales, ties of Gh have been studied in [19, 24]. It turns out that

Gh is similar to G, which has a log ux 2 j u type of singularity.because there is always a scale of the problem that coin-
cides with the grid scale and hence the resonance effect Like the continuous Green’s function, Gh is absolutely

summable over the whole domain. Thus, by direct summa-cannot be avoided by varying h. In Section 3.3, an over-
sampling method is proposed to overcome this difficulty. tion one has Gh f h

1 5 O(1). However, the direct summation
gives GhAh

1U h
0 5 O(1/h2), which is an overestimate. ByThe mechanism of the resonance effect can be under-

stood from a discrete error analysis [21]. For convenience, (2.8) and the symmetry of Ah
1 , one can write Ah

1U h
0 in a

conservative form [21],we outline the analysis here without giving the details of
the derivation. We derive the O(«/h) estimate for the l2-
norm convergence and illustrate the difficulty in improving

(Ah
1U h

0 )ij 5 O4
s51

(D1
s Bs

ij D2
s )U h

0ij , (3.13)the convergence rate.
Let U h and U h

0 denote the nodal point values of uh and
u h

0 , respectively. The linear system of equations for U h is
where (i, j) is the 2D index for grid points (Fig. 2.1), and
Bs

ij obtained from Ah
1 are the weights for the stencil. Here,

AhU h 5 f h, (3.9) D1
s and D2

s are the forward and backward difference opera-
tors in the horizontal, the vertical, and the two diagonal

where Ah and f h are obtained from a(uh, v) and f (v) by directions for s 5 1 to 4, respectively. For example, we
using v 5 fi for i [ N. Similarly, for U h

0 one has have D1
1 U h

ij 5 U h
i11j 2 U h

ij and D2
3 U h

ij 5 U h
ij 2 U h

i21j21 . For
further details see Appendix B of [21]. We note that

Ah
0U h

0 5 f h
0 , (3.10) D2

s U h
0 5 O(h) since Uh

0 is an O(h2) approximation of the
smooth function u0 . Now, consider

where Ah
0 and f h

0 are obtained by applying v 5 fi
0 (i [ N )

to a*(uh
0 , v) 5 f (v) with ON21

i, j51
Gh

lm,ij (Ah
1U h

0 )ij (l, m 5 1, ..., N 2 1).

a*(uh
0 , v) 5 E

V
a*ij

­v
­xi

­uh
0

­xj
dx.

Note that the indices of the matrix entry Gh
pq have been

translated into the 2D indices p 5 (l, m) and q 5 (i, j) for
the nodal points. Observe that by using summation byBy using (3.8), it can be shown that
parts, one can transfer the action of D1

s onto Gh, which
gives D2

s Gh. As an example, consider applying Gh to the
first term (s 5 1) of the sum in (3.13). Neglecting indicesAh 5 Ah

0 1
«

h
Ah

1 1 O S«2

h2D, f h 5 f h
0 1

«

h
f h

1 1 O S«2

h2D,
l and m, we have

(3.11)

ON21

i, j51
Gh

ijD1
1 B1

ij D2
1 (U h

0)ijwhere the elements of matrix Ah
1 and vector f h

1 are O(1)
and O(h2), respectively. The expansion of Ah indicates that
the homogenized differential operator is captured at the 5 2 ON21

j51
ON
i51

(D2
1 Gh

ij)B1
ij (D2

1 (U h
0)ij ) (Gh

0j 5 Gh
Nj 5 0).

discrete level by the multiscale base functions. It follows
immediately that U h can be expanded as

We note that the divided difference D2
s Gh/h is absolutely

summable [21]. It follows that GhAh
1U h

0 5 O(1) and, hence,U h 5 U h
0 1

«

h
U h

1 1 ? ? ?,
U h

1 5 O(1). Thus, we obtain

thus U h converging to U h
0 as R 0. To obtain the conver- U h 2 U h

0 5 O(«/h).
gence rate, it remains to determine the order of U h

1 . Substi-
tuting the expansions of Ah, f h, and U h into (3.9), we obtain The derivation shows that the error cancellation is

mainly due to the difference structures in Ah
1U h

0 given by
A h

0U h
1 5 f h

1 2 Ah
1U h

0 . (3.12) (3.13). Clearly, the estimate of U h 2 U h
0 could be further
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improved by using summation by parts again if Bs and be the Poisson kernel for L9« , where G«(x9, j 9) is the
Green’s function of the Dirichlet problem for u k. Further-f h

1 can be written in difference forms, e.g.,
more, we assume that u k 5 g(x9/«) on the boundary ­K 9.
Then we have

Bs
ij 5 D2

1 Cs
ij 1 D2

2 Ds
ij (s 5 1, ..., 4),

f h
1ij 5 D2

1 Eij 1 D2
2 Fij , u k(x9) 5 E

­K 9
P«(x9, j 9)g(j9/«9) dj 9.

where Cs, Ds, E, and F are uniquely defined on the nodal It has been shown in [3] that to the leading order P« can
points. Then, we would have for « , h, iu 2 uhi0,V 5 be approximated by a smooth kernel d(x9)/ux9 2 j 9u2,
O(h2 1 «u log(h)u), independent of «. In this case, the where d(x9) is the distance function from x9 to ­K 9. Thus,
interaction between the h and « scales is very weak and, the integral expression of u k(x9) shows that near ­K 9 there
hence, the resonance effect disappears. Note that the factor exists a boundary layer with a thickness of O(«9), in which
log(h) comes from the sum of terms with second-order u k has O(1) oscillations (see Fig. 4.1). Away from the
divided differences of Gh, e.g., D1

2 D2
1 Gh/h2. The singularity boundary layer, the oscillation is only O(«9). Therefore,

in the second-order derivatives of the discrete Green func- ­u k/­x9j is O(1/«9) near ­K 9 but is O(1) away from the
tion, which is similar to its continuous counterpart, contri- boundary.
butes to the factor log(h). See [21] for further details of In general, it is impossible to express Bu in difference
the derivation. forms. However, if we could remove the boundary layer

The method of exploring the difference forms in Bs and of u k so that ­u k/­x 9j 5 O(1) on ­K 9, then Bu would become
f h

1 has been given in [21]. The idea is to recast the volume O(«/h) and would not influence the leading order conver-
gence rate. We note that the structure of u k is solely deter-integrals in Bs and f h

1 into boundary integrals. Then, the
mined by its boundary condition, which in turn is deter-opposite directions of outward normal vectors of two
mined by the boundary condition of fk. Therefore, aneighboring elements lead to the difference structures,
judicious choice of ek may remove the boundary layer ofprovided that the integrands of the boundary integrals are
u k. We will investigate this idea in the next subsection.continuous at the interfaces of elements. In this regard,

the triangular element is much easier to analyze since
fi

0s are always linear. In comparison, f i
0s are in general 3.3. The Oversampling Method

some unknown functions for rectangular elements. There-
From the above discussion, we see that the first-orderfore, in the following we give an analysis for the triangular

corrector u k has a boundary layer structure when its bound-elements, e.g., the triangulation in Fig. 2.1.
ary condition on ­K has a high frequency oscillation withWe find that f h

1 can indeed be written in a difference
O(1) amplitude. Thus, in order to further error cancella-form. However, Bs cannot be written in difference forms
tions in the discrete system, we would like to eliminate thedue to the boundary integral
boundary layer structure by choosing a proper boundary
condition for the base function fk. This will give rise to a
conservative difference form in the coefficient Bs, which

Bu 5 «9 E
­K 9

u kniaij
­u l

­x9j
ds9 (k, l 5 1, ..., d), leads to an improved rate of convergence for the multiscale

method, independent of the mesh scale. Such a boundary
condition does exist, e.g., we may set fk 5 fk

0 1 «fk
1 on

­K (see (3.8)), which enforces u k 5 0 in K. We do not
where u k (k 5 1, ..., d) is the first-order corrector in (3.8) advocate such an approach since fk

1 needs to be solved
and the prime indicates that the variable and the domain from the cell problem which is in general not available
have been rescaled by h, i.e., «9 5 «/h and x9 5 x/h (see except for periodic structures. In the special case when a
Appendix B of [21]). Thus, we identify u k as the main is diagonal and separable in 2D, the base functions can be
source of the resonance effect. constructed from the tensor products of the corresponding

To further understand the problem, let us examine u k 1D bases. This construction corresponds to using the oscil-
more closely. Since u k satisfies the homogeneous equation latory ek (see Section 2.2) as the boundary condition for
(3.6) in the interior and is highly oscillatory on the bound- fk. In this case, it is easy to show that the corrector u k

ary, it can be shown that u k has a special solution struc- does not have a boundary layer. This is a special example
ture. Let of obtaining the appropriate boundary condition without

solving the cell problem.
The above ideal boundary condition, which makes u k ;

P«(x9, j 9) 5 ­G«(x9, j 9)/­nj 9 (x9 [ K 9, j 9 [ ­K 9) 0 in K, demonstrates an important point: the boundary
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where c0 , c1 , and uc are defined similarly as in (3.8) in
domain S. Correspondingly, we have the matrix expansion

C 5 C0 1 «C1 2 «U 1 O(«2).

The inverse of C may be formally expanded as

C21 5 (C0 1 «(C1 2 U) 1 ? ? ?)21

5 [C0(I 1 «C21
0 (C1 2 U) 1 ? ? ?)]21 (3.15)

5 C21
0 2 «C21

0 (C1 2 U)C21
0 1 O(«2).

Thus, if C21
0 exists and i«C21

0 (C1 2 U)i is sufficiently small,
then the expansion converges and C21 exists. In general,

FIG. 3.1. Adaptive base construction using samples from larger the existence of C21
0 is unknown, but since ci

0 are close to
domain to avoid the boundary effect.

the bilinear base functions for rectangular elements which
are linearly independent, C21

0 exists under fairly weak con-
ditions. For triangular elements, the existence of C21

0 is
guaranteed since ci

0 are the linear bases. Moreover, it cancondition of fk should match the oscillation of fk
1 (or x j )

be seen that iC21
0 i p H/h and iC1 2 Ui p 1/H. Henceon ­K. Since the information contained in x j is two-dimen-

the convergence criterion for (3.15) is «/h being small. Thissional, it is difficult, if not impossible, to extract this infor-
is independent of H. Substituting (3.14) and (3.15) intomation using a 1D procedure, such as those given in Sec-
f 5 C21c yieldstion 2.2.

Motivated by the analysis of Section 3.3, we propose a
f 5 C21

0 c0 1 «C21
0 c1 2 «C21

0 ucsimple strategy to overcome the influence of the boundary
layer. Since the boundary layer of u k is thin, only of O(«)

2 «C21
0 (C1 2 U)C21

0 c0 1 O(«2).(in the original scale), we can sample in a domain with
size larger than h 1 « and use only the interior information

Define f0 5 C21
0 c0 . We haveto construct the base functions. In this way, the boundary

layers in the ‘‘sampling’’ domain have no influence on the
base functions. Any reasonable boundary condition can f 5 f0 1 «f1 2 «C21

0 uc 2 «C21
0 (C1 2 u)f0 1 O(«2),

be imposed on the boundary of that domain. (3.16)
Specifically, we construct the base functions for a sam-

pling element S . K with diam(S) 5 H . h 1 « (see
where f1 is related to f0 by (3.5). Note that if c0 is linearFig. 3.1). Denote these temporary base functions as
or bilinear, so is f0 .c i (i 5 1, ..., d). We then construct the actual base functions

The main difference between (3.16) and (3.8) is that thefrom the linear combination of c js, i.e.,
term with uc in (3.16) does not have a boundary layer in
K since only the interior part of uc (Ref. Fig. 3.1) is used
in computing f ; whereas u of (3.8) usually has a boundaryfi 5 Od

j51
cij c

j (i 5 1, ..., d),
layer in K. The last term in (3.16) is new. Since it is a linear
combination of f0 , it is smooth in K and does not cause
any additional problem. Therefore, using (3.13), (3.16),

where cij are the constants determined by the condition
and summation by parts, we obtain an improved rate of

fi(xj ) 5 dij . Thus, (cij ) 5 C21, where matrix C is given
convergence, O(h2 1 «u log(h)u), for (uh 2 u) in the L2

by (ci(xj )). Below, we show that the resulting base func-
norm. It should be mentioned that the base functions con-

tions have expansions with a structure very close to that
structed from the sampling functions may be discontinuous

of (3.8); thus previous analysis can be used to study the
at the element boundaries. In general, there may exist

new base functions. We will use c to denote the vector
an O(«) jump in the base functions across ­K. Thus, the

formed by ci (i 5 1, ..., d). Similar notations apply to other
elements are weakly nonconforming. This makes the analy-

variables with superscripts.
sis of the oversampling method a little more involved tech-

Since = ? a(x/«)=c 5 0, we can expand c as
nically. We will report detailed analysis of the oversam-
pling in the context of multiple scale problems in a

c 5 c0 1 «c1 2 «uc 1 O(«2), (3.14) subsequent paper [16]. On the other hand, our numerical
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tests show that the multiscale method with the oversam- independent of the small scales of the problem (see Sec-
tion 4.5).pling technique indeed works very well.

For problems with continuous scales, which are the main The algorithms are implemented in double precision on
an Intel Paragon parallel computer with 512 processors,interest of this paper, we note that different scales generate

boundary layers with different thicknesses in the sampling using the MPI message passing library provided by Intel.
Concurrency is achieved through pure data distribution.domain S. Thus, to avoid the resonant sampling at the grid

scale, H should be a couple of times larger than h. At the No special effort is made to improve the parallel efficiency;
at the coarse grid level, processors are left idle if no coarsefirst sight, this is computationally not attractive since there

is too much redundant work. However, we can avoid this grid data are distributed to them. Only one communication
operation, a boundary exchange, is needed for the restric-difficulty by dividing the computational domain into sev-

eral large sampling regions. Each sampling region can be tion and prolongation operators in the multigrid iterations.
To facilitate the implementation of the multigrid solver ofused to compute many base functions for the elements

contained inside the region (see Section 4.4). [27] on a multicomputer, the original smoothing method,
incomplete line LU decomposition (ILLU), is replaced by
a four-color Gauss–Seidel iteration (GS). This requires4. NUMERICAL IMPLEMENTATION AND TESTS
four boundary exchanges per iteration. If point Jacobi
smoothing is used, only one boundary exchange is needed.4.1. Implementation
However, it was found to be very inefficient and required

The multiscale method given in Section 2 is fairly longer CPU times. We find that the number of multigrid
straightforward to implement. Here, we outline the imple- iterations using GS can be 1.5 to 2 times larger than that
mentation and define some notations that are used fre- of using ILLU, but the difference in the CPU time is less
quently in the discussion below. The oversampling scheme significant since the GS iterations are cheaper. For conve-
presented in Section 3.4 will be studied in Section 4.4. We nience, denote these two versions of multigrid as MG-
consider solving problems in a unit square domain. Let N ILLU and MG-GS. In the multiscale method, we can use
be the number of elements in the x and y directions. The either one of them to solve the subcell problems, as long
mesh size is thus h 5 1/N. To compute the base functions, as the solutions are computed on a single processor. The
each element is discretized into M 3 M subcell elements parallel MG-GS is used whenever the solutions of the
with mesh size hs 5 h/M. linear systems are computed using more than one proc-

In most cases, we use the linear elements to solve the essor.
subcell problem for the base functions. If the coefficients
a is differentiable and hs resolves the smallest scale in a,

4.2. Cost of the Methodthen fi are computed with second order accuracy. The
volume integrals The applicability of an algorithm, in practice, is always

limited by the available computer memory and CPU time.
For multiple scale problems, these concerns are often cru-E

K
=fi ? a ? =f j dx and E

K
fif dx,

cial. Here, we discuss the cost of the multiscale finite ele-
ment method (MFEM) in these two aspects. In these re-
gards, it is useful to compare our method with otherwhich are entries of the local stiffness matrix and the right-

hand side vector, are computed using the two-dimensional existing numerical algorithms.
To make the comparison, we consider three popularcentered trapezoidal rule. The results are second-order

accurate. The amount of computation in the first integral methods: the conventional finite element method with lin-
ear base functions (LFEM), the method base on multiple-can be reduced by recasting the volume integral into a

boundary integral using (2.4). However, we found that this scale expansions and cell problems (e.g., [14]), and the
methods of local numerical upscaling (e.g., [12]). Further-approach may yield a global stiffness matrix that is not

positive definite when the subcell resolution is not suffi- more, for the last two methods, we assume that LFEM is
used to solve the cell (or grid block) problems and theciently high.

We use a multigrid method with matrix dependent pro- effective equation on the coarse grid.
First, we notice that MFEM and the local upscalinglongation [27] to solve both the base functions and the

large scale problems. We also use this multigrid method methods (e.g., [12]) are similar in terms of memory require-
ment and operation counts. In fact, the fine scale problemsand the linear finite element method to solve for a well-

resolved solution. This version of the multigrid method defined on the grid blocks in the local upscaling methods
are computationally equivalent to the subcell problemshas been found to be very robust for 2D second-order

elliptic equations (for details, see [27]). Our numerical tests for the base functions in MFEM. For a rectangular mesh,
MFEM is a little more expensive since three base functionsindicate that the number of multigrid iterations is almost
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need to be solved in each element (the fourth one can be LFEM. The difference is even greater in 3D. It should be
noted that other implementations are also possible, e.g.,computed from (2.8)). In comparison, the local upscaling

methods only require solving two fine scale problems to we may solve the subcell problems on several different
subsets of processors, so that the limitation on M can beobtain the effective conductivity tensor. The costs of the

two methods are the same if triangular elements (grid practically removed. This can be done without much effort
in MPI as it provides functions of managing groups andblocks) are used. However, we note that the local upscaling

methods are difficult to implement for triangular grid communicators.
The memory saving of MFEM comes at the price ofblocks due to the difficulty in specifying the boundary

condition for the fine scale problems (Ref. Section 1). In more computations. For the same fine grid resolution, if
the multigrid method is used, the operation count is O(Nnthis regard, MFEM has more flexibility to model compli-

cated geometries. In the future, we plan to perform an Mn) for LFEM and O(Nn 1 (d 2 1)Nn Mn) for the
multiscale method, where d is the number of nodal pointsextensive numerical study to compare accuracy and effi-

ciency of these two approaches. on each element. Thus, the ratio of the operation counts
in MFEM and LFEM is about d 2 1. Therefore, triangularNext, we compare MFEM with LFEM and the method

based on the multiple scale expansion. Let the number and tetrahedra elements are most efficient to use for
MFEM in two and three dimensions, where d 2 1 5 2 andof elements and the number of subcell elements in each

dimension be N and M, respectively. The total number of 3, respectively. Moreover, the ratio of operation counts is
a conservative estimate for the ratio of CPU times onelements at the subcell level is (N M)n, where n is the

dimension. Therefore, for LFEM using the same fine grid parallel computers since the communication costs of the
two methods are different (see Section 4.3). Note also that,at the subcell level, the size of the discrete problem

and the memory needed is O(Nn Mn). If MFEM is imple- this comparison is made for solving just one particular
problem. It is common in practice that multiple runs aremented on a serial computer, the corresponding estimate

is O(Nn 1 Mn). The saving of memory implies that MFEM desirable for the same medium but with different boundary
conditions or source terms. In this case, only O(Nn) opera-can solve much larger problems than LFEM. To be more

specific, on a Sun Sparc20 workstation, our double preci- tions are needed by MFEM in the later runs since the small
scale information, stored in the stiffness and mass matrices,sion LFEM program takes about 48MB of memory for

solving a problem with N 5 512. With 12% more memory, needs not be computed again.
The method based on multiple scale expansions servestotal of 54MB, we can solve the problem with N 5 512

and M 5 128 using MFEM. Thus the effective resolution the same purpose as MFEM and the local upscaling meth-
ods. As we mentioned before, the multiple scale expan-increases by a factor of 100. This, however, is an extreme

case. In practice, one would like to use large N but rela- sions cannot treat problems without scale separation. Here
we note that even for problems with scale separations, thetively small M to include more small scales in the final

solution, e.g., M 5 32 as in many of our numerical tests. method based on multiple scale expansions could be much
more expensive than MFEM and the local upscaling meth-Even so, the LFEM program still requires about 49GB of

memory to achieve the similar resolution of MFEM. This ods. For example, suppose there are ns separable scales
characterized by x/«j ( j 5 1, ..., s) in a problem. By introduc-comparison shows that the multiscale method is well

adapted to work station class of computers with limited ing additional ns new fast variables, yj 5 x/«j , one can
derive an effective equation using the multiple scale expan-memory.

On a multicomputer, such as the Intel Paragon, with P sions. Then the total dimension of the cell problems
becomes nsn, and, hence, the operation count is O(Nn 1processors, the memory required on each processor by

LFEM is O((N M)n/P). For MFEM, if the subcell prob- (Mns N)n), which increases exponentially as the number of
scale increases. Therefore, the method is not practical forlems are solved on a single processor, which provides the

maximum efficiency, the memory used on each processor problems with multiple separable scales, although it gives
accurate effective solutions for special problems with ns 5is O(Nn/P 1 M n). Thus, for M n , N n/P, which is usually

the case in practice, we have a factor of O(M n) saving in 1 and periodic coefficients.
the memory, similar to that in the sequential case. Given
a maximum N n degrees of freedom which can be handled

4.3. Convergence of MFEM
by LFEM, MFEM can always handle M n times more,
where M is only limited by the memory available on each Extensive convergence tests for MFEM based on the

two-scale model problem have been reported in [21]. Here,processor but is independent of P. For example, using 256
processors with 32MB memory on each processor, our 2D we just briefly summarize the results of those tests. The

numerical method of obtaining ‘‘exact’’ solutions for theparallel LFEM program can solve a problem using 40962

elements; again, taking M 5 32, MFEM can easily deal test problems is also explained. The application of MFEM
to composite material and porous flow simulations is givenwith 1000 times more elements, which is impossible for



180 HOU AND WU

TABLE Iin Section 5. To facilitate the comparison among different
schemes, we use the following shorthands: MFEM-L and Results for « 5 0.005
MFEM-O indicate that LFEM is used to solve the base

Mesh MFEM-O MFEM-Lfunctions with linear and oscillatory boundary conditions
(see Section 2.2), respectively.

N M iEiy iEil 2 rate iEiy iEil 2 rate
Because it is very difficult to construct a genuine 2D

multiple scale problem with an exact solution, resolved 32 64 4.89e-5 2.52e-5 1.79e-4 9.73e-5
64 32 1.06e-4 5.79e-5 21.20 3.86e-4 2.13e-4 21.13numerical solutions are used as the exact solutions for

128 16 1.74e-4 9.65e-5 20.74 7.32e-4 4.10e-4 20.94the test problems. In all numerical examples below, the
256 8 3.76e-4 2.10e-4 21.12 1.40e-3 7.83e-4 20.93resolved solutions are obtained using LFEM. We solve the
512 4 1.77e-4 9.88e-5 1.09 1.00e-3 5.61e-4 0.48

problems twice on two meshes. Both meshes resolve the
smallest scale « and one mesh size is twice as large as
the other. Then the Richardson extrapolation is used to
compute the ‘‘exact’’ solutions from the solutions on the

CPU time (see Section 4.6). On the other hand, this ap-two meshes. During the tests, we keep the coarser mesh
proach does not guarantee that all the correctors for thesize to be less than «/10, so that the error in the extrapo-
base functions are free of boundary layers. Those baselated solution is less than 1027. All computations are per-
functions next to the boundary of the sampling regions areformed on a unit square, V 5 (0, 1) 3 (0, 1).
still influenced by the boundary layers in uc . However,In [21], we confirm the O(«/h) estimate given in Section
since H @ h in practice, the boundary layers occupy much3.2 (see also below). According to our tests, the numerical
smaller regions. Thus, the boundary layer effect is mucherror is still small even with «/h 5 0.64. This suggests that
weaker than that in the original MFEM. From our numeri-the error constants are small. By using the spectral method
cal experiments for problems with and without scale sepa-to solve the subcell problems we are able to obtain very
ration, this strategy seems to produce nearly optimum re-accurate base functions. We find that the accuracy of the
sults predicted by our analysis, i.e., O(h2 1 «u log(h)u)base functions does not have significant influence on the
convergence in L2 norm.solution U h. Computing fi, Ah, and f h to second-order

In the following example, we test the oversamplingaccuracy seems to be good enough. The boundary layer
scheme by solving (2.1) withstructure of the first-order corrector of the base function is

confirmed by our numerical computations (see also Section
4.4). In addition, we illustrate that the boundary layers can

a(x/«) 5
2 1 P sin(2fx/«)
2 1 P cos(2fy/«)

1
2 1 sin(2fy/«)

2 1 P sin(2fx/«)
,

(4.1)
sometimes be removed by using the oscillatory boundary
condition given in Section 2.2, which results in significant

f (x) 5 21, uu­V 5 0,improvement in the accuracy of MFEM. In our tests, the
oscillatory boundary condition often gives more accurate
results than the linear boundary condition because the where P 5 1.8. The computation is done on a uniform

rectangular mesh with N and M being the numbers ofboundary layer of u i using the oscillatory boundary condi-
tion is weaker than that using the linear boundary condi- elements and subcell elements in each direction, respec-

tively. Note that the analysis of the resonance effect istion. We also provide an example to show that the removal
of the boundary layers is sufficient but not necessary for carried out for triangular elements. Here, we use rectangu-

lar elements because the multigrid solver we use is designedimproving the convergence rate.
for rectangular meshes. In fact, due to our choice of the
coefficient a in (4.1), the effective conductivity is a constant

4.4. Improved Convergence with Oversampling
diagonal matrix. In this case, one can verify that our analy-
sis is still valid.As discussed in Section 3.4, the oversampling strategy

can be used to remove the resonance effect. The direct The results of MFEM-O, MFEM-L, and LFEM are
shown in Tables I and II. In the tables E 5 U 2 U h is theimplementation of oversampling, as depicted in Fig. 3.1,

is not very efficient due to the redundancy of computation, discrete error at nodal points. Table I indicates that the
errors of MFEM-O and MFEM-L are proportional to h21.especially when h is close to «. In the numerical tests below,

we decompose the domain into a number of large sampling Combining the results of Table I and Table II, we conclude
that the errors of both MFEM-O and MFEM-L are propor-regions. Each of these sampling regions contains many

computational elements. The majority of the computa- tional to O(«/h). We also note that the error of MFEM-
O is several times smaller than that of MFEM-L. Thistional elements are in the interior of a sampling region.

In this simple implementation, there are no redundant is because the oscillatory boundary condition produces
a weaker boundary layer in u i than the linear boundarycomputations. In fact, there is a slight reduction in the
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TABLE II TABLE III

Results for « /h 5 0.64 and M 5 16 Results for the Oversampling Method (« 5 0.005)

Mesh MS 5 128 MS 5 256MFEM-O MFEM-L LFEM

N « iEil 2 rate iEil 2 rate M N iEil 2 N M iEiy iEil 2 iEiy iEil 2

32 64 3.08e-5 1.53e-5 3.59e-5 8.14e-616 0.04 6.23e-5 3.54e-4 256 1.34e-4
64 32 4.99e-5 2.06e-5 3.32e-5 1.14e-532 0.02 8.43e-5 20.44 3.90e-4 20.14 512 1.34e-4

128 16 4.65e-5 1.51e-5 4.42e-5 8.07e-664 0.01 9.32e-5 20.14 4.04e-4 20.05 1024 1.34e-4
256 8 3.66e-5 1.63e-5 2.53e-5 7.26e-6128 0.005 9.65e-5 20.05 4.10e-4 20.02 2048 1.34e-4
512 4 1.64e-5 3.42e-6 1.63e-5 5.04e-6

the oversampling method with MS 5 128 and 256. Wecondition does, see Fig. 4.1. The procedure of computing
use the oscillatory ei (see Section 2.2) as the boundaryu i can be found in [21]. Clearly, the structure of u i agrees
conditions for the temporary base functions ci. The resultswith our theoretical analysis in Section 3.3.
are shown in Tables III and IV. Compared with Tables ILet MS 5 H/hs , which is the size of the oversampling
and II, we can clearly see the improvement in convergence.problems. For a given fine mesh (i.e., hs) MS determines
In Table III, for fixed « the error remains about the sameH. We repeat the computations in Tables I and II using
as h decreases. This is in contrast to the computations
presented in Table I, where the errors increase monotoni-
cally as h decreases. Moreover, in Table IV, the solution
converges for fixed «/h as « decreases. We see that the
convergence for the MS 5 256 case in Table IV is very
close to O(«). On the other hand, the MS 5 128 case is
not as good due to stronger boundary layer effect (see
below). Figure 4.2 shows the first-order corrector of the
base function constructed using the oversampling tech-
nique. The element in the figure is away from the boundary
of the sampling region, and thus, there is no boundary
layer.

To further understand the results, we recall from the
analysis of [21] that the boundary layers of u i in each
element contribute an O(Ï«h) error in the H1 norm.
Therefore, the total contribution due to the boundary lay-
ers in all elements is O(Ï«/h) (since the number of ele-
ments is proportional to h22). This is basically how the
leading order term in (3.7) is obtained. Roughly speaking,
in the present implementation of the oversampling tech-
nique, there are O(1/hH)) elements which contain the
boundary layers of uc . Therefore, the total H1-norm error
due to the boundary layers is O(Ï«/H). On the other

TABLE IV

Results for the Oversampling Method («/h 5 0.64, M 5 16)

MS 5 128 MS 5 256

N « iEiy iEil 2 rate iEiy iEil 2 rate

16 0.04 3.12e-4 5.78e-5 1.61e-4 5.49e-5
32 0.02 1.56e-4 2.97e-5 0.96 1.55e-4 2.96e-5 0.89

FIG. 4.1. Surface plots of the first order correctors of the base func- 64 0.01 8.83e-5 1.85e-5 0.68 8.16e-5 1.54e-5 0.94
tions with linear (top) and oscillatory (bottom) boundary conditions 128 0.005 4.65e-5 1.51e-5 0.29 4.42e-5 8.07e-6 0.93
(«/h 5 0.08Ï5).
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solver that uses a matrix dependent prolongation operator.
It has been observed in the multigrid literature that the
number of multigrid iterations usually deteriorates signifi-
cantly for elliptic problems with rough coefficients and/or
highly oscillating coefficients; see, e.g., [11, 18]. This would
slow down the speed of the overall solution procedure.
Therefore, it is important to design a multigrid method
for which the number of multigrid iterations is essentially
independent of the mesh size and the small scale features
in the solution. Another difficulty for multigrid methods
comes from the high contrast in the coefficient a, defined
as Ca 5 max(a)/min(a). In practice Ca can be very high;
an order of 107 to 108 is typical in groundwater applications.
Thus it is equally important that the convergence in the

FIG. 4.2. First-order corrector of the base function, which is con- multigrid iterations should be insensitive to the contrast
structed from over sampling («/h 5 0.08 Ï5). in the coefficient.

Our numerical experiments show that the multigrid
method given in [27] applied to a traditional FEM is ratherhand, from the discrete error analysis of Section 3.3, we can
robust when the problem is well resolved on the fine grid.estimate the l 2-norm error being roughly O(«/H). Since
This is a nontrivial accomplishment, because a standardH 5 MShs , these estimates explain why the solutions are
multigrid method would give a much poorer convergencemore accurate for larger MS in most of the tests with fixed
rate. The success lies in the matrix dependent prolongation,hs in Table III. We have repeated the computation in Ta-
which passes important fine grid information onto thebles III and IV using a single sampling domain S 5 V with
coarse grid operators. However, when the problem is un-H 5 1, and we observed an O(«) convergence (not shown
derresolved in the fine grid, even the multigrid methodhere). It should be noted that the numerical results of the
with a matrix dependent prolongation gives a very pooroversampling technique in Tables III and IV are better
convergence rate.than the O(«/H) estimate. In fact, in Table IV «/H P 0.1

In our MFEM formulation, the problem is directly dis-is fixed. According to the above estimate, the solutions
cretized on a relatively coarse grid, whose mesh size isshould not converge. This discrepancy may be due to the
typically larger than the smallest scale in the solution. Thesmall error constants in the leading order estimates. We
discrete solution operator is constructed using thewill study this issue in more details in our coming paper
multiscale base functions. Our numerical experiments[16].
show that the multigrid convergence for the resulting dis-We also find that changing the boundary condition for
crete linear systems is independent of « and h. For example,ci to linear functions has no significant effect on the conver-
it typically takes the parallel MG-GS solver 12 or 13 itera-gence, especially when H is large. However, since the
tions to compute the MFEM solutions of (2.1) given inboundary layer is stronger, the solution is less accurate. The
Section 4.3. The number of iterations is independent of «degradation is smaller for larger H. Another interesting

phenomenon is that the solutions using MFEM with the and h in the calculations presented in Tables I and II.
oversampling technique can be more accurate than the To test how the multigrid convergence depends on Ca ,
resolved direct solutions using LFEM on a fine mesh hs. we solve (2.1) with
Intuitively, one would think that the resolution of the direct
solution on a fine grid hs should be higher than that of the
MFEM on a coarser grid h. a(x) 5

1
(2 1 P sin(2fx/«))(2 1 P sin(2fy/«))

,

(4.2)
We stress that the present implementation of the

oversampling scheme is simple but not ideal. A modifica- f (x) 5 21, uu­V 5 0,
tion is to enlarge the size of those sampling domains away
from ­S by O(«). This will completely remove the bound-
ary layer effect due to the interior boundaries of the sam- where P controls the contrast Ca . In this test, we choose
pling regions while the amount of redundant work is « 5 Ï2/1000 and solve the problem using MFEM with
kept small. N 5 256 (M 5 32), and LFEM with N 5 256 and N 5

512. Note that with « 5 Ï2/1000, N 5 256, or N 5 512,
4.5. Multigrid Convergence

the problem is underresolved in the LFEM calculations.
The parallel MG-GS solver is used to solve the discreteAs we mentioned before, we solve the discrete linear

system resulting from our multiscale FEM by a multigrid systems of equations. The multigrid convergence for Ca 5
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that LFEM does not sample the correct small scale infor-
mation in the fine grid. In comparison, MFEM captures
correctly the small scale information in its finest level of
grid, h, which is still larger than the smallest scale, «, in
the solution. These numerical experiments demonstrate
that the multiscale base functions are also valuable for
obtaining optimum multigrid convergence using a rela-
tively coarse grid to compute highly heterogeneous, multi-
scale problems.

4.6. Parallel Performance

In this subsection, we provide some speedup timing re-
sults of MFEM and compare them with those of LFEM.
The results are shown in the logarithmic execution-time
plots, which plot the execution times against the number
of processors used. The test problem in Section 4.3 is solved
on a fine grid with M N 5 1024 elements in x and y direc-
tions using an increasing number of processors. For

FIG. 4.3. Convergence of multigrid iteration for solving (2.1) and MFEM, we solve the problem with M 5 16 and 32, which
(4.2) with Ca 5 1.6 3 105 and « 5 Ï2/1000. Solid line: MFEM (N 5 are represented in Figs. 4.5 to 4.8 by 3 and 1, respectively.
256, M 5 32); dash line: LFEM (N 5 256); dashdot line: LFEM (N 5 512).

The LFEM solution using the parallel MG-GS multigrid
solver is denoted by n. The dotted straight lines represent
the ideal linear speedup. For all multigrid iterations, the

1.6 3 105 is given in Fig. 4.3. We see that it takes signifi- tolerance is set to 1 3 1028.
cantly more iterations for MG-GS to converge in the The results for the total CPU time (excluding the time
LFEM calculations than in the MFEM calculation. We for input and output) of solving the problem by using
also plot the dependence of the multigrid convergence on LFEM and MFEM are shown in Figs. 4.5 and 4.6. Figure
the contrast coefficient, Ca , in Fig. 4.4. We can see that 4.5 shows the CPU times of using MFEM with MG-ILLU
the multigrid convergence for LFEM depends strongly on for solving the base functions and the parallel MG-GS for
Ca , whereas the multigrid convergence for MFEM is basi- solving the large scale solutions. The CPU time of using
cally independent of Ca . The reason for the poor multigrid LFEM is also shown in the figure for comparison. We see
convergence in the LFEM calculations is due to the fact that the speedup of MFEM follows very closely the linear

FIG. 4.5. Total CPU time used by LFEM (n) and MFEM-O withFIG. 4.4. The dependency of multigrid convergence on Ca for solving
(2.1 and (4.2) with « 5 Ï2/1000: 3, MFEM (N 5 256, M 5 32); n, LFEM MG-ILLU for computing the subcell solutions: 3, M 5 16; 1,

M 5 32.(N 5 256); 1, LFEM (N 5 512).
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sons in Figs. 4.5 and 4.6 do not reflect the operation counts
given in Section 4.2. In Figs. 4.7 and 4.8, the CPU times
for multigrid iterations alone are compared. For MFEM,
this includes the multigrid iterations for solving the base
functions and the large scale solution. The trends shown
in Figs. 4.7 and 4.8 are similar to those in Figs. 4.5 and
4.6: MFEM spends 130% more time than LFEM on 16
processors and 13% (Fig. 4.7) or even 28% (Fig. 4.8) more
time on 256 processors.

It should be noted that it is quite difficult to make a
‘‘fair’’ comparison between the CPU times of MFEM and
LFEM due to many factors. In fact, such a comparison
may not be very meaningful since the goals of the two
methods are so different. Our goal for MFEM is to provide
a method that can capture much more small scale informa-
tion than a direct method can resolve. Our experiments
illustrate that we can achieve this goal with a small amount
of extra work. Furthermore, the speedup comparisons doFIG. 4.6. The same as Fig. 4.5, except that for MFEM the large scale
indicate that MFEM adapts very well to the parallel com-solution is obtained on a single node.
puting environment.

5. APPLICATIONSspeedup, while that of LFEM does not. For both methods,
the departure from the linear speedup is mainly due to

In this section, we apply the multiscale method to prob-the communication at the coarse grid levels. However, for
lems with continuous scales, including steady conductionMFEM, this occurs only when the large scale solution is
through fiber composites (Section 5.1) and steady flowscomputed. In another implementation, we gather the data
through random porous media (Section 5.2). The problemsonto a single processor and solve the large scale problem
we solve are models of the real systems. Both types ofon that processor. For small N, hence large M (N M is
problems are described by (2.1). The conductivity of thefixed), such an approach is more efficient than the previous
composite materials and the permeability of the porousone. The improvement in the speedup is shown in Fig. 4.6.
media are represented by the coefficient a(x). In reality,When N is large, multiple processors should be used to

solve the large scale problem.
These figures also indicate that for MFEM the computa-

tion is more efficient with larger subcell problems. There-
fore, for both efficiency and accuracy reasons, it is desirable
to choose the size of sampling domain (i.e., MS) as large
as possible. On the other hand, given MS , the choice of M
has no significant effect on the CPU time. We also note
from Figs. 4.5 and 4.6 that the time used by the multiscale
method is only about 50% more than that used by LFEM
if run on 16 processors; moreover, the percentage drops
down quickly (as low as 9% for 256 processors; see Fig.
4.6) as the number of processors increases. In contrast, the
difference is about 95% for sequential runs. This can be
partially attributed to the better parallel speedup of
MFEM. More importantly, as mentioned before, MG-
ILLU converges faster than MG-GS. The flexibility of
using various fast sequential linear solvers for the subcell
problems is very useful in practice.

Note that a significant amount of the total CPU time is
used to setup the linear system of equations in the LFEM

FIG. 4.7. A comparison of CPU time used by multigrid iterations in
computation. Similarly, in the MFEM computation, dis- the LFEM (n) and MFEM computations. For the latter, it includes the
crete linear systems are computed for both the base func- time for solving base functions and the large scale solution: 3, M 5 16;

1, M 5 32.tions and the large scale solution. Therefore, the compari-
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matrix, w determines the total width of the reinforcement,
and « (together with w) sets the wavelength of the local
unidirectional oscillation. The structure of a(x) is visualized
in Fig. 5.1, where the contour plot of a(x) is given. In the
following computation, we take P 5 1.8, w 5 20, and « 5
0.1. These choices imply that the shortest wavelength in
the oscillation is about 0.005, for which we can compute
a well-resolved solution for the problem using LFEM and
the Richardson extrapolation. The boundary condition is
given by

u(x, y) 5 x2 1 y2 (x, y) [ ­V,

and a uniform source f (x, y) 5 21 is specified. We note
that the problem has continuous scales.

The problem is solved using MFEM-L, MFEM-O,
FIG. 4.8. The same as Fig. 4.5, except that for MFEM the large scale LFEM, and MFEM with the oversampling technique.solution is obtained on a single node.

Meshes with different numbers of elements per dimension
(N) are used. For all MFEM solutions, M is chosen
so that the base functions resolve the smallest scales of

the properties of composite materials and porous media the problem; in all cases, N M 5 2048. Again, we choose
may undergo abrupt changes, which correspond to jump MS 5 256, which is about the largest number for which
discontinuities in a(x). Such discontinuities should be the computation of the sampling functions fits in the mem-
treated with special care in order to get accurate solutions. ory of a single processor on the Intel Paragon computer.
Here, to simplify the numerical experiments, we will not The linear and oscillatory boundary conditions for the sam-
consider the abrupt changes. We, however, allow the con- pling functions ci are indicated by ‘‘os-L’’ and ‘‘os-O,’’
ductivity or permeability to vary rapidly and continuously. respectively. We note that in this case, the oscillation is

localized in the circular region with ‘‘fibers.’’ Away from
5.1. Unidirectional Composites that region, the multiscale base functions are very close to

the standard bilinear base functions since the conductivityConsider steady heat conduction through a composite
is practically a constant. On the other hand, the multiscalematerial with tubular fiber reinforcement in a matrix (see
base functions become oscillatory in the fiber region. InFig. 5.1). The problem is described by (2.1) with the coeffi-

cient a(x) representing the conductivity of the material.
This is referred to as a unidirectional composite in [4], for
the local conductivity varies rapidly along one direction.
Two special finite element methods have been designed
in [4] to compute such problems with high accuracy. One
of them requires the local alignment of element boundaries
with the fibers; the other is more general but it does not
allow the coefficient to change abruptly.

Here, we use the multiscale method to solve the problem.
Our method is similar to Method III9 of [4] in the sense
that it does not require the alignment of elements with the
fibers. On the other hand, our method is targeted at general
2D problems with oscillations in both spatial directions.
The conductivity of the material is modeled by the
smooth function

a(x) 5 2 1 P cos(2f tanh(w(r 2 0.3))/«),

where r 5 ((x 2 As)2 1 (y 2 As)2)1/2, P controls the ratio
FIG. 5.1. The model of 2D unidirectional fiber composite.between the conductivity of the ‘‘fibers’’ and that of the



186 HOU AND WU

5.2. Flows through Random Porous Media

Computing steady flows through random porous media
is very important for studying many transport problems in
subsurface formations, such as groundwater and contami-
nant transport in aquifers. The direct methods (e.g., [1])
and local numerical upscaling methods (Refs. [12, 23]) have
been applied to this problem. In this subsection, we use
the multiscale method and the oversampling technique to
compute steady state single phase flows through random
porous media.

5.2.1. Random Field Generation

To model the random media, we follow the approach
in [12]. A random porosity field p is first generated and
the permeability field is then calculated from

FIG. 5.2. The l 2-norm error of the solutions using various schemes. a 5 a10bp,

where a and b are scaling constants. If p is normally distrib-
uted, then the permeability field has a log-normal distribu-Fig. 5.2, the l2-norm errors of the solutions are shown. The
tion, which can represent the areal variation of some realsolid line in the figure represents the line of first-order
systems [13]. Here, we use the spectral method to generateconvergence in h; the dash line indicates the solution error
the Gaussian random distribution for the porosity field.of using LFEM on the 2048 3 2048 fine mesh.
At each point x, the value of p is given by the sum of aAs in the tests for the two-scale problem in Sections 4.3
number (Nf ) of Fourier modes with low to high frequency,and 4.4, Fig. 5.2 shows that the boundary conditions of the
which are determined by uniformly distributed randombase functions have significant influence on the accuracy
phases in the interval of 0 to 2f. The summation is per-and the convergence of the solutions; the oscillatory
formed by using the fast Fourier transform (FFT).boundary condition is clearly better. By comparing results

One of the advantages of this approach is that we canof MFEM-O and MFEM-os-O, as well as MFEM-L and
control the highest frequency Nf of the Fourier modes and,MFEM-os-L, we see a great improvement in the accuracy

of solutions using the oversampling technique. In fact, with
either the linear or the oscillatory boundary condition for
the sampling functions, the oversampling technique gives
more accurate solutions than both MFEM-O and MFEM-
L. Furthermore, the oversampling technique leads to O(h)
convergence, which depends slightly on the boundary con-
ditions for cis. From Fig. 5.2, we observe that the solutions
of MFEM with the oversampling technique become more
accurate than the resolved direct solution of LFEM, ob-
tained on the fine mesh, hs (compare also Table II with
Table IV). These results illustrate that MFEM with the
oversampling technique is a good candidate for solving
problems of unidirectional fiber composites. In [21],
MFEM without the oversampling technique is also applied
to a problem with continuous scales and genuine 2D oscil-
lations. The results are similar to those reported here.
Thus, it is plausible that MFEM is useful for general fiber
composite problems. It is worth mentioning that the effi-
ciency of the above computation can be greatly improved
by constructing the multiscale functions only in the region
of rapid oscillations. Moreover, one may use larger ele-
ments in the region with constant conductivity and smaller FIG. 5.3. Porosity field with fractal dimension of 2.8 generated using

the spectral method.ones in the region with oscillatory conductivity.
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ratio between the maximum and minimum values of a(x) is
400. We note that the permeability distribution is isotropic.
The l2-norm errors obtained using various schemes are
plotted in Fig. 5.4. In this case, the error of using MFEM-
L increases initially as h decreases (N increases), which is
similar to the results shown in Section 4.3. This trend re-
verses when h becomes smaller than the smallest scale of
the problem, i.e., N 5 512. Again, the boundary condition
for the base functions makes a big difference in the conver-
gence trend. However, the influence in the accuracy is not
as significant. The oversampling technique clearly im-
proves both the accuracy and convergence. The rate of
convergence of MFEM-os-O is lower than that computed
in Fig. 5.2, about O(h0.2). Nevertheless, such a convergence
behavior is important in practice.

Next, in Fig. 5.5 we give the results for the fractal porosity
field shown in Fig. 5.3. The parameters of the simulation areFIG. 5.4. The l 2-norm error of the solutions using various schemes
the same as above. The fractal dimension 2.8 implies thatfor a log-normally distributed permeability field. The horizontal dash line

indicates the error of the LFEM solution with N 5 2048. the spectral energy density decays according to a (27/5)-
power law. The decay of the small scales has a positive
effect on the accuracy and convergence for all methods.

hence, the smallest scale contained in the porosity field. Among them, the oversampling technique still leads to
This control enables us to resolve the permeability field most accurate results. Note that the convergence rate of
by using a fine mesh. For example, given Nf 5 64, we may MFEM-os-O decreases as N increases. In fact, a similar
choose N 5 512 for the fine mesh. Then, there are five trend is also shown in the previous figure. In both cases,
nodal points per shortest wavelength. Therefore, we may the errors of MFEM-os-O are very close to those of the
compute accurately resolved solutions for comparison with resolved LFEM solutions (the dash lines). The problem
the MFEM solutions. Another advantage of the spectral may be due to the effect of some residual layers that are
method is that the power spectrum of the distribution can

not completely removed by the present implementation ofbe easily manipulated. This provides a convenient way of
the oversampling technique. We will study this problemgenerating statistically fractal porosity distributions, which
in more detail in future works. On the other hand, we noteare found for many natural porous media [26]. More spe-
that the MFEM with the oversampling technique is mostcifically, the spectral energy distribution of a statistically
useful in the unresolved regime where the oversamplingfractal field has a power-law structure. By constructing

random fields with different power-law spectrum, which
can be easily done in the Fourier domain, one obtains
statistically fractal fields with different fractal dimensions.
For a detailed description about the correspondence be-
tween the power law and the fractal dimension, we refer
to [26]. Because the random porosity fields used in our
simulations are very large, they have to be generated on
the parallel computer. A parallel FFT is developed for this
purpose. In addition, we use a parallel random number
generator described in [20] to generate the uniform devi-
ates. A 256 3 256 image of a random porosity field with
the fractal dimension of 2.8 is shown in Fig. 5.3. In the
following, we solve (2.1) with u 5 0 on ­V and an uniform
source f 5 21. This is a model of flow in an oil reservoir
or aquifer with uniform injection in the domain and outflow
at the boundaries. As in Section 5.1, we fix N M 5 2048
and choose MS 5 256.

5.2.2. Results
FIG. 5.5. The l 2-norm error of the solutions using various schemes

First, we solve for a log-normal distribution of the per- for a fractally distributed permeability field. The horizontal dash line
indicates the error of the LFEM solution with N 5 2048.meability with Nf 5 256; a and b are chosen such that the
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20482 mesh (the dash line). This is not surprising. We note
that the rapid oscillations in the vertical direction align with
the mesh. Therefore, the oscillatory boundary condition
captures the local property of the differential operator near
the element boundaries. This makes the multiscale base
functions very effective. For this reason, the oversampling
technique does not offer additional improved accuracy
over the oscillatory boundary condition. The linear bound-
ary condition, on the other hand, gives a poor convergence
result since it cannot ‘‘sense’’ the layer structure. Thus it
leads to the resonance effect, as shown in Fig. 5.7.

6. CONCLUDING REMARKS

We have successfully developed a multiscale finite ele-
ment method for solving elliptic problems in composite
materials and porous media. The problems are character-
ized by the highly heterogeneous and oscillatory coeffi-
cients. In our method, the small scale information is cap-
tured by the finite element bases constructed from theFIG. 5.6. Porosity field for cross section generated using the spec-
leading order elliptic operator. In the case of periodic struc-tral method.
ture, we prove that the method converges to the correct
effective solution as « R 0 independent of «. We have

technique performs well. The degeneration in the conver- analyzed the ‘‘resonant scale’’ phenomenon associated
gence rate should not be a big concern. with upscaling type of methods. To alleviate the difficulty,

We also note that the relative error of the LFEM solu- we propose an oversampling technique. Our numerical
tion at N 5 512 is already less than 0.77%, which is small experiments give convincing evidence that the multiscale
enough for practical purposes. Thus, due to the decay of method is capable of capturing the large scale solution
small scales, one needs not resolve all the scales in order without resolving the small scale details. Applications of
to get satisfactory solutions. This observation should also the method to practical problems with continuous scales
be applicable to MFEM. We use MFEM-os-O to compute seem promising. We demonstrate that at a reasonable cost,
the problem with N 5 128 and M 5 4, which has an the multiscale method is able to solve very large scale
equivalent fine grid resolution as LFEM with N 5 512.
The errors of the two solutions are rather close, 7.18 3
1024 for MFEM-os-O versus 6.86 3 1024 for LFEM.

In the previous two examples, the permeability fields are
isotropic, which can model the areal variations of aquifers.
However, the cross section of an aquifer is characterized
by the layer structures. Thus, the permeability field is aniso-
tropic. In Fig. 5.6, the image of a numerically generated
porosity field for a cross section is shown. To generate this
field, we let the Fourier modes decay in the x direction
according to a given 1D fractal dimension (1.5 in our case),
but the Fourier modes do not decay in the y direction.
In this example, we have Nf 5 512 in the x direction and
Nf 5 256 in the y direction. The resulting distribution along
the vertical direction for each fixed x is approximately
Gaussian. Thus, the permeability varies more rapidly along
the vertical direction. For the permeability field, we choose
a and b such that the ratio between the maximum and
minimum values of a is 104.

The numerical errors are plotted in Fig. 5.7. We find FIG. 5.7. The l 2-norm error for cross section solutions using various
that both MFEM-O and MFEM-os-O solutions have about methods. The horizontal dash line indicates the error of the LFEM solu-

tion with N 5 2048.the same accuracy as the resolved LFEM solution on the
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merical tracer experiments. Water Resour. Res., 30, 1819 (1994).element method applied to convection-diffusion problems, Comput.

23. J. F. McCarthy. Comparison of fast algorithms for estimating large-Methods Appl. Math. Engrg. 31, 19 (1982).
scale permeabilities of heterogeneous media. Transport in Porous7. J. Bear. Use of models in decision making, in Transport and Reactive
Media, 19, 123 (1995).Processes in Aquifers, edited by T. H. Dracos and F. Stauffer (Bal-

24. R. Scott. Optimal l y estimates for the finite element method onkema, Rotterdam, 1994), p. 3.
irregular meshes. Math. Comput. 30, 681 (1976).8. A. Bensoussan, J. L. Lion, and G. Papanicolaou, Asymptotic Analysis

25. A. F. B. Tompson. Numerical-simulation of chemical migration infor Periodic Structure, Studies in Mathematics and Its Applications,
physically and chemically heterogeneous porous-media. Water Re-Vol. 5 (North-Holland, Amsterdam, 1978).
sour. Res., 29, 3709 (1993).9. D. T. Burr, E. A. Sudicky, and R. L. Naff, Nonreactive and reactive

26. D. L. Turcote and J. Huang. Fractal distributions in geology, scalesolute transport in 3-dimensional heterogeneous porous media—
invariance, and deterministic chaos. In C. C. Barton and P. R. Lamean displacement, plume spreading, and uncertainty, Water Resour.
Pointe, editors, Fractals in the Earth Sciences, pages 1–40. PlenumRes., 30, 791 (1994).
Press, 1995.10. M. E. Cruz and A. Petera, A parallel Monte-Carlo finite-element

procedure for the analysis of multicomponent random media, Int. J. 27. P. M. De Zeeuw. Matrix-dependent prolongation and restrictions in
a blackbox multigrid solver. J. Comput. Applied Math., 33, 1 (1990).Numer. Methods Eng. 38, 1087 (1995).


