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a b s t r a c t

The immersed boundary method is one of the most useful computational methods in
studying fluid structure interaction. On the other hand, the Immersed Boundary method
is also known to require small time steps to maintain stability when solved with an explicit
method. Many implicit or approximately implicit methods have been proposed in the lit-
erature to remove this severe time step stability constraint, but none of them give satisfac-
tory performance. In this paper, we propose an efficient semi-implicit scheme to remove
this stiffness from the immersed boundary method for the Navier–Stokes equations. The
construction of our semi-implicit scheme consists of two steps. First, we obtain a semi-
implicit discretization which is proved to be unconditionally stable. This unconditionally
stable semi-implicit scheme is still quite expensive to implement in practice. Next, we
apply the small scale decomposition to the unconditionally stable semi-implicit scheme
to construct our efficient semi-implicit scheme. Unlike other implicit or semi-implicit
schemes proposed in the literature, our semi-implicit scheme can be solved explicitly in
the spectral space. Thus the computational cost of our semi-implicit schemes is compara-
ble to that of an explicit scheme. Our extensive numerical experiments show that our semi-
implicit scheme has much better stability property than an explicit scheme. This offers a
substantial computational saving in using the immersed boundary method.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The immersed boundary method was originally introduced by Peskin in the 1970s to model the flow around heart valves.
The method uses a uniform Eulerian grid to discretize the fluid velocity and a Lagrangian description for the immersed elastic
structure. The interaction between the fluid and the elastic structure is expressed in terms of the spreading and interpolation
operations by use of smoothed Delta functions. This formulation allows a single set of fluid dynamics equations to hold in the
entire domain with no internal boundary conditions. The immersed boundary method has now evolved into a general useful
method and has been used in a wide variety of applications, particularly in biofluid dynamics problems where complex
geometries and immersed elastic membranes are present. Examples include blood flow in the heart [27,18–22,28], vibrations
of the cochlear basilar membrane [3,11], platelet aggregation during clotting [10,37], aquatic locomotion [7,9,14,38,4], flow
with suspended particles [8,33], and inset flight [23,24], We refer to [29] for an extensive list of applications.

Despite of its considerable success, the immersed boundary method is known to suffer from a severe time step restriction
to maintain stability if an explicit or semi-implicit method is used [29,34,32]. This restriction is typically much more severe
than the one that would be imposed from using an explicit discretization for the convection term in the Navier–Stokes equa-
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tions. The instability is also known to arise from large elastic force and small viscosity [34]. Much effort has been made to
remove this restriction. Some implicit and approximately implicit methods have been proposed in the literature [35,25,17].
However, none of them give satisfactory performance. The computational cost of using these implicit or approximately im-
plicit schemes is still too high to be effective in a practical computation. To date, almost all practical computations using the
immersed boundary method have been performed using an explicit discretization.

In this paper, we develop an efficient semi-implicit scheme to remove the time step restriction of the immersed boundary
method in a two-dimensional, incompressible Navier–Stokes flow. There are two important ingredients in deriving our semi-
implicit scheme. The first one is to obtain a semi-implicit discretization for the immersed boundary problem which is proved
to be unconditionally stable. More precisely, we prove that the energy norm of the numerical solution is a non-increasing
function of time. This is a weaker result than proving that the difference between two solutions in the energy norm can
be bounded in terms of the energy norm of their difference at time zero. The second one is to perform the small scale decom-
position to this unconditionally stable semi-implicit discretization to obtain our efficient semi-implicit scheme. An impor-
tant feature of our small scale decomposition is that the leading order term, which is discretized implicitly, can be
expressed as a convolution operator. This property enables us to solve for the implicit solution explicitly using the Fourier
transformation. Thus, the computational cost of our semi-implicit scheme is comparable to that of an explicit method. This
offers a significant computational saving in using the immersed boundary method.

The semi-implicit scheme that we present in this paper is a generalization of a semi-implicit scheme for the 2D Stokes
equations recently introduced by the authors in [15]. One of the main contributions of this paper is to find an unconditionally
stable semi-implicit discretization of the immersed boundary method for the 2D Navier–Stokes equations. Using this uncon-
ditionally stable semi-implicit scheme as a building block, we obtain an efficient semi-implicit scheme that is free from the
usual CFL stability restriction when the convection term is discretized explicitly. We note that when viscosity is small and
elastic force is large, the velocity field could be quite large. In this case, removing the CFL stability constraint could provide
significant computational saving. This is also confirmed by our numerical experiments. The semi-implicit discretization that
we use for the convection term is a variant of the alternating directional implicit (ADI) scheme [30] which can be solved effi-
ciently. This property allows us to implement our semi-implicit scheme very efficiently.

As we mentioned earlier, the small scale decomposition plays an essential role in our construction of an efficient semi-
implicit scheme. This method was first developed by Hou et al. [12,13] to remove the stiffness from interfacial flow with
surface tension. The coupling between the elastic boundary and the fluid makes it much more difficult to remove the stiff-
ness induced by the elastic force in the Immersed Boundary method. We overcome this difficulty by designing a uncondi-
tionally stable semi-implicit discretization that decouples the stiffness induced by the elastic force from the fluid flow.
The decoupling of the stiffness induced by the elastic force from the fluid flow makes it possible for us to apply the small
scale decomposition to this unconditionally stable semi-implicit discretization. This leads to an efficient semi-implicit
scheme with the desirable stability property.

We remark that very recently Newren et al. have obtained an unconditionally stable method for the 2D Stokes flow with
linear force in [26]. Their study sheds new light to the stability property of the immersed boundary method and clarifies
some of the confusions regarding the stability property of the immersed boundary method. On the other hand, since they
treat the convection term explicitly, their semi-implicit discretization is not unconditionally stable for the Navier–Stokes
equations. Moreover, since they do not use the Small Scale Decomposition in their method, the computational cost of their
semi-implicit method is still quite expensive. The gain of their semi-implicit method over an explicit discretization is rather
limited.

To illustrate the stability property of our semi-implicit scheme, we apply our method to several prototype problems and
test our scheme for a wide range of elastic coefficients and viscosity coefficients. Our extensive computational experiments
confirm that our semi-implicit scheme removes the high frequency stability constraint induced by the elastic force. The sta-
bility of our semi-implicit scheme is essentially independent of the meshsize. The computational saving over an explicit
scheme is very substantial. The computational gain is even bigger as the stiffness of the Immersed Boundary method be-
comes more severe. In the most severe case we have tested with the elastic coefficient Sb ¼ 105 and the Reynolds number
Re ¼ 60;000 on a 512� 512 grid, the maximum time step of our semi-implicit scheme is 1160 times larger than the explicit
scheme. Even after we take into account the extra cost in inverting the semi-implicit solution, our semi-implicit scheme still
runs 683 times faster than the explicit scheme. The saving is even larger as we increase the resolution, or the elastic coef-
ficient, and/or the Reynolds number.

As an application, we apply our semi-implicit scheme to compute the vortex sheet problem in a viscous fluid with Rey-
nolds number Re ¼ 10;000, which is very challenging computationally. We study the large time behavior of the vortex
sheet solution for different values of Weber numbers. For a modest value of Weber number We ¼ 40=p, the interface does
not roll up. Instead it deforms into elongated fingers that penetrate each fluid into the other. This is similar to the result of
[13,36]. But for a larger Weber number We ¼ 400=p, we observe that the vortex sheet rolls up and forms a thin neck near
the tip of the finger. The neck below the tip becomes thinner in time. Unlike the inviscid vortex sheet with surface tension
which forms a finite time pinching singularity in the neck of its finger, the thickness of the neck does not appear to ap-
proach to zero in a finite time for the viscous vortex sheet. It is likely that the neck is being stabilized by the viscosity of
the fluid, and the vortex sheet rollup may continue indefinitely. This confirms the result previously obtained by Ceniceros
and Roma in [6]. The behavior of the viscous vortex sheet seems to be qualitatively different from the inviscid vortex sheet
with surface tension [13,6].
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This paper is organized as follows. First, we review the classical formulation of the immersed boundary method in Section
2 and introduce the arclength and tangent angle formulation. In Section 3, we introduce our unconditionally stable semi-im-
plicit discretization and prove its unconditional stability. The small scale decomposition is applied to the unconditionally
stable scheme introduced in Section 4. We give a complete description of our semi-implicit scheme in Section 5. In Section
6, we apply our semi-implicit scheme to the viscous vortex sheet problem. In Section 7, we present our extensive numerical
experiments to study the stability of our semi-implicit scheme and compare the performance of our method with the explicit
scheme and the unconditionally stable semi-implicit scheme. Numerical results for the viscous vortex sheet are also given in
this section. Some concluding remarks are given in Section 8.

2. Formulation

In this section, we will review the classical formulation of the Immersed Boundary method and describe its spatial dis-
cretization. We will also introduce the arclength and tangent angle formulation for the Immersed Boundary method. The use
of the arclength and tangent angle formulation simplifies the construction of our semi-implicit scheme and makes it easier to
apply the small scale decomposition to our unconditionally stable discretization.

2.1. Review of the immersed boundary method

We consider a viscous incompressible fluid in a two-dimensional domain X. An immersed massless elastic boundary is a
closed simple curve C contained in X. We assume that the elastic boundary is parameterized by Xða; tÞ;0 6 a 6 Lb, satisfying
Xð0; tÞ ¼ XðLb; tÞ. Here a is a Lagrangian variable. The governing equations are the incompressible Navier–Stokes equations
which interact with the elastic boundary through the elastic force fðx; tÞ:

q
ou
ot
þ u � ru

� �
¼ �rpþ lMuþ fðx; tÞ; ð1Þ

r � u ¼ 0; ð2Þ
oX
ot
ða; tÞ ¼ uðXða; tÞ; tÞ; ð3Þ

where u is the fluid velocity, p is the pressure, q and l are constant fluid density and viscosity, respectively. The force density
is typically modeled as a Dirac delta function along the boundary as follows:

fðx; tÞ ¼
Z Lb

0
Fða; tÞdðx� Xða; tÞÞda; ð4Þ

where d is the two-dimensional Dirac delta function and

Fða; tÞ ¼ o

oa
ðTsÞ; ð5Þ

T ¼ T
oX
oa

���� ����� �
: ð6Þ

The function T is chosen to satisfy the Hook’s law:

T ¼ Sb
oX
oa

���� ����� 1
� �

; ð7Þ

where Sb is the elastic coefficient of the boundary, and s is the unit tangent vector along the boundary. This choice of force
density has been used widely in the previous studies of the immersed boundary method, see e.g. [16,31,35].

The interaction of the fluid and the elastic force is done through the spreading and interpolation operations, which are
defined as follows:

LðXÞðgðaÞÞðxÞ ¼
Z

C
gðaÞdðx� Xða; tÞÞda; ð8Þ

L�ðXÞðuðxÞÞðaÞ ¼
Z

X
uðxÞdðx� Xða; tÞÞdx: ð9Þ

It is easy to show that L and L� are adjoint operators [26,15]:

huðxÞ; LðXÞðgðaÞÞiX ¼ hL
�ðXÞðuðxÞÞ; gðaÞiC; ð10Þ

where the inner product are defined as follows:

hu; viX ¼
Z

X
uðxÞvðxÞdx; hf ; giC ¼

Z
C

f ðaÞgðaÞda: ð11Þ

Using the interpolation operator, we can rewrite (3) in the following way:
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oX
ot
ða; tÞ ¼ L�ðXÞðuðx; tÞÞða; tÞ: ð12Þ

Eqs. 3,4 represent the interaction of the fluid and the elastic boundary. At a given time, the elastic boundary interacts with
the fluid through its force along the boundary and the immersed boundary is convected by the fluid velocity. The force den-
sity is then updated by the new configuration of the boundary.

2.2. Spatial discretization

We consider the fluid in an unit square domain with doubly periodic boundary conditions. We use the spectral method to
discretize the diffusion term in the Navier–Stokes equations with a uniform N � N Cartesian grid. A finite difference method
can also be used if non-periodic boundary conditions are used [29]. The discretization of the convection term will be de-
scribed in Section 3.

Next, we describe the discretization of the immersed boundary. We employ a Lagrangian grid with gridsize Da. The num-
ber of grid points along the boundary is Nb. When the interface is closed, the solution is periodic along the interface. Thus it
makes sense to use the spectral method to discretize the solution along the immersed boundary. We remark that a finite
difference discretization can be also used [29]. To discretize the spreading and interpolation operators, we need to introduce
a discrete delta function. The discrete delta function we use was introduced by Peskin in [29]:

dhðx; yÞ ¼
1

h2 /
x
h

� �
/

y
h

� �
; ð13Þ

where

/ðrÞ ¼

1
8 3� 2jrj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jrj � 4r2

p� �
; jrj 6 1;

1
8 5� 2jrj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12jrj � 4r2

p� �
; 1 6 jrj 6 2;

0; jrj > 2:

8>>><>>>: ð14Þ

Using the above discrete delta function, we discretize the spreading and interpolation operators as follows

LhðXÞðgðaÞÞðxÞ ¼
X
a2GC

gðaÞdhðx� Xða; tÞÞDa; ð15Þ

L�hðXÞðuðxÞÞðaÞ ¼
X
x2GX

uðxÞdhðx� Xða; tÞÞh2
: ð16Þ

The above summation is over grid points on the immersed interface C in (15) and over grid points in X in (16). We can
show that Lh and L�h are still adjoint operators [15]:

huðxÞ; LðXÞðgðaÞÞiXh
¼ hL�hðXÞðuðxÞÞ; gðaÞiCh

; ð17Þ

where the discrete inner products are defined as follows:

hf ; giCh
¼
X
a2GC

f ðaÞgðaÞDa; ð18Þ

hu; viXh
¼
X
x2GX

uðxÞvðxÞh2
: ð19Þ

2.3. The arclength-tangent angle formulation

The small scale decomposition plays an important role in the construction of our efficient semi-implicit scheme. To make
it easier to perform the small scale decomposition, we reformulate the immersed boundary method using the arclength-tan-
gent angle formulation. The arclength-tangent angle formulation has been used successfully by Hou et al. [12] to remove the
stiffness of interfacial flows with surface tension.

We parameterize the interface by Xða; tÞ;a 2 ½0; Lb�. The arclength derivative, sa, and the tangent vector, h are defined as
follows

saða; tÞ ¼ jXaða; tÞj; ð20Þ
ðxaða; tÞ; yaða; tÞÞ ¼ saða; tÞðcos hða; tÞ; sin hða; tÞÞ: ð21Þ

Let U and V be the normal and tangent components of the velocity field. We can rewrite the interface equation as follows:

oX
ot
¼ uðX; tÞ ¼ Unþ Vs; ð22Þ

where s and n are the unit tangent and normal vectors of the interface, respectively. By using the Frenèt formula,
os
os ¼ kn; on

os ¼ �ks, one can derive the equivalent evolution equations for sa and h [12]:
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ðsaÞt ¼ Va � haU; ð23Þ

ht ¼
Ua

sa
þ Vha

sa
: ð24Þ

Given sa; h and a reference point on the interface, we can reconstruct the interface C by integrating (21) with respect to a.
Using the sa � h formulation, we can reformulate the immersed boundary problem as follows:

q
ou
ot
þ u � ru

� �
¼ �rpþ lMuþ LðXÞðFðsa; hÞÞ; ð25Þ

r � u ¼ 0; ð26Þ
U ¼ L�ðXÞðuðxÞÞ � n; ð27Þ
V ¼ L�ðXÞðuðxÞÞ � s; ð28Þ
ðsaÞt ¼ Va � haU; ð29Þ

ht ¼
Ua

sa
þ Vha

sa
; ð30Þ

where

Fðsa; hÞ ¼
o

oa
ðTsÞ ¼ Sbðsa;asþ ðsa � 1ÞhanÞ: ð31Þ

3. A unconditionally stable semi-implicit discretization

In this section, we will describe our unconditionally stable semi-implicit discretization of the Immersed Boundary meth-
od for the incompressible Navier–Stokes equations. We first introduce the method in Section 3.1 and then prove its uncon-
ditional stability in Section 3.2.

3.1. The description of the method

In this subsection, we describe our unconditionally stable semi-implicit scheme. We discretize the Immersed Boundary
method by using a time splitting method. In the first step, we only discretize the convection term. In the second step, we
discretize the Immersed Boundary method for the Stokes equations. As we mentioned before, we can use a spectral method
or a finite difference method to discretize the solution in space. Below we describe the algorithm of our unconditionally sta-
ble semi-implicit scheme from tn to tnþ1. Assume the velocity field and the interface position are already known at tn. We
update the solution from tn to tnþ1 using the following three steps:

Step 1: Discretization of the convection term.

~unþ1;1 � un

Dt
þ 1

2
un

1D0
h;1

~unþ1;1 þ 1
2

D0
h;1ðun

1
~unþ1;1Þ ¼ 0; ð32Þ

~unþ1 � ~unþ1;1

Dt
þ 1

2
un

2D0
h;2

~unþ1 þ 1
2

D0
h;2ðun

2
~unþ1Þ ¼ 0; ð33Þ

where D0
h;b is the central difference approximation of the derivative operator along the xb direction,

ðD0
h;b /ÞðxÞ ¼ /ðxþ hebÞ � /ðx� hebÞ

2h
; ð34Þ

where eb is the unit vector along the coordinate axis with b ¼ 1;2. The above semi-implicit discretization of the convection
term is a variant of the alternating directional implicit (ADI) scheme [30]. This special form of the discretization of the con-
vection term is inspired by a similar explicit discretization of the convection term introduced in [29].

Step 2: Update of unþ1; pnþ1 and snþ1
a .

q
unþ1 � ~unþ1

Dt
¼ �rhpnþ1 þ lr2

hunþ1 þ Lh;nðFðsnþ1
a ; hn; sn;nnÞÞ; ð35Þ

r2
hpnþ1 ¼ 1

Dt
rh � ðLh;nðFðsnþ1

a ; hn; sn;nnÞÞDt þ q~unþ1Þ; ð36Þ

Vnþ1 ¼ L�h;nðunþ1Þ � sn ð37Þ
Unþ1 ¼ L�h;nðunþ1Þ � nn; ð38Þ
snþ1
a � sn

a

Dt
¼ DDaVnþ1 � DDah

nUnþ1; ð39Þ
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where sn ¼ ðcosðhnÞ; sinðhnÞÞ, nn ¼ ð� sinðhnÞ; cosðhnÞÞ, Lh;n ¼ LhðXnÞ, L�h;n ¼ L�hðX
nÞ;rh and DDa are discrete derivative operators

for the Eulerian grid and the Lagrangian grid, respectively, and

Fðsnþ1
a ; hn; sn;nnÞ ¼ SbðDDasnþ1

a sn þ ðsnþ1
a � 1ÞDDah

nnnÞ: ð40Þ

Step 3: Update of hnþ1.

After we have obtained unþ1; pnþ1 and snþ1
a , we update h at tnþ1 using the following semi-implicit scheme:

q
�unþ1 � ~unþ1

Dt
¼ �rh�pnþ1 þ lr2

h
�unþ1 þ Lh;n F snþ1

a ; hnþ1; sn;nn
� 	� 	

; ð41Þ

r2
h

�pnþ1 ¼ 1
Dt
rh � ðLh;nðFðsnþ1

a ; hnþ1; sn;nnÞÞDt þ q~unþ1Þ; ð42Þ

Vnþ1 ¼ L�h;nð�unþ1Þ � sn ð43Þ
Unþ1 ¼ L�h;nð�unþ1Þ � nn; ð44Þ
hnþ1 � hn

Dt
¼ 1

snþ1
a
ðDDaUnþ1 þ DDah

nVnþ1Þ: ð45Þ

where

F snþ1
a ; hnþ1; sn;nn

� 	
¼ Sb DDasnþ1

a sn þ snþ1
a � 1

� 	
DDah

nþ1nn
� 	

: ð46Þ
It is important to note that the above discretization is not fully implicit. In fact, both the spreading and interpolation oper-

ators are evaluated at the interface Xn from the previous time step. Moreover, when solve the snþ1
a and unþ1, in (35)–(39), we

use hn instead of hnþ1 to evaluate the force density. This makes our semi-implicit discretization linear with respect to the
implicit solution variables, unþ1; hnþ1, and snþ1

a . The above semi-implicit discretization essentially decouples the stiffness in-
duced by the elastic force from the fluid equations. This enables us to remove the stiffness of the immersed boundary method
effectively by applying the small scale decomposition and arclength-tangent angle formulation as was done in [12].

3.2. Stability analysis

In this section we will analyze the stability of the semi-implicit discretization (32)–(45) in the energy norm. We will prove
that the above semi-implicit discretization is unconditionally stable in the sense that the total energy is non-increasing.

First, we define the total energy of the physical system. The total energy includes the kinetic energy K and the potential
energy P, which are defined below:

K ¼ 1
2
qhu;uiXh

¼ q
2

XN

i;j¼1

uij � uijh
2
; ð47Þ

P ¼ 1
2

Sbhsa � 1; sa � 1iCh
¼ Sb

2

XNb

j¼1

ðsa;j � 1Þ2Da: ð48Þ

The total energy is then defined as
E ¼ K þ P: ð49Þ

Theorem 1. The semi-implicit scheme (32)–(45) is unconditionally stable in the sense that the total energy is a non-increasing
function of time, i.e. Enþ1

6 En for all n P 0.

Proof of Theorem 1. We first introduce an intermediate kinetic energy as follows:

eK nþ1 ¼ 1
2
qh~unþ1; ~unþ1iXh

¼ q
2

XN

i;j¼1

~unþ1
ij � ~unþ1

ij h2
: ð50Þ

To simplify the presentation, we denote the discrete spectral derivative DDag of a function g as ga. Taking the discrete inner
product of (35) with unþ1 þ ~unþ1, we obtain

Knþ1 � eK nþ1 ¼ q
2
hunþ1 þ ~unþ1;unþ1 � ~unþ1iXh

¼ q
2
h�unþ1 þ ~unþ1;unþ1 � ~unþ1iXh

þ qhunþ1;unþ1 � ~unþ1iXh

¼ �q
2
hunþ1 � ~unþ1;unþ1 � ~unþ1iXh

þ Dt unþ1;�rhpnþ1 þ lr2
hunþ1 þ Lh;n F snþ1

a ; hn; sn;nn
� 	� 	D E

Xh

¼ �q
2
hunþ1 � ~unþ1;unþ1 � ~unþ1iXh

þ Dthrh � unþ1;pnþ1iXh

� lDthrhunþ1;rhunþ1iXh

þ DthL�h;nðunþ1Þ; Fðsnþ1
a ; hn; sn;nnÞiCh

: ð51Þ
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The second term on the right hand side of (51) is zero because the discrete velocity field is divergence free, i.e.
rh � unþ1 ¼ 0. The fourth term can be rewritten as

L�h;nðunþ1Þ;F snþ1
a ; hn; sn;nn

� 	D E
Ch

¼ Vnþ1
sn þ Unþ1nn; Sb snþ1

a;a sn þ snþ1
a � 1

� 	
hn
ann

� �D E
Ch

¼ Sb Vnþ1; snþ1
a;a

D E
Ch

þ Unþ1; snþ1
a � 1

� 	
hn
a

D E
Ch

� �
; ð52Þ

where we have used 37, 38, and 40. Combining (51) and (52), we get

Knþ1 � eK nþ1 ¼ �q
2
hunþ1 � ~unþ1;unþ1 � ~unþ1iXh

� lDthrhunþ1;rhunþ1iXh

þ SbDt Vnþ1; snþ1
a;a

D E
Ch

þ Unþ1; snþ1
a � 1

� 	
hn
a

D E
Ch

� �
: ð53Þ

Similarly, using (39) and performing summation by parts, we get

Pnþ1 � Pn ¼ Sb

2
snþ1
a þ sn

a � 2; snþ1
a � sn

a


 �
Ch

¼ Sb

2
�snþ1

a þ sn
a; s

nþ1
a � sn

a


 �
Ch
þ Sb snþ1

a � 1; snþ1
a � sn

a


 �
Ch

¼ � Sb

2
snþ1
a � sn

a; s
nþ1
a � sn

a


 �
Ch
þ SbDt snþ1

a � 1;Vnþ1
a � hn

aUnþ1
D E

Ch

¼ � Sb

2
snþ1
a � sn

a; s
nþ1
a � sn

a


 �
Ch
� SbDt snþ1

a;a ;V
nþ1

D E
Ch

þ snþ1
a � 1; hn

aUnþ1
D E

Ch

� �
: ð54Þ

Adding (53) to (54), we have

Enþ1 � Pn � eK nþ1 ¼ �q
2

unþ1 � ~unþ1;unþ1 � ~unþ1
 �
Xh
� lDt rhunþ1;rhunþ1
 �

Xh
� Sb

2
snþ1
a � sn

a; s
nþ1
a � sn

a


 �
Ch
6 0 ð55Þ

To prove that the total energy is non-increasing, we need to prove thateK nþ1
6 Kn: ð56Þ

The key in proving (56) is the following observation:

v;
1
2

un
i D0

h;ivþ
1
2

D0
h;i un

i v
� 	� 

Xh

¼ 0; i ¼ 1;2; ð57Þ

for any vector v. To prove (57), we use summation by parts to the second term:

v;
1
2

un
i D0

h;ivþ
1
2

D0
h;i un

i v
� 	� 

Xh

¼ un
i v;

1
2

D0
h;iv

� 
Xh

� 1
2

D0
h;iv;u

n
i v

� 
Xh

¼ 0: ð58Þ

In the above summation by parts, there is no contribution from the boundary term since we use periodic boundary condi-
tions. Using (57), we have

eK nþ1;1 � Kn ¼ 1
2
qh~unþ1;1 þ un; ~unþ1;1 � uniXh

¼ �1
2
qh~unþ1;1 � un; ~unþ1;1 � uniXh

þ qh~unþ1;1; ~unþ1;1 � uniXh

¼ �1
2
qh~unþ1;1 � un; ~unþ1;1 � uniXh

� q ~unþ1;1;
1
2

un
1D0

h;1
~unþ1;1 þ 1

2
D0

h;1ðun
1
~unþ1;1Þ

� 
Xh

:

The second term of the right hand side vanishes using (57). Thus we obtain

eK nþ1;1 � Kn ¼ �1
2
qh~unþ1;1 � un; ~unþ1;1 � uniXh

6 0; ð59Þ

where eK nþ1;1 ¼ q
2 h~unþ1;1; ~unþ1;1iXh

. Similarly, we have

eK nþ1 � eK nþ1;1 ¼ �1
2
qh~unþ1 � ~unþ1;1; ~unþ1 � ~unþ1;1iXh

6 0: ð60Þ

Adding (59) to (60) giveseK nþ1 � Kn
6 0: ð61Þ

Combining (55) and (61), we prove that the total energy is non-increasing

Enþ1
6 Pn þ eK nþ1

6 Pn þ Kn ¼ En: ð62Þ
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This proves that the semi-implicit scheme (32)–(45) is unconditionally stable in the sense that the total energy is non-
increasing.

Remark 1. In our proof presented above, we have used three important properties of our semi-implicit discretization. The
first property is that the discrete spreading and interpolation operators are adjoint. The second property is that the velocity
field satisfies the discrete divergence free condition. The third property is identity (57).

Remark 2. We can also use other schemes to discretize the convection equation

~ut þ ~u � r~u ¼ 0; ð63Þ

in the first step of our discretization described in (32) and (33). As long as we use a time discretization with the following
stability propertyeK nþ1

6 ð1þ CDtÞKn; ð64Þ

then we can easily modify the above proof to show that En
6 CðTÞE0 for all tn

6 T , where CðTÞ ¼ expðCTÞ. In the case of the
ADI discretization that we use for the convection term, we have eK nþ1

6 Kn and the total energy is non-increasing. If we use
an explicit discretization for the convection term, a CFL stability constraint is required to satisfy (64).

4. Small scale decomposition

In this section, we apply the Small Scale Decomposition to the unconditionally stable semi-implicit scheme introduced in
Section 3. First, we solve for the velocity field (still denoted as unþ1) from the space-continuous version of (35) and (36) using
an integral representation:

unþ1ðxÞ ¼ 1� lDt
q
r2

� ��1

~unþ1 þ Dt
q

Ln F snþ1
a ; hn� 	� 	

�rðr2Þ�1r � Dt
q

Ln F snþ1
a ; hn� 	� 	

þ ~unþ1
� �� �

¼ 1� lDt
q
r2

� ��1

ð~unþ1 þrðr2Þ�1r � ~unþ1Þ þ Dt
q

1� lDt
q
r2

� ��1

Ln F snþ1
a ; hn� 	� 	

� Dt
q

1� lDt
q
r2

� ��1

ðr2Þ�1 rr � Ln F snþ1
a ; hn� 	� 	� 	

Let E1 and E2 be the free space fundamental solutions in two dimensions of the following differential operators:

1� lDt
q
r2

� �
E1 ¼ dðx� x0Þ; ð65Þ

r2 1� lDt
q
r2

� �
E2 ¼ dðx� x0Þ: ð66Þ

They can be expressed in terms of the modified Bessel function of the second kind [1]:

E1 ¼
k2

2p
K0ðkjx� x0jÞ; ð67Þ

E2 ¼
1

2p
K0ðkjx� x0j þ lnðjx� x0jÞð Þ; ð68Þ

where k2 ¼ q
lDt and K0 is the modified Bessel function of the second kind. Performing integration by parts, we can further

rewrite velocity unþ1 as follows:

unþ1ðxÞ ¼ 1� lDt
q
r2

� ��1

ð~unþ1 þrðr2Þ�1r � ~unþ1Þ þ 1
2p

Dt
q

Z
Cn

k2K0ðkjx� Xnða0ÞjÞF snþ1
a ; hn� 	

da0

� 1
2p

Dt
q

Z
Cn

Gðx� Xnða0ÞÞ � F snþ1
a ; hn� 	

da0; ð69Þ

where Cn is the immersed boundary at time tn, and

GijðrÞ ¼
dij

jrj2
� 2rirj

jrj4
þ 1

2
k2ðK0ðkjrjÞ þ K2ðkjrjÞÞ

rirj

jrj2
� kK1ðkjrjÞ

dij

jrj �
rirj

jrj3

 !
; ð70Þ

K0;K1;K2 are the modified Bessel functions of the second kind.
As we can see, the singular velocity integral is a complicated nonlocal integral operator. It is difficult to solve for the im-

plicit solution if we treat the velocity integral fully implicitly. The discretization we introduce in Section 3 has made an
important first step in constructing an efficient semi-implicit method by producing an unconditionally stable discretization
which is linear in terms of the implicit solution at tnþ1. However, the resulting integral equation is still quite expensive to
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solve. To derive an efficient semi-implicit scheme, we apply the small scale decomposition to the unconditionally stable dis-
cretization we obtain in Section 3.

The main idea of the small scale decomposition technique introduced in [12] is to decompose the singular velocity inte-
gral into the sum of a linear convolution operator and a remainder operator which is regular. Since the remaining operator,
which could be nonlinear and nonlocal, is regular, it does not contribute to the stiffness of the problem to the leading order.
Thus we do not need to treat it implicitly. The leading order singular operator, which captures accurately the high frequency
spectral property of the velocity integral, can be further simplified as a linear convolution integral operator. Thus, if we treat
only the leading order convolution operator implicitly, but keep the regular remainder operator explicitly, we can effectively
remove the stiffness of the velocity field induced by the high frequency modes of the solution.

Below we will show how to perform such small scale decomposition for the immersed boundary method. Using the Tay-
lor expansion and neglecting the explicit part of the integral expression (69), we obtain the following decomposition:

Vnþ1ðaÞ ¼ unþ1ðXnðaÞÞ � snðaÞ � SbDt
2pq

Z
Cn

k2K0 ksn
aja� a0j

� 	
snþ1
a;a0 da0

� SbDt
2pq

Z
Cn

1
2

k2 K0 ksn
aja� a0j

� 	
þ K2ðksn

aja� a0jÞ
� 	

� 1

ðsn
aÞ

2ða� a0Þ2

 !
snþ1
a;a0 da0: ð71Þ

Note that [1]

d2

da02
1

ðsn
aðaÞÞ

2 K0 ksn
aja� a0j

� 	 !
¼ 1

2
k2 K0 ksn

aja� a0j
� 	

þ K2 ksn
aja� a0j

� 	� 	
: ð72Þ

Integrating the right hand side of (71) by parts twice, we get

Vnþ1ðaÞ � SbDt
2pq

Z
Cn

k2K0 ksn
aja� a0j

� 	
snþ1
a;a0 da0 � SbDt

2pqðsn
aÞ

2

Z
Cn

K0 ksn
aja� a0j

� 	
� ln a� a0ð Þ

� 	
snþ1
a;a0a0a0da0: ð73Þ

Next, we solve for the velocity field �unþ1 from the space-continuous version of (41) and (42) using an integral represen-
tation. Following a similar procedure, we obtain the leading order term for Unþ1 as follows:

Unþ1ðaÞ ¼ �unþ1ðXnðaÞÞ � nnðaÞ � SbDt

2pqðsn
aÞ

2

Z
Cn

K0 ksn
aja� a0j

� 	
� ln a� a0ð Þ

� 	
snþ1
a � 1

� 	
hnþ1
a0

� 	
a0a0da0: ð74Þ

We note that the singular operator is linear since snþ1
a is updated first, but one part of the operator K0 ksn

aða0Þja� a0j
� 	

still
can not be expressed as a convolution operator. Thus, we need to simplify the kernel further. First, we approximate sn

aðaÞ by
minasn

aðaÞ. Let b ¼ kminasn
aðaÞ and denote by F the Fourier transform. In [15], we have shown that

F
1
p

Z þ1

�1
K0ðbja� a0jÞf ða0Þda0

� �
¼

bf ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

q ; ð75Þ

where bf ðkÞ ¼Fðf ÞðkÞ ¼
R1
�1 f ðaÞeikada. Using (75), replacing sn

aðaÞ by minasn
aðaÞ and ðsnþ1

a � 1Þ by maxaðsnþ1
a � 1Þ, we obtain

the following simple expressions of the leading order term for Vnþ1
a and Unþ1

a in the Fourier transform:

bV nþ1
a ðaÞ � bT snþ1

a

� 	
� � SbDt

2qðmin
a

sn
aÞ

2

k min
a

sn
a

� �2
k2 þ k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k min
a

sn
a

� �2
þ k2

r � jkj3

0BB@
1CCAbsnþ1

a ; ð76Þ

bUnþ1
a ðaÞ � bSðhnþ1Þ � �

SbDt max
a

snþ1
a � 1

� 	
2q min

a
sn
a

� �2 jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k min

a
sn
a

� �2
þ k2

r
0BB@

1CCAbhnþ1; ð77Þ

Since the above small scale decomposition captures the leading order behavior of the solution operator, we can use it to ob-
tain the stability constraint for the explicit scheme near the equilibrium. A simple calculation shows that the stability con-
straint for the explicit scheme is given by

Dt < CðSb;lÞhb
; ð78Þ

where 1 6 b 6 3=2. The value of b depends on l. If l	 1, then we have b 
 3=2. On the other hand, if l� 1, we have b 
 1.

5. Summary of the efficient semi-implicit algorithm

To develop our efficient semi-implicit scheme, we will apply the Small Scale Decomposition that we developed in the pre-
vious section for the tangential an normal velocity fields to the unconditionally stable semi-implicit discretization intro-
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duced in Section 3. We note that the leading contribution to the stiffness of the sa equation comes from the derivative of the
tangential velocity. The second term involving the normal velocity field is a lower order term. Thus it is sufficient to treat the
leading order term of the derivative of the tangential velocity implicitly and treat the remaining terms explicitly. Once we
have updated sa, the leading order contribution to the stiffness of the h equation comes from the derivative of the normal
velocity. Therefore, we just need to treat the leading order contribution from the the derivative of the normal velocity implic-
itly when we discretize the h equation. As we see from the previous section (see (76) and (77)), the leading order contribu-
tions from Ua and Va can be expressed as convolution operators. Thus we can invert the implicit solution explicitly by using
the Fourier transform. Based on the above consideration, we propose the following semi-implicit scheme for the Immersed
Boundary method:

Step 1: Discretization of the convection term.

~unþ1;1 � un

Dt
þ 1

2
un

1D0
h;1

~unþ1;1 þ 1
2

D0
h;1 un

1
~unþ1;1� 	

¼ 0; ð79Þ

~unþ1 � ~unþ1;1

Dt
þ 1

2
un

2D0
h;2

~unþ1 þ 1
2

D0
h;2 un

2
~unþ1

� 	
¼ 0: ð80Þ

Step 2: Update of unþ1; pnþ1 and snþ1
a .

snþ1
a � sn

a

Dt
¼ Tðsnþ1

a Þ þ DDaV�;nþ1 � DDah
nU�;nþ1 � T sn

a

� 	� �
; ð81Þ

q
unþ1 � ~unþ1

Dt
¼ �rhpnþ1 þ lr2

hunþ1 þ Lh;n F snþ1
a ; hn; sn;nn

� 	� 	
; ð82Þ

r2
hpnþ1 ¼ 1

Dt
rh � Lh;n F snþ1

a ; hn; sn;nn
� 	� 	

Dt þ q~unþ1� 	
; ð83Þ

where

bT ðsnþ1
a Þ ¼ �

SbDt

2qðmin
a

sn
aÞ

2

ðk min
a

sn
aÞ

2k2 þ k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk min

a
sn
aÞ

2 þ k2
r � jkj3

0BB@
1CCAbsnþ1

a ; ð84Þ

k2 ¼ q
lDt, and u�;nþ1 is the intermediate velocity at tnþ1 which is calculated explicitly using the following algorithm:

q
u�;nþ1 � ~unþ1

Dt
¼ �rhp�;nþ1 þ lr2

hu�;nþ1 þ Lh;nðFðsn
a; h

n; sn;nnÞÞ; ð85Þ

r2
hp�;nþ1 ¼ 1

Dt
rh � ðLh;nðFðsn

a; h
n; sn;nnÞÞDt þ q~unþ1Þ; ð86Þ

V�;nþ1 ¼ L�h;nðu�;nþ1Þ � sn; ð87Þ
U�;nþ1 ¼ L�h;nðu�;nþ1Þ � nn: ð88Þ

Step 3: Update of hnþ1. Once we have updated u, p, and sa at tnþ1, we update hnþ1 using the following semi-implicit
scheme:

hnþ1 � hn

Dt
¼ Sðhnþ1Þ

min
a

snþ1
a
þ 1

snþ1
a
ðDDaUnþ1 þ DDah

nVnþ1Þ � SðhnÞ
min

a
snþ1
a

0@ 1A; ð89Þ

where

Vnþ1 ¼ L�h;nðunþ1Þ � sn; ð90Þ
Unþ1 ¼ L�h;nðunþ1Þ � nn; ð91Þ

bSðhnþ1Þ ¼ �
SbDt max

a
ðsn

a � 1Þ

2qðmin
a

sn
aÞ

2 jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk min

a
sn
aÞ

2 þ k2
r

0BB@
1CCAbhnþ1: ð92Þ

This is our semi-implicit scheme for the Immersed Boundary method for the Navier-Stokes equations. Since this scheme
is derived by using Small Scale Decomposition, we call it the SSD semi-implicit scheme. In the semi-implicit scheme de-
scribed above, we treat only the leading order term implicitly and discretize the lower order terms explicitly. As a result,
the stability of the SSD semi-implicit scheme is weaker than the original unconditionally stable scheme and the SSD
semi-implicit scheme may not have an associated non-increasing energy. A near equilibrium analysis shows that the stabil-
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ity condition is Dt < CðSb;lÞ. Since we treat the convection term implicitly, there is no CFL stability condition for the time
step. Our numerical study also confirms this. Although the leading order term is discretized implicitly, we can solve for
the implicit solution explicitly using the Fourier transform. Moreover, the linear system resulting from the discretization
of the convection term in (79),(80) can be solved efficiently by two tridiagonal solves. Therefore the overall computational
cost of the SSD semi-implicit scheme is comparable to that of an explicit method.

In our scheme, the reference point to reconstruct the interface Xnþ1 is computed explicitly. In order to reduce the stiffness
introduced by the single reference point, we update two points X1;XNb=2, then take average of them to determine the position
of the interface at next time step.

Remark 3. The leading order term we derive above is calculated analytically using the space-continuous formulation with
an unsmoothed Dirac delta function. As Stockie and Wetton pointed out in [34], this analysis over-predicts the stiffness of
the Immersed Boundary method in a practical computation. If we use the leading order approximation directly, the semi-
implicit scheme with the leading order terms derived above tends to over-dissipate the solution. To alleviate this effect in the
practical implementation, we rescale the leading order term by a coefficient which is calculated at the first time step in the
following way:

CV ¼
max

a
V1;�

a

max
a

T s0
a

� 	 ;
CU ¼

max
a

U1

max
a

SUðh0Þ
;

where SUðh0Þ is the leading order term of U1, which can be computed from Sðh0Þ via the Fourier transform. The leading order
term we use in a practical computation is actually CV Tðsnþ1

a Þ and CUSðhnþ1Þ.

Remark 4. We remark that if we exclude the source term from the above algorithm, we can get a unconditionally stable
method for the incompressible Navier–Stokes in the sense of the total energy is non-increasing. The accuracy of this method
would be first order in time and second order in space.

6. Viscous vortex sheet

In this section, we derive an efficient semi-implicit scheme for the viscous vortex sheet with surface tension. The motion
of an interface, C, with surface tension, separating incompressible, viscous fluids can also be formulated by the immersed
boundary method:

q
ou
ot
þ u � ru

� �
¼ �rpþ lMuþ LðXÞðFðsa; hÞÞ; ð93Þ

r � u ¼ 0; ð94Þ
U ¼ L�ðXÞðuðxÞÞ � n; ð95Þ
V ¼ L�ðXÞðuðxÞÞ � s; ð96Þ
sat ¼ Va � haU; ð97Þ

ht ¼
Ua

Sa
þ Vha

Sa
; ð98Þ

where

Fðsa; hÞ ¼
o

oa
ðTsÞ ¼ Than; ð99Þ

and T is the surface tension coefficient. The far field boundary condition is

uðx; yÞ ! ð�V0;0Þ as y! �1: ð100Þ

Note that in this case the force density depends only on the curvature and the configuration of the boundary. If we change
the integration variable from the Lagrangian variable a to the arclength variable s, and use the relationship, ha ¼ jsa, we ob-
tain the following expression for the force density:

fðx; tÞ ¼
Z LðtÞ

0
jðs; tÞdðx� Xðs; tÞÞds; ð101Þ

where LðtÞ is the total arclength of the interface at time t. Since the force is independent of sa, the leading order term of the
tangential velocity becomes zero. In fact, the tangential velocity does not influence the evolution of the interface. The choice
of the tangential velocity only affects the parameterization of the interface. We can use any tangential velocity, V, to evolve
the interface. In particular, we can choose V such that sa is independent of a at each time step. In this case, the arclength

8978 T.Y. Hou, Z. Shi / Journal of Computational Physics 227 (2008) 8968–8991



Author's personal copy

derivative, sa, can be replaced by the total arclength of the interface, LðtÞ. This is the so-called h� L formulation. This leads to
the following choice of V [12]:

Vða; tÞ ¼ Vð0; tÞ þ
Z a

0
h0aU da0 � a

Z 1

0
h0aU da0: ð102Þ

For simplicity, we can simply set Vð0; tÞ to be 0.
If we use the tangential velocity above, then sa is independent of a, and we have

saða; tÞ ¼ LðtÞ ¼
Z 1

0
sa0 ða0; tÞda0: ð103Þ

The evolution of the interface is now given in terms of L and h

Lt ¼ �
Z 1

0
h0aU da0; ð104Þ

ht ¼
1
L
ðUa þ haVÞ: ð105Þ

We remark that Ceniceros and Roma have also used the arclength and tangent angle formulation to alleviate the stiffness
of the viscous vortex sheet with surface tension in [6].

Next, we will derive our semi-implicit scheme for the viscous vortex sheet problem based on the h� L formulation. In order
to resolve the configuration of the sheet, we develop a second order semi-implicit scheme. To simplify the presentation, we
will only describe the semi-discrete algorithm. We use the second order ENO scheme to discretize the convection term [5].
The numerical scheme consists of two steps. In the first step, we update the solution at an intermediate time step tnþ1

2:

Lnþ1
2 � Ln

Dt=2
¼ �

Z 1

0
hn
a0U

n da0; ð106Þ

q
unþ1

2 � un

Dt=2
þ un � run

 !
¼ �rpnþ1

2 þ lr2unþ1
2 þ LnðFðhn; nnÞÞ; ð107Þ

r2pnþ1
2 ¼ r � ðLnðFðhn; nnÞÞ � qun � runÞ; ð108Þ

Unþ1
2 ¼ L�nðunþ1

2Þ � nn; ð109Þ

Vnþ1
2 ¼

Z a

0
hn
a0U

nþ1
2 da0 � a

Z 1

0
hn
a0U

nþ1
2 da0; ð110Þ

hnþ1
2 � hn

Dt=2
¼ Spðhnþ1

2Þ
Lnþ1

2
þ 1

Lnþ1
2

U
nþ1

2
a þ hn

aVnþ1
2

� �
� SpðhnÞ

Lnþ1
2

� �
: ð111Þ

where nn ¼ ð� sin hn; cos hnÞ and

Fðhn; nnÞ ¼ T hn
a nn: ð112Þ

In the second step, we update the solution at tnþ1:

Lnþ1 � Ln

Dt
¼ �

Z 1

0
h

nþ1
2

a0 Unþ1
2 da0 ð113Þ

q
unþ1 � un

Dt
þ unþ1

2 � runþ1
2

� �
¼ �r�pþ lr2 �uþ Lnþ1

2
F hnþ1

2; nnþ1
2

� �� �
ð114Þ

r2�p ¼ r � Lnþ1
2

F hnþ1
2; nnþ1

2

� �� �
� qunþ1

2 � runþ1
2

� �
ð115Þ

U ¼ L�nþ1
2
ð�uÞ � nnþ1

2 ð116Þ

V ¼
Z a

0
h

nþ1
2

a0 U da0 � a
Z 1

0
h

nþ1
2

a0 U da0 ð117Þ

hnþ1 � hn

Dt
¼ SmðhÞ

2L
þ 1

L
Ua þ haV
� 	

� Smðhnþ1
2Þ

2L

 !
: ð118Þ

where nnþ1
2 ¼ � sin hnþ1

2

� �
; cos hnþ1

2

� �� �
,

L ¼ Lnþ1 þ Ln

2
; �u ¼ unþ1 þ un

2
; h ¼ hnþ1 þ hn

2

and

Fðhnþ1
2; nnþ1

2Þ ¼ T h
nþ1

2
a nnþ1

2:
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Now, the leading order terms, bSp and bSm, become simpler. They are defined below:

bSp hnþ1
2

� �
¼ � TDt

4qðLnÞ2
jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkLnÞ2 þ k2
q

0B@
1CAbhnþ1

2; ð119Þ

bSmðhÞ ¼ �
TDt

2qL2
jkj3 � k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkLÞ2 þ k2
q

0B@
1CAbh; ð120Þ

where k2 ¼ 2q
lDt.

The configuration of the interface, Xða; tÞ, can be obtained by integrating the formula

xa ¼ L cos h; ya ¼ L sin h: ð121Þ

Unfortunately, integrating (121) directly can not guarantee that the interface is periodic. The loss of periodicity of the
interface can have a serious consequence on the accuracy and stability of the numerical computation. To overcome this dif-
ficulty, we force the interface to be periodic by integrating the following equivalent formula:

xða; tÞ ¼ xð0; tÞ þ a 1� L
Z 1

0
cosðhða0ÞÞda0

� �
þ L

Z a

0
cosðhða0ÞÞda0; ð122Þ

yða; tÞ ¼ yð0; tÞ � aL
Z 1

0
sinðhða0ÞÞda0 þ L

Z a

0
sinðhða0ÞÞda0: ð123Þ

From the periodicity of the problem, the velocity at xð0; tÞ; yð0; tÞ is always zero, so we fix xð0; tÞ ¼ xð0;0Þ ¼ 0;
yð0; tÞ ¼ yð0;0Þ ¼ 0 in our computations.

7. Numerical results

In this section, we perform a number of numerical experiments to study the stability property of our semi-implicit
scheme for the immersed boundary problem. To illustrate the stability property of our semi-implicit scheme, we apply
our method to a prototype test problem and test our scheme for a wide range of elastic coefficients and viscosity coefficients.
We also compare the performance of our method with that of an explicit scheme and the unconditionally stable scheme. Our
computational experiments confirm that our semi-implicit scheme removes the high frequency stability constraint induced
by the elastic force. The computational saving over an explicit scheme is very substantial. The computational gain is even
bigger as the stiffness of the Immersed Boundary method becomes more severe. We also apply our semi-implicit scheme
to compute the vortex sheet problem in a viscous fluid with Reynolds number of order 10,000, and observe some interesting
phenomena.

7.1. The immersed boundary method for 2D Navier–Stokes equations

We first describe the set-up of our numerical test problem. The test problem we use is one typically seen in the literature,
in which the immersed boundary is a closed curve initially in the shape of an ellipse. We choose an ellipse initially aligned in
the coordinate directions with horizontal semi-axis a ¼ 0:32 and vertical semi-axis b ¼ 0:24:

xða;0Þ ¼ 0:5þ 0:32 cos a;
yða;0Þ ¼ 0:5þ 0:24 sina:

�
ð124Þ

The rest state of the boundary is a circle with radius r ¼ 0:2. The fluid is initially at rest in a doubly periodic domain
X ¼ ½0;1� � ½0;1�. The boundary conditions are periodic in both directions. For this test problem, the boundary oscillates
around a circular equilibrium state with the same area as that of the original ellipse.

We discretize X using a uniform N � N grid. We set the mesh size of the immersed boundary to be Nb ¼ 2N, so that there
are approximately 2 immersed boundary points per mesh width. We use the spectral method to discretize the diffusion term
and the spatial derivatives in the domain X and along the immersed boundary. The leading order singular integral is also
discretized by the spectral method. On the other hand, the convection term is discretized by using the center difference
approximation.

We focus on the tests with large elastic coefficient Sb and relatively small viscous coefficient l. This is also the most chal-
lenging case in practical computations. In our numerical study, we use a wide range parameter values:

q ¼ 1; Sb ¼ 103;104;105; l ¼ 1;0:1;0:01:

We also use different spatial resolutions with

N ¼ 128; 256; 512;

to study the stability of our SSD semi-implicit scheme and to compare its performance with an explicit method.
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It is useful to rewrite the model in the nondimensional form. To this end, we define the following dimensionless variables:

t0 ¼ t
t0
; x0 ¼ x

L
; u0 ¼ ut0

L
; p0 ¼ pt0

l
; f 0 ¼ fLt0

l
;

where L is the size of computational domain, t0 is characteristic time. Using these new variables, we have

ou0

ot0
þ u0 � ru0 ¼ lt0

qL2 ð�rp0 þ Mu0 þ f 0ðx0; t0ÞÞ; ð125Þ

0 ¼ r � u0: ð126Þ

For the equations of the elastic boundary, the dimensionless variables are

X0 ¼ X
L
; s0a ¼

sa

L
; h0 ¼ h; a0 ¼ a

L
; T 0 ¼ T

Sb
; F0 ¼ FL

Sb
; s0 ¼ s; n0 ¼ n:

Then the equations describe the interaction of the boundary and the fluid become

U0 ¼ u0ðX0ða0; t0Þ; t0Þ � n0; ð127Þ
V 0 ¼ u0ðX0ða0; t0Þ; t0Þ � s0; ð128Þ
s0a;t0 ¼ V 0a0 � h0a0U

0; ð129Þ

h0t0 ¼
1
s0a

U0a0 þ V 0h0a0
� 	

; ð130Þ

where

f 0ðx0; t0Þ ¼ Sbt0

lL

Z Lb=L

0
F0ða0; t0Þdðx0 � X0ða0; t0ÞÞda0; ð131Þ

u0ðX0ða0; t0Þ; t0Þ ¼
Z

X
u0ðx0; t0Þdðx0 � X0ða0; t0ÞÞdx0: ð132Þ

From the nondimensional analysis, we can see that there are three nondimensional parameters in this problem:

Sbt0

lL
;

lt0

qL2 ;
Lb

L
:

Let U0 ¼ L
t0

be the characteristic velocity. In our test problem, Lb and L are fixed and depend on the initial condition only.
Then there are only two parameters left:

Sb

lU0
;

qLU0

l
:

We note that the second parameter is the Reynolds number.
If we choose the characteristic velocity to be the maximum velocity, the range of these two parameters in our numerical

tests is,
qLU0

l
:10 � 6� 104;

Sb

lU0
:102 � 1:6� 104:

In the case of Sb ¼ 105 and l ¼ 0:01, the Reynolds number qLU0
l is equal to 6� 104 and the nondimensionalized elastic

coefficient Sb
lU0

is equal to 1:6� 104.

7.2. Accuracy of our semi-implicit scheme

In this subsection, we perform a convergence study for our semi-implicit scheme. First, we study the convergence rate in
time. We fix N ¼ 256 and vary the time steps in powers of 2 from 1

16 to 1
128. The elastic coefficient Sb is fixed to be 1. We con-

sider a sequence of viscosity coefficients: l ¼ 0:1;0:01;0:005. Following [25], we compute the time discretization error at
time T as follows:

eTðv; DtÞ ¼ kvðT; DtÞ � vðT; Dt=2Þkl2 : ð133Þ

For a vector field uðxÞ ¼ ðu1ðxÞ;u2ðxÞÞ defined on the Cartesian grid with xi ¼ ih; yj ¼ jh, the discrete l2 norm is defined as
follows

kukl2 ¼
X

i;j

u2
1ðxi; yjÞ þ u2

2ðxi; yjÞ
� 	

h2

 !1
2

: ð134Þ
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Similarly, the discrete l2 norm for a vector field wðaÞ ¼ ðw1ðaÞ;w2ðaÞÞ defined on the interface C is defined below:

kwkl2 ¼
X

i

w2
1ðaiÞ þw2

2ðaiÞ
� 	

Da

 !1
2

: ð135Þ

We compute the solution up to T ¼ 1 and evaluate the convergence rate based on the numerical solution at T ¼ 1 with
different temporal resolutions. The results are shown in Table 1. As we can see, the convergence rate is better than first order
but it does not achieve second order.

Now, we study the convergence rate in space. The time step is fixed to be 1
512 and the meshsizes are varied in powers of 2

from 32 to 256. The elastic coefficient Sb is fixed to be 1 and we consider a sequence of viscosity coefficients:
l ¼ 0:1;0:01;0:005. The numerical error is computed in the same way as before:

eTðu; hÞ ¼ kuðT; hÞ � uðT; h=2Þkl2 : ð136Þ

The solution is computed up to T ¼ 1. The results are shown in Table 2. Again, we observe that the convergence rate is
better than first order. As the viscosity coefficient decreases, the velocity field becomes more and more singular, and the con-
vergence rate also decreases.

7.3. Stability property of our semi-implicit scheme

In this subsection, we will perform some extensive numerical studies to investigate the stability property of our semi-im-
plicit scheme and compare its performance with an explicit scheme and the unconditionally stable semi-implicit scheme. In
the explicit scheme that we use, we discretize the convection term using the upwinding scheme and update the elastic
boundary explicitly, but the diffusion term is discretized implicitly. This is similar to the Forward Euler/Backward Euler
method used by Stockie and Wetton in [34].

In Fig. 1 we plot the total energy as a function of time for the explicit scheme and our SSD semi-implicit scheme with
different time steps 2� 10�6 and 2� 10�5. When Dt ¼ 2� 10�6, both the explicit and SSD semi-implicit schemes are stable.
When Dt ¼ 2� 10�5, the explicit scheme becomes unstable, but our SSD semi-implicit scheme is still stable.

To further investigate the stability property of our SSD semi-implicit scheme, we compute the maximum time steps with
different meshsizes N ¼ 128; 256; 512. The total time we run is t ¼ 0:01. For each method we run at least 100 steps. The
results are shown in Table 3. As we can see from Table 3, the maximum time steps that we can use for our semi-implicit
scheme is much larger than that for the explicit scheme. Moreover, the larger the elastic coefficient, or the Reynolds number,
or the numerical resolution is, the larger the ratio between the maximum time step of our semi-implicit scheme and that of
the explicit scheme becomes. In the most severe case we have tested with Sb ¼ 105;N ¼ 512 and l ¼ 0:01, the maximum
time step of our semi-implicit scheme is 1160 times larger than that of the explicit scheme. Even after we take into account
the extra cost in inverting the semi-implicit solution, our semi-implicit scheme still runs 683 times faster than the explicit
scheme.

It is interesting to compare the performance of our semi-implicit scheme for the Navier–Stokes equations with that for
the Stokes equations. In [15], we proposed an efficient semi-implicit scheme for the Stokes equations, and showed that our

Table 1
Numerical error of X and u with different timestep

Dt ¼ 1=16 Dt ¼ 1=32 Dt ¼ 1=64 Convergence rate

X l ¼ 0:1 3:32� 10�4 9:73� 10�5 2:85� 10�5 1.77
l ¼ 0:01 2:42� 10�3 7:81� 10�4 2:82� 10�4 1.55
l ¼ 0:005 2:57� 10�3 1:06� 10�3 3:69� 10�4 1.40

u l ¼ 0:1 7:59� 10�4 3:72� 10�4 1:66� 10�4 1.09
l ¼ 0:01 2:22� 10�3 1:06� 10�3 4:62� 10�4 1.13
l ¼ 0:005 4:27� 10�3 2:05� 10�3 9:18� 10�4 1.11

Table 2
Numerical error of X and u with different spatial meshsize

h ¼ 1=32 h ¼ 1=64 h ¼ 1=128 Convergence rate

X l ¼ 0:1 1:52� 10�4 3:57� 10�5 9:31� 10�6 2.01
l ¼ 0:01 3:92� 10�3 1:23� 10�3 3:71� 10�4 1.70
l ¼ 0:005 6:33� 10�3 2:19� 10�3 6:78� 10�4 1.61

u l ¼ 0:1 3:01� 10�4 1:06� 10�5 4:03� 10�5 1.45
l ¼ 0:01 2:86� 10�3 7:25� 10�4 3:86� 10�4 1.44
l ¼ 0:005 7:77� 10�3 2:06� 10�3 1:06� 10�3 1.43
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semi-implicit scheme gave a substantial improvement over an explicit scheme or a fully implicit scheme. One may be inter-
esting to see how the inclusion of the convection term may affect the performance of our semi-implicit scheme. In Table 4,
we list the maximum time steps obtained by using our semi-implicit scheme for the Stokes equations and compare them
with those obtained using the explicit scheme. The comparison is conducted using the same test problem with the same
range of parameters. By comparing Table 3 with Table 4, we can see that the ratio between the maximum time steps of
our semi-implicit scheme and those of the explicit scheme for the Navier–Stokes equations is comparable to that for the un-
steady Stokes equations. This is very encouraging. It shows that our semi-implicit scheme is as effective for the Navier–
Stokes equations as it is for the unsteady Stokes equations.

0 1 2
x 104

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17
x 104

Time

En
er

gy
explicit
semiimplicit

0 1 2
x 104

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2 x 104

Time

En
er

gy

explicit
semiimplicit

Fig. 1. Energy of the Navier–Stokes system for semi-implicit and explicit methods with different time steps, using the implicit scheme (32) and (33) to
discretize the convection term. Left: Dt ¼ 2� 10�6; Right: Dt ¼ 2� 10�5. Sb ¼ 105; l ¼ 0:01.

Table 3
Maximum time steps for our SSD semi-implicit scheme for the Navier–Stokes equations with different meshsizes

Sb ¼ 103 Sb ¼ 104 Sb ¼ 105

SSD s,i exp SSD s,i exp SSD s,i exp

l ¼ 1 N = 128 1:21� 10�1 3:29� 10�4 2:26� 10�2 6:33� 10�5 1:68� 10�3 1:62� 10�5

N = 256 1:19� 10�1 1:49� 10�4 2:26� 10�2 2:53� 10�5 1:68� 10�3 5:72� 10�6

N = 512 1:19� 10�1 6:73� 10�5 2:26� 10�2 1:01� 10�5 1:68� 10�3 2:19� 10�6

l ¼ 0:1 N = 128 1:67� 10�2 1:61� 10�4 4:05� 10�3 4:57� 10�5 1:12� 10�3 1:14� 10�5

N = 256 1:67� 10�2 5:95� 10�5 4:05� 10�3 1:64� 10�5 1:09� 10�3 4:79� 10�6

N = 512 1:67� 10�2 2:21� 10�5 4:05� 10�3 5:72� 10�6 1:09� 10�3 1:63� 10�6

l ¼ 0:01 N = 128 1:13� 10�2 1:17� 10�4 3:38� 10�3 1:92� 10�5 1:01� 10�3 3:48� 10�6

N = 256 1:11� 10�2 4:57� 10�5 3:13� 10�3 1:07� 10�5 8:86� 10�4 1:69� 10�6

N = 512 1:09� 10�2 1:62� 10�5 2:92� 10�3 3:50� 10�6 8:02� 10�4 6:91� 10�7

The legend ‘‘exp” stands for the explicit scheme, ‘‘SSD s,i” the SSD semi-implicit scheme.

Table 4
Maximum time steps for our SSD semi-implicit method for the unsteady Stokes equations with different meshsizes

Sb ¼ 103 Sb ¼ 104 Sb ¼ 105

SSD s,i exp SSD s,i exp SSD s,i exp

l ¼ 1 N = 128 1:22� 10�1 3:29� 10�4 2:26� 10�2 6:33� 10�5 3:73� 10�3 1:61� 10�5

N = 256 1:19� 10�1 1:48� 10�4 2:26� 10�2 2:52� 10�5 3:25� 10�3 5:72� 10�6

N = 512 1:19� 10�1 6:72� 10�5 2:26� 10�2 1:01� 10�5 3:13� 10�3 2:19� 10�6

l ¼ 0:1 N = 128 3:75� 10�2 1:61� 10�4 4:49� 10�3 4:42� 10�5 8:94� 10�4 1:14� 10�5

N = 256 3:24� 10�2 5:95� 10�5 4:39� 10�3 1:58� 10�5 8:89� 10�4 4:20� 10�6

N = 512 3:13� 10�2 2:21� 10�5 4:34� 10�3 5:53� 10�6 8:89� 10�4 1:38� 10�6

l ¼ 0:01 N = 128 8:78� 10�3 1:19� 10�4 2:34� 10�3 2:02� 10�5 6:22� 10�4 3:84� 10�6

N = 256 8:72� 10�3 4:11� 10�5 2:29� 10�3 1:01� 10�5 6:12� 10�4 1:59� 10�6

N = 512 8:68� 10�3 1:39� 10�5 2:26� 10�3 2:68� 10�6 5:61� 10�4 4:94� 10�7

The legend ‘‘exp” stands for the explicit scheme, ‘‘SSD s,i” the SSD semi-implicit scheme.
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The results we present here confirm that our SSD semi-implicit scheme can eliminate the stability constraint from both
the convection term and the elastic force. The stability of our SSD semi-implicit scheme is much better than that of the ex-
plicit scheme. We note that the maximum time steps for both the Navier–Stokes equations and the unsteady Stokes equa-
tions are essentially independent of the meshsize. On the other hand, we also observe that the maximum time steps for our
SSD semi-implicit scheme still have some mild dependence on the elastic coefficient and the Reynolds number. This is be-
cause the small scale decomposition does not remove the stiffness of the immersed boundary problem in the low to inter-
mediate frequencies. The large elastic coefficient Sb is multiplied to the solution in all frequencies. Thus the stiffness also
contributes to the low to intermediate frequencies of the solution. This explains why we can not completely remove the stiff-
ness of the elastic force in the immersed boundary method by using the small scale decomposition. Nonetheless, given the
simplicity and the efficiency of our semi-implicit scheme, the computational gain we obtain over the explicit scheme is al-
ready very substantial.

7.4. Performance

Next, we compare the computational cost of our SSD semi-implicit scheme with that of the unconditionally stable semi-
implicit scheme and the explicit scheme. Specifically, we compare the CPU time that is required for each of these schemes to
obtain an accurate numerical solution at a given time. Since there is extra computational cost in implementing our semi-im-
plicit scheme, it is important to compare how much saving we actually obtain when performing a large scale computational
with realistic physical parameters. We document the CPU times required for each scheme if we compute the solution up to
t ¼ 0:05 in the most severe case of Sb ¼ 105 and l ¼ 0:01. We use Dt ¼ 5� 10�4 for our semi-implicit scheme and the uncon-
ditionally stable semi-implicit scheme. This choice of Dt ¼ 5� 10�4 is due to the accuracy consideration, not that of stability.
We choose this time step to ensure that the interface is resolved with a reasonable accuracy. Note that the corresponding
time step required by the explicit scheme is much smaller. In the case of N ¼ 512, the maximum time step that is required
by the time step stability constraint is 6:91� 10�7.

In Table 5, we show the CPU times in seconds for these three schemes. The computational results presented here are per-
formed by using a Matlab code in a Dell OPTIPLEX GX620 computer (64-bit-capable 3.6 GHz, Pentium 4, 660 CPU, 512 MB of
RAM). We observe that the computational cost of the unconditionally stable semi-implicit scheme is roughly of the same
order as that of the explicit scheme for a modest resolution. The computational gain over the explicit scheme is very limited.
On the other hand, our SSD semi-implicit scheme runs 427 times faster than the explicit scheme in the case of N ¼ 512. As
the elastic coefficient or the Reynolds number or the resolution increases, the gain over the explicit scheme is even more
substantial.

Recall that the convection term is discretized by using a variant of the semi-implicit ADI scheme, (32) and (33). To obtain
the intermediate velocity field ~u, we need to invert a N � N linear system 4N times in each time step. Fortunately, the matrix
for this linear system is a cycled tridiagonal matrix, which can be solved with a linear complexity. Thus, the complexity for
solving eu is essentially the same as that for discretizing the convection term by the upwinding scheme. This shows that the
computational cost of our SSD semi-implicit scheme per time step is comparable to that of the explicit scheme.

As we mentioned before, we can also discretize the convection term by using an explicit scheme, such as the upwinding
scheme. If we do so, we obtain a new semi-implicit scheme by replacing the discretization (32) and (33) by the upwinding
scheme. We call this modified scheme the upwind semi-implicit scheme. The upwind semi-implicit scheme needs to satisfy

Table 5
The CPU time in seconds for semi-implicit and explicit method

Explicit SSD s,i Stable s,i

N = 128 660 13 660
N = 256 4970 44 3330
N = 512 96961 227 18300

The total time is 0.05, Sb ¼ 105; l ¼ 0:01. The legend ‘‘SSD s,i” stands for the SSD semi-implicit scheme, ‘‘stable s,i” the unconditionally stable semi-implicit
scheme. We use the maximum time step listed in Table 3 for the explicit scheme. For the SSD semi-implicit scheme and unconditionally stable semi-
implicit scheme, we use Dt ¼ 5� 10�4.

Table 6
The CPU time in seconds for three semi-implicit schemes with different treatments of the convection term

SSD s,i Upwind s,i (uniform) Upwind s,i (adaptive)

N = 128 13 39 23
N = 256 44 474 194
N = 512 227 9912 2672

The total time is 0.05, Sb ¼ 105; l ¼ 0:01. The legend ‘‘SSD s,i” stands for the SSD semi-implicit scheme, ‘‘upwind s,i (uniform)” the semi-implicit scheme
with an upwinding discretization of the convection term and a uniform time stepping, ‘‘upwind s,i (adaptive)” the semi-implicit scheme with an upwinding
discretization of the convection term and an adaptive time stepping. For the SSD semi-implicit scheme, we use Dt ¼ 5� 10�4.
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the CFL condition to maintain stability. We have performed numerical experiments to compare the performance of the up-
wind semi-implicit scheme with that of the SSD semi-implicit scheme introduced in Section 5. We have used both a uniform
time step and an adaptive time step to satisfy the CFL condition. The results are shown in Table 6. In the case of N ¼ 512
using the adaptive time stepping, we need to run 1226 steps to solve the solution at t ¼ 0:05 for the upwind semi-implicit
scheme. The CPU time is 11 times of that of our SSD semi-implicit scheme. If we use a uniform time step, the number of time
steps would increase to 4386. The CPU time becomes 9912 seconds, which is about 44 times of that of our SSD semi-implicit
scheme. Therefore the additional saving by using the ADI semi-implicit scheme to the convection term is quite significant.

7.5. Area conservation

It is known that the immersed boundary method does not conserve the area enclosed by the immersed boundary
although the velocity field on the Eulerian grid satisfies a discrete divergence free condition. Our semi-implicit method does
not fix this problem. However, we find if the velocity field is updated by a spectral method instead of a finite difference meth-
od, the area is conserved much better. This observation is illustrated in Fig. 2. For the same explicit method, if we use the
spectral method to solve for the velocity, the area is almost conservative with only 0.07% area loss. On the other hand, if
we use a finite difference method to solve for the velocity field, then the area loss is as large as 23%. It has been observed
that the larger the time step is, the more severe the area loss becomes [26]. Note that our SSD semi-implicit scheme uses
a much larger time step than the explicit scheme (by a factor as large as 1000), the use of our semi-implicit scheme may
result in a greater area loss than an explicit scheme. Fortunately, since we use the spectral method to solve the velocity field,
our SSD semi-implicit scheme still gives a much smaller area loss than the explicit scheme using a finite difference method to
solve the velocity field.

7.6. The immersed boundary method for the viscous vortex sheet

In this section, we apply the semi-implicit scheme (106)–(120) to compute the viscous vortex sheet problem with surface
tension. The interface is nearly flat initially

xða;0Þ ¼ a; yða;0Þ ¼ 0:05 sin 2pa; cða;0Þ ¼ 2; ð137Þ

where c is the vortex sheet strength.
The computational domain is a rectangular domain, ½0;1� � ½�1;1�. The horizontal boundaries are periodic and the top and

bottom boundaries are rigid, moving walls. The velocity fields at the top and bottom boundaries are (1,0) and ð�1;0Þ, respec-
tively. This generates a shear to the fluid flow. The density and viscosity of the fluids above and below the interface are same,
q ¼ 1;l ¼ 2� 10�4. The Reynolds number is equal to 10,000, which is very large. The mesh size we use is 1024� 2048. The
Navier–Stokes equations are solved by the projection method [2].

A ‘‘frozen coefficient” analysis reveals that an explicit method needs to satisfy the following time step stability constraint:

Dt < C We1=2 ðsahÞ3=2
; where sa ¼min

a
sa; ð138Þ

where We is the Weber number [12,13], h ¼ 1=Nb is the grid spacing, Nb is the number of grid points along the interface C.
Since the arclength spacing, Ds 
 sah, Eq. (138) implies that the stability constraint is in fact determined by the minimum
spacing in the arclength between two adjacent points on the grid.
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Fig. 2. Area for our SSD semi-implicit and explicit schemes using a finite difference or a spectral method. For the explicit scheme, we use Dt ¼ 3� 10�6. For
the SSD semi-implicit scheme, we use Dt ¼ 1� 10�4. Sb ¼ 105; l ¼ 0:01.
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We plot sa as a function of time for two different values of surface tension coefficients in Fig. 3 on a base 10 logarithmic
scale. We can see that sa decreases by a factor of more than 102 as the time increases. Thus the time step constraint decreases
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Fig. 3. The evolution of log10ðsaÞ for different values of surface tension.
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Fig. 4. Configurations of the interface at different times, 0.5 s, 1 s, 1.5 s, 2 s, surface tension coefficient is T ¼ 0:05.
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Fig. 5. Resolution comparison for N ¼ 1024 (solid) and N ¼ 1536 (dashed-dotted) at t = 2 s with surface tension coefficient T ¼ 0:05.
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Fig. 6. Configurations of the interface at different times, 0.25 s, 0.5 s, 1 s, 1.5 s, surface tension coefficient is T ¼ 0:005.
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by at least a factor of 103 for an explicit method. This makes the computations using an explicit immersed boundary method
very expensive.

The evolution of the interface with surface tension coefficient T ¼ 0:05 is shown in Fig. 4. The Weber number in this case
is We ¼ 40=p. For this value of Weber number, the interface is unstable but not completely dominated by roll-up induced
through the Kelvin–Helmholtz instability. At the early time, the interface tends to roll up, but the surface tension force pre-
vents it from rolling up further. The interface deforms into two elongated fingers that penetrate each fluid into the other. As
the time increases, the neck of these fingers becomes thinner and the length of the fingers becomes longer. In the process, the
fluid accumulates near the tip of each figure. Our result is qualitatively similar to the result obtained by Hou et al. [13], Cenic-
eros and Roma [6] and by Tryggvason et al. [36] for an intermediate Weber number. In Fig. 5, we compare the interface that is
computed using N ¼ 1024 with that using N ¼ 1536 at t ¼ 2s. We note that the interface computed by the coarser mesh
moves a bit faster than the interface computed by the finer mesh. Our result is in a qualitative agreement with the corre-
sponding result obtained by Ceniceros and Roma (see Fig. 34 of [6]). As pointed by Tryggvason et al. [36], the surface tension
forces are spread out more on a coarser mesh. As a result, the effect of surface tension is weaker on a coarser mesh and the
interface computed by a coarser mesh moves a bit faster than the interface computed by a finer mesh. We also observe that
the accurate computation of the interface at this late stage requires a very high spatial resolution. This is consistent with the
result obtained by Ceniceros and Roma (see Fig. 34 of [6]).

When the surface tension coefficient is 0.005, the interface rolls up in time as it is shown in Fig. 6. The Weber number in
this case is We ¼ 400=p. At t ¼ 0:25, the interface produces two fingers. These fingers grow in length in the sheet-wise direc-
tion. The tips of the fingers broaden. This can be clearly seen at t ¼ 0:5. By t ¼ 1, the vortex sheet produces another turn and
the fingers have become broader and larger. As time increases, the neck of the fingers becomes thinner. It is possible that the
sides of the fingers might also collide at some finite time, and so abbreviate their smooth evolution. In the case of an inviscid
vortex sheet with surface tension, a finite time pinching singularity has been observed near the thin neck of the finger, form-
ing a trapped bubble. In the case of the viscous vortex sheet with surface tension, this does not appear to the case (at least for
this initial data). In Fig. 7, we plot the close-up of the tip region and its pocket of fluid. The neck below the tip is becoming
thinner in time. So far as can be discerned, it seems that the thickness of the neck of the finger does not appear to approach to
zero in a finite time. If this is the case, viscosity would regularize the pinching singularity of the inviscid vortex sheet.

To obtain better evidence that the viscous vortex sheet does not develop a pinching singularity, we perform a resolution
study. In Fig. 8, we compare the interfacial profiles that are obtained by using two large meshsizes: N ¼ 1024 and N ¼ 1536,
respectively. The interfaces computed by the two resolutions agree very well except near the tip of the interface. As we ob-
served before, the interface computed by a coarser mesh moves a bit faster than the interface computed by a finer mesh near
the tip. Note that, at this time, there are still more than 10 grid points to resolve the smallest gap, this seems to indicate that
our computation is still reasonably resolved.

We remark that Ceniceros and Roma had previously performed a very careful study of the viscous vortex sheet problem
for various Weber numbers using an acrlength parameterization of the interface and a locally adaptive mesh to solve for the
velocity field [6]. They observed that viscosity tends to stabilize the vortex sheet against pinch-off and presented a detailed
analysis to explain why this is the case. This behavior is qualitatively different from the inviscid vortex sheet with surface
tension [13]. Our computational results are in a qualitative agreement with the corresponding results obtained in [6].
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Fig. 7. The closeup view of the vortex sheet roll-up at t = 1 s with surface tension coefficient T ¼ 0:005.
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It requires very high space resolutions to resolve the nearly singular interfacial dynamics of the viscous vortex sheet prob-
lem. Since the immersed boundary method is only first order in space, it is not the best method to use to resolve the nearly
singular solution of the viscous vortex sheet problem. Local mesh refinement would be helpful in providing the higher local
resolution near the region where the two interfaces are nearly touching as was done in [6]. We do not intend to use the im-
mersed boundary method to perform a careful study of the nearly singular dynamics of the viscous vortex sheet problem.
This is not the purpose of our paper. The main purpose of including the viscous vortex sheet problem in our study is to illus-
trate that the immersed boundary method can be applied to study interfacial dynamics that is more complicated than the
prototype elastic problem that we considered earlier.

We should also point out that for the viscous vortex sheet problem with small surface tension coefficient, the stiffness of
the problem is much less severe than the elastic problem with very large elastic coefficients that we consider in this paper.
For the viscous vortex sheet problem, the use of an arclength parameterization can already reduce significantly the stiffness
associated with surface tension, as observed by Ceniceros and Roma [6]. The combination of the acrlength parameterization
of the interface and the use of locally adaptive mesh to solve for the velocity field seems to offer a computationally effective
method to study the nearly singular behavior of the viscous vortex sheet problem [6].

8. Concluding remarks

In this paper, we have developed a very efficient semi-implicit immersed boundary scheme for solving the immersed
boundary problem for the Navier–Stokes equations. The immersed boundary method has emerged as one of the most useful
numerical methods in computing fluid structure interaction, and has found numerous applications. But it also suffers from
the severe time step stability restriction due to the stiffness of the elastic force. Guided by our stability analysis, we have
developed an efficient semi-implicit scheme which removes the stiffness of the immersed boundary method. We have dem-
onstrated that our semi-implicit scheme has much better stability property than the explicit scheme. More importantly, un-
like most existing implicit or semi-implicit schemes, our semi-implicit scheme can be implemented very efficiently. In fact,
our semi-implicit scheme has a computational complexity that is essentially the same as that of an explicit scheme in each
time step, but with a much better stability property. The saving in the computational cost is very substantial. We have dem-
onstrated this improved stability for a range of parameters and numerical resolutions. Our computational results have
shown that the more severe the stiffness of the immersed boundary problem becomes, the bigger the computational saving
our semi-implicit schemes can offer.

One of the essential steps in developing our semi-implicit scheme is to obtain an unconditionally stable semi-implicit dis-
cretization of the immersed boundary problem. This provides us with a building block to construct our efficient semi-impli-
cit schemes. By applying the small scale decomposition to the unconditionally stable semi-implicit time discretization and
further simplifying the leading order singular kernel, we obtain our SSD semi-implicit scheme. The advantage of this semi-
implicit scheme is that the leading order term can be expressed as a convolution operator, which can be evaluated explicitly
using the Fourier transformation. This allows us to solve for the implicit solution explicitly in the spectral space. Another
contribution of this paper is to introduce a variant of the semi-implicit ADI discretization for the convection term to elim-
inate the usual CFL stability restriction. Both the ADI discretization of the convection term and the leading order semi-im-
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Fig. 8. Resolution comparison for N ¼ 1024 (solid) and N ¼ 1536 (dashed-dotted) at t = 1 s with surface tension coefficient T ¼ 0:005.
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plicit scheme using the Small Scale Decomposition can be inverted very efficiently. This enables us to obtain a semi-implicit
scheme which has the same order of complexity as the explicit scheme per time step but with a much better stability
property.

As an application, we have applied our semi-implicit scheme to study the large time behavior of the viscous vortex
sheet with surface tension. The Reynolds number we consider is equal to 10,000, which is very challenging computation-
ally. For large Weber number, we observe that the vortex sheet rolls up and forms a thin neck near the tip of the finger.
Our computations seem to suggest that the thickness of the neck of the finger does not approach to zero in a finite time.
Our computational result is in a qualitative agreement with the previous result obtained by Ceniceros and Roma [6] who
observed that viscosity tends to regularize the finite time pinching singularity of the inviscid vortex sheet and performed
a detailed study to explain why this is the case. This behavior is qualitatively different from the inviscid vortex sheet
with surface tension.

The methodology that we present here can be generalized to the three dimensional case. We are currently developing an
efficient semi-implicit scheme for the 3D immersed boundary problem. This will be reported elsewhere in the future.
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