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Abstract

In this paper, we propose a numerical method based on Wiener Chaos expansion and apply it to solve the stochastic
Burgers and Navier–Stokes equations driven by Brownian motion. The main advantage of the Wiener Chaos approach is
that it allows for the separation of random and deterministic effects in a rigorous and effective manner. The separation
principle effectively reduces a stochastic equation to its associated propagator, a system of deterministic equations for
the coefficients of the Wiener Chaos expansion. Simple formulas for statistical moments of the stochastic solution are pre-
sented. These formulas only involve the solutions of the propagator. We demonstrate that for short time solutions the
numerical methods based on the Wiener Chaos expansion are more efficient and accurate than those based on the Monte
Carlo simulations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Stochastic partial differential equations (SPDEs) are known to be an effective tool in modeling complicated
phenomena. Examples include wave propagation [25], diffusion through heterogeneous random media [26],
randomly forced Burgers and Navier–Stokes equations (see e.g. [2,5,15,23] and the references therein). Addi-
tional examples can be found in material science, chemistry, biology, and other areas. Many of the small scale
effects and various uncertainties in these problems, which are difficult to deal with using traditional methods,
can be naturally modeled by stochastic processes. Unlike deterministic partial differential equations, solutions
of SPDEs are random fields. Hence, it is important to be able to deal with their statistical characteristics, e.g.
mean, variance, and higher-order moments.

Due to the relatively complex nature of SPDEs, numerical simulations play an important role in the explo-
ration of this important and useful class of PDEs. Currently, the Monte Carlo method is by far the most pop-
ular in simulating the effects modeled by SPDEs. The Monte Carlo method and its modifications, however,
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have some limitations in applications to SPDEs with complex stochastic forcing, e.g., PDEs driven by Brown-
ian motion. To correctly simulate small scale effects, one has to use a fine mesh to resolve the smallest possible
scales. Moreover, many realizations have to be computed in order to obtain reliable estimates of various sta-
tistical properties. Therefore, Monte Carlo simulations are generally very expensive.

In this paper, we deal with Burgers and Navier–Stokes equation with Brownian-motion type forcing. These
equations are important due to their role in modeling of certain turbulent effects (for detailed discussions, see
[1,15,17] and the references therein).

The method of attack is based on the Fourier analysis with respect to the Gaussian (rather than Lebesgue)
measure. More specifically, the approach taken in this paper is based on the Cameron–Martin version of the
Wiener Chaos expansion (see, e.g. [3,12] and the references therein). Sometimes, the Wiener Chaos expansion
(WCE for short) is also referred to as the Hermite polynomial chaos expansion.

The WCE of a solution of an SPDE separates the deterministic effects from the randomness. In particular,
the Fourier coefficients of a white noise driven Navier–Stokes equation verify a system of coupled determin-
istic PDEs, which we refer to as the propagator (see, e.g. [22,23]). The propagator is a deterministic mech-
anism responsible for the evolution of randomness inherent to the original stochastic PDE. Remarkably, the
propagator has the same type of nonlinearity as the original equation. Once the propagator is determined,
standard deterministic numerical methods can be applied to solve it efficiently. The main statistics (such as
mean, covariance, and higher-order statistical moments) can be calculated by simple formulas involving only
the coefficients of the propagator. In the WCE approach, there is no randomness directly involved in the
computations. One does not have to rely upon pseudo-random number generators, and there is no need
to solve the stochastic PDEs repeatedly over many realizations. Instead, the propagator system is solved only
once.

There is a long history of using WCE as well as other polynomial chaos expansions in problems in physics
and engineering. See, e.g. [9,24,6,7], etc. In particular, the papers [9,24,6,7] deal with the contribution of low-
order Wiener Chaos approximations to the inertial range spectrum of the Burgers equation. Ghanem and
other authors have developed stochastic finite element methods based on the Karhunen–Loève expansion
and Hermite polynomial chaos expansion [11,27]. Karniadakis et al. generalized this idea to other types of
randomness and polynomials [13,30,31].

As mentioned above, this paper is mainly concerned with the equations of fluid dynamics driven by Brown-
ian motion. Typically, applications of the polynomial chaos methodology to stochastic PDEs considered in
the literature deal with stochastic input generated by a finite number of random variables (see, e.g.
[27,11,30,29]). Usually, this assumption is introduced either directly or via a representation of the stochastic
input by a truncated Karhunen–Loève expansion. In contrast, in our case it is necessary to deal constantly with
a flux of new random variables (successive time increments of the driving Brownian motions). This effect com-
plicates the problem drastically, even on a short time interval.

To mitigate this problem, we have introduced a compression technique that allows to reduce the number of
Hermite polynomials in the expansion quite dramatically. The idea of the method is similar to the sparse ten-
sor products developed by Schwab, etc. [10]. Also, to enhance the accuracy of the numerical simulations, we
take advantage of the recently discovered analytical formulae for the coefficients of the WCE (see [23]). Pre-
viously, in the literature on numerical analysis of SPDEs, the coefficients were modeled numerically (Ghanem,
personal communication).

The statistical characteristics of fluid flow forced by Brownian motion is far from being Gaussian (see, e.g.
[7,24]). To address this problem, we have implemented a WCE based technique for computing moments of all
orders. It is based on rigorous analytical formulae that involve only the deterministic coefficients of the WCE.
In the past, numerical approximations based on polynomial chaos approach to equation of fluid dynamics
dealt only with the first- and the second-order moments. In our simulations the statistical moments up to
the fourth order were computed.

Practical application of the WCE requires a two way truncation: (a) with respect to the number K of the
random variables/wavelets and (b) with respect to the order N of the Hermite polynomials involved. We have
addressed the related error analysis problems both analytically and numerically. In particular, it was estab-
lished that, at least in the case of spatially invariant forcing, the truncation error at time Dt is given by the
(asymptotic) formula
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where r2 is the local variance of the Brownian forcing. This formula implies that the methods converges also
globally at the rate Oð

ffiffiffiffiffi
Dt
p
Þ. To the best of our knowledge, no other analytical results on the WCE error anal-

ysis for the equations of fluid dynamics are available.
Numerical simulations are provided for stochastic Burgers equations with periodic boundary conditions

and a 2D stochastic Navier–Stokes equation coupled with transport equation. In these experiments, we have
compared the solution accuracy and the computational effectiveness of the WCE and the Monte Carlo (MC)
approaches. In the case of spatial invariant forcing, we obtain a semi-analytic exact solution for the Burgers
and the Navier–Stokes equations and use the semi-analytical solutions to verify the accuracy of the WCE-
based method. Our numerical results demonstrate convincingly that the WCE-based method is more accurate
than the corresponding MC computations. We also found that for short time computations, the numerical
method based on the WCE is more efficient than the corresponding MC simulation at the same level of accu-
racy. The gain could be quite substantial in the one-dimensional case. The gain in the multi-dimensional case is
offset to some extent by the rapid increase in the number of the WCE coefficients. However, the computational
cost of the WCE method is still notably lower than the MC method, especially when the resolution level is
high.

It is still very challenging to develop a WCE method which is effective for long time computations. In long
time computations, the required number of WCE coefficients will increase rapidly which would make the
direct applications of the WCE method much more difficult. We believe that the insight gained in the current
study will be instrumental in the investigation of the long time WCE computations. In Section 6, we briefly
discuss some modifications of the WCE that appears to be suitable for long time computations.

This paper is structured as follows: in Section 2, we outline the theoretical foundation of the Wiener Chaos
expansion. In Section 3, by applying the WCE method to a stochastic Burgers equation, we illustrate the gen-
eral procedure by deriving the Wiener Chaos propagator for a nonlinear SPDE. We also demonstrate the fast
convergence and high accuracy of the WCE method for short time computations. In Section 4, we apply the
WCE method to solving a stochastic Navier–Stokes equation modeling the roll-up of thin vorticity layers
through the Kelvin–Helmholtz instability. In Section 5, a model error analysis of the WCE method is done
in the case where the random forcing is independent of the spatial variables. In Section 6, we discuss some
issues related to long time integrations of the WCE method. Brief conclusions are stated in Section 7.

2. Wiener Chaos expansion

Let u be a solution of a generic SPDE
utðx; tÞ ¼ LðuÞ þ r _W ðtÞ; ð2:1Þ

where W(t) is a Brownian motion. A solution u of this equation, is a function of t, x and the Brownian motion
path W t

0 ¼ fW ðsÞ; 0 6 s 6 tg. It would be beneficial if one could solve Eq. (2.1) by separating the spatial–
temporal variables (t, x) from the random variable W t

0.
For any orthonormal basis {mi(s), i = 1,2, . . .} in L2([0, t]), e.g., wavelets or trigonometric functions, define
ni ¼
Z t

0

miðsÞdW ðsÞ; i ¼ 1; 2; . . . . ð2:2Þ
It is easy to show that ni are independent identically distributed Nð0; 1Þ (standard Gaussian) random vari-
ables. It is a standard fact that
W ðsÞ ¼
Z t

0

v½0;s�ðsÞdW ðsÞ ¼
X1
i¼1

ni

Z s

0

miðsÞds; ð2:3Þ
where v[0, s] (s) is the characteristic function of interval [0, s]. The expansion (2.3) converges in the mean square
sense
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for s 6 t uniformly.
As a result, one can view u(x, t) as a function of the spatial-temporal variable (x, t) and random variables

n = (n1,n2, . . .). These two groups of variables could be separated by a Fourier transform with respect to the
tensor products of Hermite polynomials of n.

Denote the set of multi-indices with finite number of non-zero components as
J ¼
�

a ¼ ðai; i P 1Þjai 2 f0; 1; 2 . . .g; jaj ¼
X1
i¼1

ai <1
�

For an index a ¼ ða1; a2; . . .Þ 2 J, a multi-variable Hermite polynomial of n = (n1,n2, . . .) is defined as
T aðnÞ ¼
Y1
i¼1

H aiðniÞ; ð2:4Þ
where Hn(x) is the normalized nth-order Hermite polynomials [8]. For a 2 J, the product in the right-hand
side of (2.4) only has a finite number of factors and is well defined. The random functions Ta are often called
Wick polynomials. They form a complete orthonormal basis in L2 on the probability space with respect to the
Gaussian measure generated by n. In particular, E(TaTb) = dab where E is the expectation symbol. Note that
E(Ta) = 0 when a 6¼ 0 and E(T0) = T0 = 1. The order of the polynomial Ta is defined as jaj ¼

P
kak. The fol-

lowing result, often referred to as the Cameron–Martin theorem, forms the foundation of Wiener Chaos
theory.

Theorem 2.1 [3]. Assume that for fixed x and s 6 t, u(x, s) is a functional of the Brownian motion W on the
interval [0, s] with E|u(x, s)|2 <1, then u(x, s) has the following Fourier–Hermite expansion:
uðx; sÞ ¼
X
a2J

uaðx; sÞT a; uaðx; sÞ ¼ E½uðx; sÞT a�; ð2:5Þ
where Ta are the Wick polynomials defined by (2.4). Furthermore, the first two statistical moments of u(x, s) are
given by:
E½uðx; sÞ� ¼ u0ðx; sÞ; ð2:6Þ
and
E½u2ðx; sÞ� ¼
X
a2J
juaðx; sÞj2. ð2:7Þ
The Fourier–Hermite series (2.5) is often called the Wiener Chaos expansion (WCE) of u(x, s).

In the following sections, we will develop the WCE for randomly forced Burgers and Navier–Stokes equa-
tions and apply it to compute the statistical moments of their solutions.
3. WCE method for stochastic Burgers equations

The stochastically forced Burgers equation has been an active research subject in recent years. Unlike its
pure decaying unforced counterpart, the randomly forced Burgers equation has a much richer structure. It
appears in a wide range of problems in statistical physics. As a test model, the randomly forced Burgers equa-
tion has also been studied in the context of turbulent flow. For detailed discussions, see [1,15,16] and the ref-
erences therein.

In this section, we consider the following 1D stochastic Burgers equation:
ut þ 1
2
ðu2Þx ¼ luxx þ rðxÞ _W ðtÞ;

uðx; 0Þ ¼ u0ðxÞ; uð0; tÞ ¼ uð1; tÞ;

(
ðt; xÞ 2 ð0; T � � ½0; 1�; ð3:1Þ
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where W(t) is a Brownian motion. For the sake of simplicity, we assume that the initial condition u0(x) is
deterministic and limit our considerations to the periodic case. Other types of boundary conditions could
be treated similarly. It is known (see, e.g. [4]) that if ku0kL2

<1 and krkL2
<1; then Eq. (3.1) has a unique

square integrable solution. Therefore, the solution of (3.1) admits a Wiener Chaos expansion. Below, we will
derive a system of equations for the coefficients of the WCE and solve this system numerically. By comparing
our results with those computed by Monte Carlo simulations and semi-analytic solutions, we will demonstrate
the efficiency and the accuracy of the WCE method.
3.1. Equations for WCE coefficients

Let us fix an arbitrary orthonormal basis {mi(t), i P 1} in L2([0, T]) and write ni ¼
R T

0
miðtÞdW ðtÞ. The

Wick polynomials Ta associated with the Brownian process W(t) are defined by (2.4). By the Cameron–Martin
Theorem 2.1 the solution of the Burgers equation (3.1) admits the Wiener Chaos expansion (2.5). Further-
more, it can be shown that (see [23] for more details)
u2 ¼
X
p2J

X
06b6a

Cða; b; pÞua�bþpubþpT a; ð3:2Þ
where
Cða; b; pÞ ¼
a

b

� �
bþ p

p

� �
a� bþ p

p

� �� �1
2

. ð3:3Þ
Moreover, we can deduce from formula (3.2) the following analytical formula to compute the third and the
fourth-order moments:
E½u3� ¼ E½u2 � u� ¼
X
a2J

X
p2J

X
06b6a

Cða; b; pÞua�bþpubþp

 !
ua; ð3:4Þ

E½u4� ¼ E½u2 � u2� ¼
X
a2J

X
p2J

X
06b6a

Cða; b; pÞua�bþpubþp

 !2

. ð3:5Þ
Using formula (3.2) and expansion (2.3), we can derive the governing equations for the WCE coefficients:
o

ot
uaðx; tÞ þ

1

2

X
p2J

X
06b6a

Cða; b; pÞ o

ox
ðua�bþpubþpÞðx; tÞ ¼ l

o
2

ox2
uaðx; tÞ þ rðxÞ

X1
i¼0

Ifaj¼dijgmiðtÞ; ð3:6Þ
where for fixed i, Ifaj¼dijg equals 1 if aj = dij, and equals 0 otherwise. Since the initial condition u0(x) is deter-
ministic, the initial conditions for the WCE coefficients are
uaðx; 0Þ ¼
u0ðxÞ; a ¼ 0;

0; a 6¼ 0.

�
ð3:7Þ
Clearly, all the WCE coefficients still satisfy the periodic boundary condition ua(0, t) = ua(1, t).
The WCE propagator (3.6) is a deterministic PDE system. The effect of the random forcing is captured by

the L2 basis functions mi(t). The first WCE coefficient u0(x, t), which is the mean of the stochastic solution,
satisfies
ðu0Þt þ
1

2
ðu2

0Þx þ
1

2

X
jaj6¼0

ðu2
aÞx ¼ lðu0Þxx. ð3:8Þ
Clearly, the random forcing does not contribute to the mean u0 directly, since the forcing has zero mean. How-
ever, due to the nonlinearity, the mean is driven by higher-order WCE coefficients that represent the random-
ness of the solution. If we truncate the infinite system (3.6), then the truncated system can be viewed as a
closure of the Reynolds equation of the mean.
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3.2. Numerical solution

In the following numerical experiment, we assume that the initial condition of the stochastic Burgers equa-
tion (3.1) is given by
u0ðxÞ ¼
1

2
ðecos 2px � 1:5Þ sin½2pðxþ 0:37Þ�. ð3:9Þ
We choose the spatial part of the random forcing as rðxÞ ¼ 1
2

cosð4pxÞ; and set the viscosity l = 0.005.
The WCE propagator (3.6) is an infinite PDE system and has to be truncated for the numerical purpose.

Recall that the WCE is a double infinite expansion:
uðx; tÞ ¼
X
a2J

uaðx; tÞ
Y1
i¼1

H aiðniÞ.
Therefore, we need to truncate the WCE both ways. Suppose we want to keep only K Gaussian random vari-
ables and Wick polynomials up to Nth-order in the WCE approximation. Define the truncated index set
JK;N ¼ fa ¼ ða1; . . . ; aKÞ; jaj 6 Ng. Then the truncated WCE is given by
uK;N ðx; tÞ ¼
X
jaj6N

uaðx; tÞ
YK
i¼1

H aiðniÞ ¼
X

a2JK;N

uaðx; tÞT a. ð3:10Þ
� �
The resulting approximation has altogether
PN

n¼0

K þ n� 1
n

terms. The number of terms increases alge-

braically but very fast with respect to both N and K. For a typical truncation K = 6 and N = 4, the finite
WCE approximation has 210 coefficients. However, the simple truncation (3.10) is not optimal. The WCE
decays both in the number of Gaussian variable ni and the Wick polynomial order. Note that for Wick poly-
nomial Ta, a = (a1,a2, . . . ,aK), the component ai denotes the order of the Hermite polynomial for random
variable ni. Instead of using Hermite polynomials of the same order for all ni, i 6 K, it is better to use
lower-order polynomials for ni with higher subscripts. In addition to the truncation

PK
i¼1ai 6 N , we introduce

some extra constraints such as ai 6 N � i. This idea is similar to the sparse tensor product developed by
Schwab, etc. (Theorem 4.9 of [10]) for solving random elliptic problems by polynomial chaos methods. For
K = 6 and N = 4, we can use the maximum fourth-order Hermite polynomials for n1, n2, but only third-order
Hermite polynomials for n3, second-order Hermite polynomials for n4 and first-order Hermite polynomials for
n5, n6. We can also decouple the random variables n5, n6 from the rest of the random variables n1, n2, n3, n4.
With the above compressions, the number of coefficients will be reduced dramatically, from 210 to 66 in
the sparse truncation.

Next we solve the problem (3.1) with T = 0.8 by the WCE method. By Theorem 5.1, for a spatially inde-
pendent random forcing, the truncation error is proportional to rðTKÞ

3=2, where r is the magnitude of the ran-
dom forcing, T is the length of the time interval, and K is the number of wavelets. For a given maximum mean
square error tolerance �, we can approximately set
K ’ T
r
�

	 
2=3

.

In the current case, T = 0.8 and |r| 6 0.5. Following the above guideline, we choose to project the Brownian
motion {W(t), 0 6 t 6 T} onto the first eight bases of the Haar wavelets. The maximum mean square error for
such a truncation is �O(10�2). We truncate the WCE propagator to the first-order, second-order and third-
order Wick polynomials, respectively. However, we only use first-order Hermite polynomials for Gaussian
variables ni, i = 5–8 and decouple them from the Hermite polynomials of ni, i = 1–4. In the actual computa-
tions of the WCE approximations, only 9, 19 and 35 WCE coefficients are included, as compared with 9, 45
and 165 WCE coefficients that are included in the full tensor products. The centered statistical moments com-
puted from different orders of WCE approximations are compared in Fig. 1. The formula for the third-order
moment and fourth-order moment are given by (3.4) and (3.5). The first-order WCE truncation is a piecewise
Gaussian approximation. With only nine coefficients, the mean of the solution is captured quite well. That is
because the Gaussian modes are dominant in magnitude and hence provide the leading order correction to the
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Fig. 1. Statistical moments computed by the WCE method with 9, 19 and 35 coefficients, respectively, corresponding to first-order,
second-order, and third order WCE approximations. The exact solution is computed by MC simulation with 100,000 realizations. The
first-order WCE approximation is a piecewise Gaussian approximation. It is obviously not accurate, especially for high-order moments.
Including second-order corrections improves the results dramatically. The results given by the third order truncation are almost identical
to the exact solutions.
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mean Eq. (3.8). However, the stochastic solution of a nonlinear equation is by no means a Gaussian process.
The first-order WCE approximation is inadequate for higher-order moments. Including second-order coeffi-
cients improves the numerical solutions dramatically, especially for the variance and the third-order moment.
The numerical results of the third-order WCE approximation are very accurate and almost identical to the
MC solutions with 100,000 realizations.

Fig. 2 is the L2 norm of the WCE coefficients with third-order truncation. We order the multi-indices in
the following way: if |a| 6¼ |b|, then the index with smaller summation is listed first. Otherwise, the first com-
ponent is compared. The index a will be listed ahead of b if a1 > b1. If a1 = b1, then the second component
is compared, and so on and so forth. In Fig. 2, the first coefficient is the mean, and coefficients 2–9 corre-
spond to the Gaussian part of the solution. The Gaussian coefficients decay quickly and the coefficients of
n8 is already very small. This partly confirms the truncation choice K = 8 as predicted by Theorem 5.1. The
coefficients of nk, k = 5–8 are relatively small comparing with those of ni, i = 1–4, which justifies using only
the first-order Hermite polynomials for nk, k = 5–8 and decoupling them from ni, i = 1–4. Coefficients 10–19
correspond to second-order Wick polynomials. They provide significant correction to the first-order approx-
imation. Coefficients 20–35 correspond to third-order Wick polynomials. High-order coefficients are needed
when resolving high-order moments. Fig. 2 shows that the WCE coefficients decay quickly as the order of
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Fig. 2. L2 norm of the WCE coefficients at third order truncation. The first 9 coefficients correspond to the Gaussian part of the solution;
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Wick polynomials increases. The rate of decay will depend on the variability and the length of the time interval,
as indicated by our error analysis in Section 5. Larger variability will lead to slower decay in the WCE
coefficients.

Fig. 3 is the qualitative comparison between the WCE method and MC simulation. The numerical
results by the WCE method with 35 coefficients have similar accuracy as those by MC simulation with
10,000 realizations. However, the CPU time is only 2 s for the WCE method, as opposed to 315 s for
MC simulation. Therefore, the WCE method is more efficient than MC simulation in this case. All the
numerical experiments presented in this paper are conducted on a PC with a 2.60 GHz CPU. In the
MC simulation, we also experimented with various kind of acceleration techniques. However, most vari-
ance reduction technique are not readily applicable here since they require prior knowledge of the distri-
bution of the stochastic solutions. Other acceleration techniques, such as antithetic variables, showed little
advantage over the straightforward MC simulation when large enough number (order of thousands) of
realizations are simulated.

3.3. Convergence verification of the WCE method

To demonstrate the convergence of the WCE method, we compare its numerical solutions with those of the
MC simulation. However, it is difficult to obtain accurate solutions by MC simulation, due to its slow and
non-monotone convergence. In this subsection, we will test both the WCE method and MC simulation on
a model equation, where a semi-analytical solution is available. The semi-analytical solution can be computed
very accurately by deterministic numerical algorithms. Using it as the benchmark, we will compare the per-
formance of both the WCE method and MC simulation quantitatively.

In stochastic Burgers equation (3.1), suppose the spatial part r(x) of the random forcing is a constant. In
this particular case the solution of the stochastic Burgers equation can be obtained by a nonlinear stochastic
perturbation of its deterministic counterpart. More specifically, the following theorem holds:

Theorem 3.1. If r is constant, then the solution of (3.1) is given by
uðx; tÞ ¼ v x� r
Z t

0

W ðsÞds; t
� �

þ rW ðtÞ; ð3:11Þ
where v(x, t) is a solution of the unforced deterministic Burgers equation
vt þ 1
2
ðv2Þx ¼ lvxx;

vðx; 0Þ ¼ u0ðxÞ; vð0; tÞ ¼ vð1; tÞ.

�
ð3:12Þ
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Fig. 3. Convergence comparison between the WCE method and MC simulation. WCE with 35 coefficients has accuracy to that of the
accuracy as MC simulation with 10,000 realizations. However, the CPU time is only 2 s for the WCE method, as opposed to 315 s for MC.
The WCE method is more efficient than MC simulation in this case.
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Theorem 3.1 can be easily verified by Itô’s formula. The decomposition (3.11) provides a convenient way to
compute the statistical moments of u numerically. Indeed, denote Y(t) = rW(t) and ZðtÞ ¼ r

R t
0

W ðsÞds. It can
be shown that the joint probability density function of random variables (Y, Z) is given by qðy; zÞ ¼ffiffi

3
p

pr2t2 expð�2y2

r2t þ
6yz
r2t2 � 6z2

r2t3Þ. Then from (3.11), we have
E½uðx; tÞ�n ¼
Z

R2
½vðx� z; tÞ þ y�nqðy; zÞdy dz. ð3:13Þ
To compute the statistical moments of u, we can first solve the deterministic Burgers equation (3.12) and ob-
tain the solution v, then compute the integrals (3.13) numerically. Since all the computations are deterministic,
we can quantify and hence control the numerical error at each step. By carefully choosing the deterministic
algorithms, we can compute the statistical moments of u very accurately.

In the following numerical test, we consider the Burgers equation (3.1) with the same setup as in Section 3.2.
The only difference is that the spatial part of the random forcing is chosen as a constant r = 0.1. We first solve
the problem to T = 0.8 by the semi-analytical approach and obtain the benchmark statistics of u. Then we
solve the same problem by the WCE method. We project the Brownian motion in [0, T] onto the first four
Haar wavelet bases, and truncate the WCE expansion at fourth-order Wick polynomials. The resulting



Table 1
Relative L2 error of the WCE method with 40 coefficients and MC simulation with 10,000 realizations

CPU (s) Mean Variance (%) Third-order (%) Fourth-order (%)

WCE 3 0.08 1.3 4.3 5.2
MC 319 0.18 2.1 3.8 4.1
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WCE propagator has 40 coefficients. According to Theorem 5.1, the maximum mean square error for such a
truncation is �O(10�2). For comparison, we also solve the problem by MC simulation with 10,000 realiza-
tions. In all the three methods, we use the same spatial mesh N = 128 and time step Dt = 0.001. We compare
the numerical solutions of the WCE method and MC method in Table 1. In the table, the relative L2 error for
the WCE Mean is defined as iE(uWCE) � E(u)i2/iE(u)i2, where u is the semi-analytical solution. The errors
for the other moments are defined similarly. To reach comparable accuracy, the WCE method takes only
3 s, while MC simulation takes 319 s. So the WCE method is much faster than MC simulation for that 1D
stochastic Burgers equation. Furthermore, we indeed observed an accuracy of O(10�2) for the WCE method
as predicted by Theorem 5.1.

It is worth pointing out that the performance of the WCE method is not sensitive to the choice of L2 basis
functions, mk(t), as long as they are orthonormal. For example, when we tried both Haar wavelets and the
trigonometric basis; the numerical results were almost identical.
4. WCE method for Navier–Stokes equations

In this section, we apply the WCE method to solve a 2D stochastic Navier–Stokes equation (SNS). We con-
sider a temperature distribution convected by a stochastic velocity field~u, where~u ¼ ðu; vÞ is governed by the
Navier–Stokes equation driven by Brownian motions:
ht þ~u � rh ¼ lDh;

~ut þ~u � r~u ¼ mD~u�rP þ r _~W ðtÞ;
r �~u ¼ 0;

8><
>: ð4:1Þ
where h is the scaled temperature, and ~W ðtÞ ¼ ðW 1; W 2ÞT is a Brownian motion vector with independent com-
ponents. The matrix r(x, y) = diag(r1, r2) accounts for the spatial dependence of the random forcing. l and m
are the temperature diffusivity and fluid viscosity, respectively. The temperature h is convected by the random
flow passively, and serves as a visualization media for the fluid particle path. For simplicity, we do not con-
sider the coupling between the temperature and momentum equation.

In our numerical experiment, we take the computational domain as [0, 1]2, and assume that h and ~u are
doubly periodic in the domain. We consider the following initial condition for vorticity x = vx � uy:
xðx; y; 0Þ ¼ C � 1

2d
exp � IðxÞðy � 0:5Þ2

2d2

 !
; ð4:2Þ
where I(x) = 1 + �(cos(4px) � 1), and C is a constant to make the initial vorticity mean zero:R
½0;1�2 xðx; y; 0Þdxdy ¼ 0. The initial vorticity is concentrated in a narrow layer centered at y = 0.5. It describes

a flat shear layer of characteristic width d. However, the width is perturbed sinusoidally with amplitude �. If d
goes to zero, the initial vorticity approaches a perturbed flat vortex sheet.

The initial condition for temperature is chosen to be
hðx; y; 0Þ ¼
H dðy � 0:25Þ; y 6 0:4;

1� 2H dðy � 0:5Þ; 0:4 < y < 0:6;

�H dð0:75� yÞ; y P 0:6;

8><
>: ð4:3Þ
where Hd(x) is the mollified Heaviside function
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H dðxÞ ¼
0 if x < �d;
xþd
2d þ

sinðpx=dÞ
2p if jxj 6 d;

1 if x > d.

8><
>: ð4:4Þ
The initial temperature is comprised of four smoothly connected layers. The interfaces between the different
layers have the same thickness d as the initial vorticity.

In this paper, we choose d = 0.025, which gives rise to a sharp shear layer and temperature interfaces. The
perturbation to the initial vortex layer is set to � = 0.3. The initial vorticity and temperature are plotted in
Fig. 4. Due to the Kelvin–Helmholtz instability, the fluid will roll up and convect the temperature layers.
The roll-up of a thin shear layer is a well-known challenging problem in computational fluid mechanics
[20]. With the extra complexity of Brownian motion, the stochastic problem (4.1) provides a severe test for
the WCE method.

4.1. The WCE method

In this subsection, we discuss how to solve the stochastic Navier–Stokes equation (4.1) by the WCE method.
In the two-dimensional case, the stochastic Navier–Stokes equation can be rewritten in the stream function–
vorticity formulation. Define the vorticity variable x = vx � uy, and introduce the stream function w such that
~u ¼ ðwy ;�wxÞ, we can rewrite the original system (4.1) as
ht þ ðuhÞx þ ðvhÞy ¼ lDh;

xt þ ðuxÞx þ ðvxÞy ¼ mDxþ ðr2Þx _W 2 � ðr1Þy _W 1;

�Dw ¼ x;

u ¼ wy ; v ¼ �wx.

8>>>><
>>>>:

ð4:5Þ
We assume that the stream function w is also doubly periodic in the domain [0, 1]2.
We proceed exactly as we did for the 1D stochastic Burgers equation. We choose an arbitrary orthonormal

basis mi(t), i = 1,2, . . . , in L2([0, T]), where [0, T] is the time interval in which we want to solve the problem.
Then we project each Brownian motion component {Wk(t), 0 6 t 6 T} to the L2 basis:
nk
i ¼

Z T

0

miðtÞdW kðtÞ; i ¼ 1; 2; . . . ; k ¼ 1; 2. ð4:6Þ
Fig. 4. Initial vorticity x and temperature h.
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Let a ¼ ðak
i ; i ¼ 1; 2; . . . ; k ¼ 1; 2Þ be a multi-index with non-negative integer components. Denote the

finite multi-index set as J ¼ fa; jaj ¼
P

i;kjak
i j <1g. For a 2 J, define the Wick polynomial T a ¼Q2

k¼1

Q1
i¼1H ak

i
ðnk

i Þ. Suppose h, x,~u; and w admit the Wiener Chaos expansions and ha, xa,~ua; and wa are their
WCE coefficients. Similar to the 1D stochastic Burgers equation, we can derive the WCE propagator for sys-
tem (4.5):
ðhaÞt þLaðu; hÞx þLaðv; hÞy ¼ lDha;

ðxaÞt þLaðu;xÞx þLaðv;xÞy ¼ mDxa þ ðr2ÞxIfjaj¼1g
P1
j¼0

a2
j mjðtÞ � ðr1ÞyIfjaj¼1g

P1
i¼0

a1
i miðtÞ;

�Dwa ¼ xa; ua ¼ ðwaÞy ; va ¼ �ðwaÞx.

8>>>><
>>>>:

ð4:7Þ
In the above formula, the bilinear operator Lað�; �Þ is defined as
Laðf ; gÞ ¼
X
p2J

X
06b6a

Cða;b; pÞfbþpga�bþp ð4:8Þ
for f ¼
P

a2JfaT a and g ¼
P

b2JgbT b. The coefficient C(a, b, p) is defined in (3.3). The indicator function
I{|a|=1} = 1 if |a| = 1 and it is zero otherwise.

In the following numerical experiment, we set l = 0.0002, m = 0.0002. In the stream function–vorticity for-
mulation (4.5), the spatial parts of the random forcing are taken as
ðr1Þy ¼ 0:1p cosð2pxÞ cosð2pyÞ; ðr2Þx ¼ 0:1p cosð2pxÞ sinð2pyÞ.
We solve the problem to T = 1.0 by the WCE method. We choose to project each Brownian motion component
onto the first four Haar wavelet bases, and truncate the WCE approximation at fourth-order Wick polynomi-
als. The resulting system should have 495 coefficients. However, using the sparse tensor product approach laid
out in Section 3.2, the total number of coefficients can be reduced to 56. We discretize the computational
domain by a 256 · 256 square mesh, and choose Dt = 0.00125. Then we solve the truncated WCE propagator
on the domain [0, 1]2 by Fourier pseudo-spectral method. The CPU time is 8.1 h. The mean and variance of h
and x are plotted in Fig. 5. Due to the Kelvin–Helmholtz instability, the mean vorticity rolls up and forms a
pair of concentrated vortex eyes. The temperature layers are convected and diffused by the random velocity.
The sharp edges of the interface are smeared, due to both the diffusivity and the random forcing. The variances
of the vorticity and temperature all concentrate along the sharp layers of the interface and is almost zero at the
constant regions. In this sense, the random forcing acts as an extra diffusion for the mean equation, even though
a closed form of the mean equation is not available.

Another observation is that the third-order moment of both the vorticity and temperature are not zero.
Actually, they have the same magnitude and similar structure as the respective variances. This shows that
the solution of the stochastic Navier–Stokes equation is far from being a Gaussian process.

To reach the similar accuracy as the WCE method, MC simulation needs thousands of realizations, which
will take more than two days to compute. For this 2D stochastic Navier–Stokes equation, it is clear that the
WCE method is more efficient than the MC simulation for short time integrations. Since it is not easy to
obtain a benchmark solutions by MC simulation or any other method, we will demonstrate the convergence
of the WCE method for a special case in the following subsection.
4.2. Convergence verification of the WCE method

To test the convergence of the WCE method for stochastic Navier–Stokes equations, we consider a special
case of Eq. (4.1), where a semi-analytical solution is available. Similar to 1D Burgers equation, we have the
following result.

Theorem 4.1. In system (4.1), if the spatial part r(x, y) of the random forcing is a constant matrix, then the

stochastic solutions of (4.1) can be expressed as



Fig. 5. Mean and variance of vorticity x and temperature h at T = 1.0, computed by the WCE method with 56 coefficients.
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hð~x; tÞ ¼ h0 ~x�
Z t

0

r~W ðsÞds; t
� �

; P ð~x; tÞ ¼ P 0 ~x�
Z t

0

r~W ðsÞds; t
� �

;

~uð~x; tÞ ¼~u0 ~x�
Z t

0

r~W ðsÞds; t
� �

þ r~W ðtÞ;
ð4:9Þ
where h0;~u0; P 0 are solutions of the corresponding unforced deterministic equations
h0t þ~u0 � rh0 ¼ lDh0;

~u0t þ~u0 � r~u0 ¼ mD~u0 � rP 0; r �~u0 ¼ 0.

(
ð4:10Þ
Theorem 4.1 is readily verified by Itô’s formula. For the random vorticity x, we can further obtain
xð~x; tÞ ¼ x0 ~x�
Z t

0

r~W ðsÞds; t
� �

; ð4:11Þ
where x0 ¼ v0x � u0y is the deterministic vorticity of the unforced problem (4.10).



Table 2
Relative L2 error on the domain [0, 1]2 of the WCE method with 56 coefficients and the MC simulation with 1000 realizations

CPU (h) E(x) (%) E(h) (%) Var(x) (%) Var(h) (%)

WCE 9.3 0.028 0.044 1.2 1.7
MC 44.7 0.23 0.36 8.2 8.8
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The semi-analytical forms (4.9) and (4.11) state that the stochastic solutions are the deterministic solutions
of the corresponding unforced problem compounded with a random perturbation along the flow characteris-
tics. That observation can help us better understand the effects of the random forcing. Formula (4.9) and
(4.11) also provide a convenient way to compute the statistical moments of h and x numerically. Indeed,
for any fixed x, t and integer n = 1,2, . . . , it is easy to show that
E½hð~x; tÞ�n ¼
Z

R2
½h0ð~x�~z; tÞ�nqð~z; tÞd~z; ð4:12Þ

E½xð~x; tÞ�n ¼
Z

R2
½x0ð~x�~z; tÞ�nqð~z; tÞd~z; ð4:13Þ
where
qð~z; tÞ ¼ 3

2pr1r2t3
exp � 3z2

1

2r2
1t3
� 3z2

2

2r2
2t3

� �
.

To obtain the benchmark statistics of h and x, we can first solve the deterministic Eq. (4.10), then compute the
statistical moments from (4.12) and (4.13) by numerical integrations. Under this framework, all computations
are deterministic and no random number generation is needed. By carefully choosing the deterministic algo-
rithms, we can compute the benchmark statistics of h and x very accurately.

In the next numerical experiment, we set the temperature diffusivity as l = 0.0005, and the fluid viscosity as
m = 0.0005. The constants in the random forcing are chosen as r1 = 0.02, r2 = 0.02. Since the random forcing
is spatially independent, its effect will not be damped out in time by viscosity. To avoid excessive smearing
induced by the random forcing, we deliberately choose r1,r2 not much larger than the physical viscosity m.

We first solve the problem to T = 1.0 by the semi-analytical method and obtain the benchmark statistics.
To test the performance of the WCE method and the MC simulation, we apply both of them to the same prob-
lem and compare their numerical solutions with that of the semi-analytical approach. For the WCE method,
we project each Brownian motion component onto the first four wavelet bases, and truncate the WCE prop-
agator at fourth-order Wick polynomials. Altogether 56 coefficients are retained in the computation. The max-
imum mean square error for such a truncation is �O(10�2), based on the error analysis similar to that in
Theorem 5.1. We also solve the problem to T = 1.0 by MC simulation with 1000 realizations. For a fair com-
parison, the same spatial mesh 256 · 256 and time step Dt = 0.00125 are used for all three different methods.
The numerical solutions are compared in Table 2. The WCE method with 56 coefficients is more accurate than
the MC simulation with 1000 realizations for all the statistical moments computed. In addition, the WCE
method is also several times faster than the MC simulation. To reach the same accuracy as the WCE method,
the MC simulation may need much more than 1000 realizations, which will take even more CPU time. How-
ever, the WCE method requires more computer memory than the MC simulation since a coupled PDE system
for the WCE coefficients has to be solved simultaneously. For the 1D and 2D problems considered in this
paper, the memory usage is not a big issue and all the computation can be done on a standard PC. For
3D stochastic Navier–Stokes equations, we expect that the memory usage will become a bigger concern to
the WCE method when many WCE coefficients have to be retained.

5. Error analysis of the WCE method

Due to the nonlinear coupling in the WCE propagator, it is very difficult to conduct an error analysis of the
truncated WCE method in the general setting. In this section, we only establish an error bound for the WCE
approximation when the random forcing is independent of the spatial variables. In this case the solutions of
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the stochastic Navier–Stokes and Burgers equations could be obtained from the respective deterministic coun-
terparts by a stochastic Galilean transformation. Though a special case, the error bound in this particular set-
ting sheds light on the general performance of the WCE method. For simplicity, we will prove the result in the
context of the stochastic Burgers equation. For the stochastic Navier–Stokes equation, the proof and results
are very similar.

Consider the stochastic Burgers equation
1 A s
ut þ
1

2
ðu2Þx ¼ luxx þ r _W ðtÞ; uðx; 0Þ ¼ u0ðxÞ; ð5:1Þ
where r is a constant. According to Theorem 3.1, the solution of (5.1) can be expressed as
uðx; tÞ ¼ v x� r
Z t

0

W ðsÞds; t
� �

þ rW ðtÞ; ð5:2Þ
where v(x, t) is the solution of the unforced deterministic Burgers equation
vt þ
1

2
ðv2Þx ¼ lvxx; vðx; 0Þ ¼ u0ðxÞ. ð5:3Þ
Suppose the basis functions mk(s) in the space L2([0, t]) are chosen as follows: m1ðsÞ ¼ 1ffi
t
p , mkðsÞ ¼ffiffi

2
t

q
cosððk�1Þps

t Þ, 0 6 s 6 t, k P 2. Write JK;N ¼ fa; a ¼ ða1; . . . ; aKÞ; jaj 6 Ng. The main result of this section
is as follows:

Theorem 5.1. Let
uK;N ðx; tÞ ¼
X

a2JK;N

uaðx; tÞT a; where uaðx; tÞ ¼ E½uðx; tÞT a�. ð5:4Þ
Then, the error estimate
max
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
��uðx; tÞ � uK;Nðx; tÞ

��2q
6 BNþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N þ 1Þ!!

p
ðN þ 1Þ! rNþ1 t3

3

� �Nþ1
2

þ B1r
t
K

	 
3=2

ð5:5Þ
holds, where Bn ¼ supxj on

oxn vðx; tÞj and v is the solution of the deterministic Eq. (5.3).1

Proof. Denote ZðtÞ ¼
R t

0
W ðsÞds. Owing to (2.3), the Wiener process W(s), s 2 [0, t], admits the following
expansion:
W ðsÞ ¼ s ffiffi
t
p n1 þ

X1
k¼2

nk

ffiffiffiffi
2t
p

ðk � 1Þp sin
ðk � 1Þps

t

� �
. ð5:6Þ
Hence, Z = ZK + ZR, where
ZK ¼
ffiffiffiffi
t3
p

2
n1 þ

XK

k¼2

Ck

ffiffiffiffi
t3
p

ðk � 1Þ2
nk;

ZR ¼
X1

k¼Kþ1

Ck

ffiffiffiffi
t3
p

ðk � 1Þ2
nk; ð5:7Þ
where Ck ¼
ffiffi
2
p

p2 ½1þ ð�1Þk�. Obviously ZK and ZR are orthogonal in that E(ZKZR) = 0.
Note that W ðtÞ ¼

ffiffi
t
p

n1 and the solution (5.2) can be rewritten as
uðx; tÞ ¼ vðx� rZK � rZR; tÞ þ r
ffiffi
t
p

n1. ð5:8Þ

Expanding v(x � rZK � rZR,t) in Taylor’s series, firstly with respect to ZR and then with respect to ZK, we
arrive at
imilar but more general error estimate for WCE method in Linear SPDEs can be found in [19].
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uðx; tÞ ¼ vðx� rZK ; tÞ þ I1 þ r
ffiffi
t
p

n1 ¼ vðx; tÞ þ
XN

n¼1

ð�rZKÞn

n!

o
nv

oxn
ðx; tÞ þ I2 þ I1 þ r

ffiffi
t
p

n1;
where
I1ðx; tÞ ¼ �
ov
ox
ðx� rZK � h1; tÞrZR; I2ðx; tÞ ¼

ð�rZKÞNþ1

ðN þ 1Þ!
oNþ1v
oxNþ1

ðx� h2; tÞ
are the Lagrange residuals of the Taylor expansions.
Denote
~uK;N ðx; tÞ ¼ vðx; tÞ þ r
ffiffi
t
p

n1 þ
XN

n¼1

ð�rZKÞn

n!

onv
oxn
ðx; tÞ. ð5:9Þ
Obviously, ~uK;N ðx; tÞ is a polynomial of n1, . . . ,nK with maximum order N. Since the WCE truncation uK,N(x, t)
is a Hermite polynomial expansion, which is an orthogonal projection with respect to the Gaussian measure, it
follows that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ejuðx; tÞ � uK;Nðx; tÞj2
q

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ejuðx; tÞ � ~uK;N ðx; tÞj2

q
6 B1r

ffiffiffiffiffiffiffiffiffiffiffi
EjZ2

Rj
q

þ BNþ1

rNþ1

ðN þ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EjZ2Nþ2

K j
q

; ð5:10Þ
where Bn ¼ supxj on

oxn vðx; tÞj. From formula (5.7) we have
EjZ2
Rj 6

8t3

p4

X1
k¼Kþ1

1

ðk � 1Þ4
<

8t3

p4

1

K4
þ
Z 1

K

dx
x4

� �
<

t3

K3
. ð5:11Þ
Note that ZK is a linear combination of centered Gaussian random variables, so it is a centered Gaussian itself.
Due to properties of Gaussian random variables, we have
EjZ2Nþ2
K j ¼ ðEjZ2

K jÞ
Nþ1ð2N þ 1Þ!! < ðEjZ2jÞNþ1ð2N þ 1Þ!!; ð5:12Þ
It is easy to show that E|Z2| = t3/3. Substituting (5.11) and (5.12) into (5.10), we obtain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ejuðx; tÞ � uK;Nðx; tÞj2

q
6 BNþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N þ 1Þ!!

p
ðN þ 1Þ! rNþ1 t3

3

� �Nþ1
2

þ B1r

ffiffiffiffiffiffi
t3

K3

r
.

Since the right-hand side does not depend on x, taking the maximum in x recovers the estimate (5.5). This
completes the proof. h

Remark. The first term in the error estimate (5.5) reflects the error in truncating the Fourier–Hermite expan-

sion of the solution. Making use of the Stirling formula, one can easily check that the asymptotic of this term
is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2N þ 1Þ!!
p
ðN þ 1Þ! rNþ1 t3

3

� �Nþ1
2

� C
2r2t3e=3

N þ 1

� �Nþ1
2

.

This confirms our numerical observation that the WCE approximation converges exponentially in terms of the
Wick polynomial order N.

The second term in (5.5) stems from the truncation error of the Fourier expansion (5.6), which is given by
E
Z t

0

W ðsÞ �
XK

k¼1

nk

Z s

0

mkðsÞds

�����
�����
2

ds

2
4

3
5 < C

K
.

The slow convergence of the second term is a reflection of the irregularity of the Brownian motion forcing.

Both Theorem 5.1 and the numerical experiments presented above indicate that the convergence rate of the
WCE method critically depends on the time span [0, t], the magnitude of the random forcing r, and the reg-
ularity of the solution. Clearly, the smaller the time interval [0, t] for the Wiener Chaos expansion, the faster
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the convergence. Note that Brownian motion has independent increments. When long time simulations are of
interest, one can divide a large time interval into small ones and apply the WCE method repeatedly on those
small intervals. If the time subinterval is of size Dt, then by Theorem 5.1 the error of approximation for each
step is OððDtÞ3=2Þ. Hence, the global rate of convergence should be Oð

ffiffiffiffiffi
Dt
p
Þ.

A smaller forcing would increase the rate of convergence of the WCE method. In a broad class of SPDEs
arising in physics and engineering, the large structures and dominant dynamic effects are captured by the
deterministic physical laws, while the unresolved small scales, microscopic effects, and other uncertainties
are often modeled as stochastic perturbations with small amplitudes. We expect that the WCE method will
prove to be especially effective in applications to this class of problems.

Based on Theorem 5.1, the rate of convergence of WCE method also depends on supxj o
n

oxnvðx; tÞj where v is a
solution of an appropriate deterministic equation of fluid dynamics. Conditions that guarantee boundedness
of j on

oxnvðx; tÞj are well known. For example, if v0 2 W n
p (R2) for some p > 2, then for any T <1

supx;tj o
n

oxnvðx; tÞj <1 (see, e.g. [14]). Also, this provides an indication that at large gradient regions (rough flow
regions), more WCE terms are needed to obtain the same accuracy.

6. Remarks on long time integration and variability

As it was demonstrated in the previous sections, as long as the time interval is comparatively short, e.g.
T < 1.0, the performance of the WCE is quite satisfactory. However, long time integrations of the WCE
method present a substantial challenge. For long time integrations, one has to solve the equation step-by-step
on successive small time intervals. In Section 5, it was shown that the truncated WCE expansion would still
converge even for large T at the rate Oð

ffiffiffiffiffi
Dt
p
Þ, where Dt is the size of the time step. Yet, when the number of

time steps grows, so does the number of the Wick polynomials Ta. Moreover, the later grows at a much higher
rate. To remedy this problem, one has to find a ways to keep the number of the basis functions Ta involved to
be reasonably small at every time step. This is a work in progress, so we only briefly outline a promising
approach here.

Consider the Euler time discretization of the Burgers equation (5.1):
unþ1 ¼ un þ lun
xx � un

xun
� 


Dt þ r
ffiffiffiffiffi
Dt
p

nnþ1; ð6:1Þ
where nnþ1 :¼ ðW ððnþ 1ÞDtÞ � W ðnDtÞÞ=
ffiffiffiffiffi
Dt
p

�Nð0; 1Þ. The WCE coefficients unþ1
a of (6.1) are computed by

solving the propagator equation
unþ1
a ¼ I ðanþ1¼0Þ un

a þ mDun
a �

X
p2Jn

X
06b6a

Cða; b; pÞ o

ox
un

pþa�bun
pþb

	 
 !
Dt

 !
þ I ðanþ1¼1;jaj¼1Þr

ffiffiffiffiffi
Dt
p

; ð6:2Þ
where Jn :¼ fa : ai ¼ 0 for i > ng. Clearly, un+1 can be expressed as a linear combination of nn+1 and Wick
polynomials of (ni, i 6 n) with order up to 2n. However, if a random variable ni is presented in a Wick poly-
nomial by its kth power, it is also multiplied by ðr

ffiffiffiffiffi
Dt
p
Þk. Thus if r

ffiffiffiffiffi
Dt
p

� 1; the growth of the number of Wick
polynomials is automatically discounted by the rapid decrease of its weight. This effect opens up a possibility
for effective aggregation and truncation of the step-by-step WCE expansions. We have carried out some
numerical experiments using a simplest version of this strategy. The preliminary results are encouraging. How-
ever, more systematic study along this line of research is required. This will be reported in detail elsewhere.
The adaptive truncation strategy described above is similar in spirit to those proposed by Ghanem, etc.
[18] and Karniadakis, etc. [21]. However, their method is not readily applicable to stochastic PDEs with
Brownian motion forcing, which are what we considered in this paper.

The performance of the WCE method not only depends on the length of the time interval [0, T] but also on
the magnitude of the random forcing. Indeed, the L2 norm of the random forcing E½

R T
0

rdW ðtÞ�2 ¼
R T

0
r2 dt

measures the random effect that we need to resolve. Larger T or r mean stronger random input. As a result,
more WCE bases are required to resolve the random dependence of the stochastic solution. In this sense, the
difficulty with large random forcing is equivalent to that of long time integration.

Next, we test how the magnitude of the random forcing affects the performance of the WCE method. In the
stochastic Burgers equation (3.1), we set the spatial part of the random forcing as
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Fig. 6. Mean (first row) and variance (second row) for different magnitudes of forcing. The first column: A = 1.0; the second column:
A = 2.0; the third column: A = 4.0. In all three cases, 10,000 realizations are computed in MC simulation. When A increases from 1.0 to
4.0, we need more and more WCE bases to achieve similar accuracy. However, the WCE method can approximate the right solution
reasonably well when enough coefficients are retained.
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rðxÞ ¼ A cosð2pxÞ;

where A is a constant. The viscosity is chosen as l = 0.02. We solve the problem to T = 0.8 for A = 1.0, 2.0,
4.0, respectively. The numerical results are plotted in Fig. 6. When the magnitude of the random forcing in-
creases, we need to include more and more WCE bases to achieve similar accuracy. Theoretically, the increase
of the magnitude of the forcing does not lead to a blowup. Our numerical experiments, while limited, also indi-
cate that the WCE method is quite stable and does not blow up even when hundreds of the coefficients are
included.

7. Conclusion and discussion

In this paper, we have explored a spectral numerical method for solving equations of fluid dynamics (FD)
driven by Brownian motion. The approach is based on Wiener Chaos expansion methodology. Loosely speak-
ing, WCE could be viewed as a Fourier series with respect to the driving white noise (rather than the spatial or
temporal variables). It turns out that there exists a closed infinite system of deterministic equations for the
related Fourier coefficients. This system, which we call the ‘‘propagator’’, describes how an equation of fluid
dynamics (e.g. a Navier–Stokes equation) propagates chaos that is generated by the driving Brownian motion.
The propagator is a deterministic system of PDEs with the nonlinearity structure that is typical of FD equa-
tions. Hence, with minimal modifications, the existing methods developed in CFD can be applied to solving
the propagator.

Numerical examples were provided for stochastic Burgers equations with periodic boundary conditions and
a 2D stochastic Navier–Stokes equation coupled with transport equation. The WCE method provides simple
and rigorous analytical formulae for computing statistical moments. In our simulations the statistical
moments up to the fourth order were computed.

In the numerical experiments with stochastic Burgers and Navier–Stokes equations, we have compared the
solution accuracy and the computational effectiveness of the WCE and the Monte Carlo (MC) approaches. It
appears that at the same level of accuracy, and especially when the resolution level is high, the computational
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cost of the MC method is notably higher. Another advantage of the WCE method as compared to the MC
simulation is that the former does not require the generation of random numbers.

The analytical error analysis of the WCE method was carried out and the bounds of errors resulting from
truncation of the WCE expansion were established. It was shown that the local error of estimate is propor-
tional to (Dt)3/2 where Dt is the time step.

There is, however, a number of unresolved issues. In particular, further research is required on:

1. Long time computations. In this paper, we mainly discuss the short time computations. Since the local error
estimate is proportional to (Dt)3/2, the global rate of convergence should be O(Dt)1/2. The practicality of this
conclusion, however, is subject to efficient control of the number of sources of randomness involved. The
number of random variables (generated by increments of the driving Brownian motion) grows in time. This
results in fast growth of the number of stochastic basis {Ta}. In order to make the numerical scheme effec-
tive, we need to be able to compress the ‘‘history’’ without losing too much information. This problem is
being addressed in our ongoing research.

2. Error analysis. In this paper is limited to the case of random forcing independent of spatial variables. It
appears that the error analysis methodology developed in [19] could be expanded to the general setting
of this paper but this task is beyond the scope of this paper.

3. The dimensionality. All the simulations in this paper are limited to one- and two-dimensional equations. The
theoretical base of the WCE method is independent of the spatial dimensions; However, the numerical
implementation is obviously dimension sensitive. Further work on this subject is in order.

Acknowledgements

This paper was supported in part by NSF Grant DMS-0073916 and DMS-0410062, NSF ITR Grant ACI-
0204932, ONR Grant N00014-03-1-0823, and ARO Grant DAAD19-02-1-0374. The authors thank Prof. Rus-
sell Caflisch for helpful discussion, Roger Donaldson and Jessica Printz for proofreading the paper, and the
referees for revision suggestions.

References

[1] J. Bec, U. Frisch, K. Khanin, Kicked Burgers turbulence, J. Fluid Mech. 418 (2000) 239–267.
[2] A. Bensoussan, R. Temam, Equations stochastiques du type Navier–Stokes, J. Func. Anal. 13 (1973) 195–222.
[3] R.H. Cameron, W.T. Martin, The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals, Ann.

Math. 48 (1947) 385–392.
[4] G. Da Prato, A. Debussche, R. Temam, Stochastic Burgers’ equation, Nonlinear Differ. Eq. Appl. 1 (4) (1994) 389–402.
[5] G. Da Prato, A. Debussche, Ergodicity for the 3D stochastic Navier–Stokes equations, J. Math. Pure Appl. 82 (2003) 877–947.
[6] A.J. Chorin, Hermite expansion in Monte-Carlo simulations, J. Comput. Phys. 8 (1971) 472–482.
[7] A.J. Chorin, Gaussian fields and random flow, J. Fluid Mech. 63 (1974) 21–32.
[8] R. Courant, D. HilbertMethods of Mathematical Physics, vol. 1, Wiley-Interscience, New York, 1953.
[9] S.C. Crow, G.H. Canavan, Relationship between a Wiener–Hermite expansion and an energy cascade, J. Fluid Mech. 41 (1970) 387.

[10] P. Frauenfelder, C. Schwab, R.A. Todor, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl.
Mech. Eng. 194 (2005) 205–228.

[11] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, Berlin, 1991.
[12] T. Hida, H.H. Kuo, J. Potthoff, L. Streit, White Noise, Kluwer Academic Publishers, Dordrecht, 1993.
[13] M. Jardak, C.H. Su, G.E. Karniadakis, Spectral polynomial chaos solutions of the stochastic advection equation, J. Sci. Comput. 17

(2002) 319–338.
[14] T. Kato, G. Ponce, Well-Posedness of the Euler and Navier–Stokes equations in the Lebesgue Spaces Lp

s ðR2Þ, Rev. Mat.
Iberoamericana 2 (1-2) (1986) 73–88.

[15] W.E.K. Khanin, A. Mazel, Ya. Sinai, Probability distribution functions for the random forced Burgers equation, Phys. Rev. Lett. 78
(1997) 1904–1907.

[16] W.E.K. Khanin, A. Mazel, Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. Math. 151 (2000) 877–
960.

[17] R.H. Kraichnan, Small-scale structure of a scalar field convected by turbulence, Phys. Fluids 11 (1968) 487–489.
[18] R. Li, R. Ghanem, Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration, Prob. Eng.

Mech. 13 (1998) 125–136.



706 T.Y. Hou et al. / Journal of Computational Physics 216 (2006) 687–706
[19] S. Lototsky, R. Mikulevicius, B. Rozovskii, Nonlinear filtering revisited: a special approach, SIAM J. Control Optim. 35 (1997) 435–
461.

[20] J.S. Lowengrub, M.J. Shelley, B. Merriman, High-order and efficient methods for the vorticity formulation of the Euler equations,
SIAM J. Sci. Comput. 14 (1993) 1107–1142.

[21] D. Lucor, G.E. Karniadakis, Adaptive generalized polynomial chaos for nonlinear random oscillators, SIAM J. Sci. Comput. 26 (2)
(2004) 720–735.

[22] R. Mikulevicius, B.L. Rozovskii, Stochastic Navier–Stokes equations. Propagation of chaos and statistical moments, in: J.L.
Menaldi, E. Rofmann, A. Sulem (Eds.), Optimal Control and Partial Differential Equations. In honor of Professor Alain
Bensoussan’s 60th Birthday, IOS Press, Amsterdam, 2001, pp. 258–267.

[23] R. Mikulevicius, B. Rozovskii, Stochastic Navier–Stokes equations for turbulence flow, SIAM J. Math. Anal. 35 (2004) 1250–1310.
[24] S.A. Orszag, L.R. Bissonnette, Dynamical properties of truncated Wiener–Hermite expansions, Phys. Fluids 10 (1967) 2603.
[25] G. Papanicolaou, Wave propagation in a one-dimensional random medium, SIAM J. Appl. Math. 21 (1971) 13–18.
[26] G. Papanicolaou, Diffusion in random media, in: J.B. Keller, D. McLaughlin, G. Papanicolaou (Eds.), Surveys in Applied

Mathematics, Plenum Press, New York, 1995, pp. 205–255.
[27] S. Sakamoto, R. Ghanem, Polynomial chaos decomposition for the simulation of non-Gaussian non-stationary stochastic processes,

J. Eng. Mech. 128 (2002) 190–201.
[29] D. Zhang, Z. Lu, An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and
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