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Abstract

Oversampling techniques are often used in porous media simulations to achieve high accuracy in multiscale simulations. These
methods reduce the effect of artificial boundary conditions that are imposed in computing local quantities, such as upscaled permeabilities
or basis functions. In the problems without scale separation and strong non-local effects, the oversampling region is taken to be the entire
domain. The basis functions are computed using single-phase flow solutions which are further used in dynamic two-phase simulations. The
standard oversampling approaches employ generic global boundary conditions which are not associated with actual flow boundary con-
ditions. In this paper, we propose a flow based oversampling method where the actual two-phase flow boundary conditions are used in
constructing oversampling auxiliary functions. Our numerical results show that the flow based oversampling approach is several times
more accurate than the standard oversampling method. We provide partial theoretical explanation for these numerical observations.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The high degree of variability and multiscale nature of
formation properties such as permeability pose significant
challenges for subsurface flow modeling. Geological char-
acterizations that capture these effects are typically devel-
oped at scales that are too fine for direct flow simulation,
so techniques are required to enable the solution of flow
problems in practice. Upscaling procedures have been com-
monly applied for this purpose and are effective in many
cases (see [28,26,19] for reviews and discussion). More
recently, a number of multiscale finite element (e.g.,
[20,10,3,1,2,17]) and finite volume [22,23] approaches have
been developed and successfully applied for problems of
this type.
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Our purpose in this paper is to propose a new oversam-
pling strategy in constructing multiscale basis functions
within the framework of multiscale finite element method
(MsFEM). The MSFEM was first introduced in [20]. Its
main idea is to incorporate the small-scale information into
finite element basis functions and capture their effect on the
large-scale via finite element computations. There are a
number of multiscale numerical methods (or framework)
with similar general objective, such as generalized finite ele-
ment methods [5], residual free bubbles [27], variational
multiscale method [21], multiscale finite element method
(MsFEM) [20], two-scale finite element methods [24],
two-scale conservative subgrid approaches [3], heteroge-
neous multiscale method (HMM) [16], and multiscale mor-
tar methods [4]. We remark that special basis functions in
finite element methods have been used earlier in [6]. Multi-
scale finite element methodology has been modified and
successfully applied to two-phase flow simulations in
[22,23] and later in [10,1].
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Most multiscale methods presented to date have applied
local calculations for the determination of basis functions
(or, in the case of variational multiscale methods [3], sub-
grid integrals). Though effective in many cases, the accu-
racy of these local calculations may deteriorate for
problems in which global effects are crucial. The impor-
tance of global information has been illustrated within
the context of upscaling procedures in recent investigations
[9,8].

These studies have shown that the use of global informa-
tion in the calculation of the upscaled parameters can sig-
nificantly improve the accuracy of the resulting coarse
model.

In this paper, we propose a flow based oversampling
method. The main idea of oversampling techniques is to
use solutions of the underlying single-phase flow equation
in larger domains for computing the basis functions. These
basis functions are used in the two-phase flow simulations
with varying (dynamic) mobility. Oversampling techniques
reduce the effect of artificial boundary conditions that are
often imposed in computing local quantities, such as
upscaled permeabilities or basis functions. When there is
no scale separation, the oversampling region is taken to
be the entire domain. Typically, generic boundary condi-
tions are used to compute the auxiliary oversampling func-
tions. These boundary conditions do not reflect the actual
two-phase flow boundary conditions which can have large
effect in the simulations. In particular, when two-phase
flow boundary conditions contain some type of singulari-
ties, the single-phase flow solutions obtained using generic
boundary conditions are not sufficient to represent these
effects. For this reason, one needs to incorporate the actual
two-phase flow boundary conditions. In the proposed flow
based oversampling method, we take one (or more)
auxiliary oversampling functions to be the solution of sin-
gle-phase flow equations with original (two-phase flow)
boundary information. We present a partial analysis which
demonstrates the importance of using the actual boundary
conditions. Moreover, our analysis explains when one
needs to use the actual two-phase flow boundary condi-
tions which is associated to the “singularity” in the bound-
ary conditions of two-phase flows.

To illustrate the performance of this new strategy, we
present several representative numerical results. In particu-
lar, comparison between the flow based and standard over-
sampling is made for typical two-phase flow and transport
simulations. In our numerical results, we use the permeabil-
ity fields from the SPE comparative project [12]. These per-
meability fields are channelized and difficult to upscale. In
particular, due to channelized nature of these permeability
fields, the non-local effects are important and, often, some
type of limited global information is used in multiscale sim-
ulations (e.g., [17,15]). In our simulations, we test various
viscosity ratios and compare integrated quantities, such
as oil production rate and total flow rate, as well as the sat-
uration errors at some time instances. In all cases, we
observe that the flow based oversampling methods are

more accurate and, in almost all the cases we consider, it
gives several orders of improvement.

The paper is organized in the following way. In the next
section we give some preliminaries explaining the two-
phase flow fine-scale model and the multiscale finite volume
element method (MsFVEM). In Section 3, we present the
flow based oversampling approach and analysis. Finally,
in Section 4, the numerical results are presented.

2. Preliminaries

We consider two-phase flow in a reservoir Q under the
assumption that the displacement is dominated by viscous
effects; i.e., we neglect the effects of gravity, compressibility,
and capillary pressure. Porosity is assumed to be constant.
In this flow problem, the two phases are water and oil, des-
ignated by subscripts w and o, respectively. We write
Darcy’s law, with all quantities dimensionless, for each
phase as follows:
Vi =~ ]L(S)k ) VP»

J

(2.1)

where v; is the phase velocity, k is the permeability tensor,
k,; 1s the relative permeability to phase j (j = o, w), S is the
water saturation (volume fraction), p is pressure and p; is
the viscosity of phase j (j = o,w). In this work, a single
set of relative permeability curves is used and k is assumed
to be a diagonal tensor. Combining Darcy’s law with a
statement of conservation of mass allows us to express
the governing equations in terms of the so-called pressure
and saturation equations:

V- (AS)k - Vp) = h, (2.2)

oS
SEVVA(S) = h,

where A is the total mobility, f is the fractional flow of
water, h = hy, + h, is a source/sink term and v is the total
velocity, which are respectively given by:

ke (S) | keolS) ki (S)/

(2.3)

) = n;w to /8= kew(S)/ g, + keo(S) /1ty
(2.4)
V=vy+V,=—A(S)k - Vp. (2.5)

The above descriptions are referred to as the fine model of
the two-phase flow problem. Typical boundary conditions
for (2.2) considered in this paper are fixed pressure at some
portions of the boundary and no-flow on the rest of the
boundary. For the saturation Eq. (2.3), we impose S =1
on the inflow boundaries. For simplicity, in further analysis
we will assume that 4, = h, = 0 so that 7 = 0.

The upscaling of two-phase flow systems is discussed by
many authors [11,7,14]. In most upscaling procedures, the
coarse-scale pressure equation is of the same form as the
fine-scale Eq. (2.2), but with an equivalent grid block per-
meability tensor k* replacing k. For a given coarse-scale
grid block, the tensor k* is generally computed through
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the solution of the pressure equation over the local fine-
scale region corresponding to the particular coarse block
[13]. Coarse-grid k™ computed in this manner has been
shown to provide accurate solutions to the coarse-grid
pressure equation. As we mentioned in Introduction, for
channelized porous media, the global information can be
used in calculation of effective coarse-grid permeability
[9], but these upscaling approaches are not exact at the ini-
tial time.

2.1. Multiscale finite volume element procedure

In this section, we briefly recall multiscale finite volume
element method. We denote by #" the set of coarse ele-
ments (rectangles in this case) K. The quantity & indicates
the center of coarse element K. Element K is divided into
four rectangles of equal area by connecting &, to the mid-
points of the element edges. These quadrilaterals are
denoted by K., where £ € Z,(K), are the vertices of K.
We designate Z;, = | J,Z,(K) and Z) C Z, the vertices which
do not lie on the Dirichlet boundary of Q. The control vol-
ume V. is defined as the union of the quadrilaterals K,
sharing the vertex &€ The grid comprised of elements K
(solid squares in Fig. 1) is sometimes referred to as the pri-
mal grid and the grid defined by V. (dashed square in
Fig. 1) as the dual grid. In our procedure we compute pres-
sure at the vertices of the primal grid. This differs from the
approach of [22,23] in which pressure is computed at the
centroids of the primal grid blocks. This also leads to a dif-
ferent treatment of global boundary conditions.

The goal of the MSFVEM is to determine coarse scale
basis functions that incorporate the fine scale information
in the underlying permeability description. The technique
applied here follows the multiscale finite element method
of [20], as the basis functions are determined from the solu-
tion of the leading order homogeneous elliptic equation on
each coarse element. For a coarse rectangular element K,
the basis functions ¢;, i = 1,2,3,4, are computed via solu-
tion of:

Fig. 1. Schematic of nodal points and grid.

V-(k-V$)=0 ink
¢; =g ondk,

for prescribed boundary function g;. Eq. (2.6) must be
solved four times for the determination of the four ¢;.
The basis function associated with the vertex x; is con-
structed from the union of the basis functions that share
this x; and are zero elsewhere. Note that ¢, must satisfy
bi(x)) = 0y

Hou and Wu [20] showed that the accuracy of the result-
ing coarse model is impacted by the treatment of boundary
effects in (2.6). Enhanced accuracy can be achieved by solv-
ing local one-dimensional problems [22] for the determina-
tion of g; or, as is considered here, by solving (2.6) in a
domain that includes more than just the fine scale cells cor-
responding to the coarse block K (this approach is referred
to as oversampling). The specific boundary conditions that
are used in this paper for the determination of the basis
functions will be discussed in detail below. A vertex-cen-
tered finite volume procedure is used to solve (2.6).

As discussed in [17], once the basis functions are con-
structed we determine p" € V", where V" is the space of
the approximate pressure solution, with p" = Ex,ez?Pj¢
by enforcing 1

/aVé(z(S)k-vph)-ndlz/ q dx,

Ve

(2.6)

Jj?

(2.7)

for every control volume V', C Q. Here n defines the nor-
mal vector on the boundary of the control volume JV,
and S is the fine scale saturation. Note that the integral
in (2.7) is performed over a coarse cell in the dual grid
(Ve) and the finite element test function is unity. For this
reason, the technique is referred to as a finite volume ele-
ment method. In this way the method differs from multi-
scale finite element procedures (e.g., [20]).

3. Flow based oversampling for multiscale finite element
methods

First, we describe the oversampling technique. The pro-
cedure is as follows. Denote a target coarse block by K (we
assume rectangular partition in 2D, for simplicity) and an
extended coarse region by K’ (see Fig. 2). For K’ with ver-
tices y;, (i = 1,2,3,4), we denote by ¥,(x) a nodal basis on
K’, such that ¥,(y;) = 6;;. These nodal basis functions v,
(i=1,2,3,4) are constructed by solving (2.6) in the region
K’ (see Fig. 2) with linear boundary conditions. Once the
auxiliary functions v, (also called oversampling functions)
are constructed, we compute the basis functions ¢, as a lin-
ear combination of , (as is done in oversampling for
MsFEM [20]) as follows:

4
$i(x) =D e (x), (3.1)
Jj=1
where x; are the nodes of the target coarse block K and c¢;;
are coefficients determined by imposing ¢;(x;) = ;. By
this construction, the resulting multiscale basis functions
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Yi(yi) =1 Yi(yi+1) =0
Yi Yi+1
Pi(xi) =1 #i(Xi+1) =0
Xi Xit1

K’
Xi—1 K
T ) — "
Fili1) =0 430 =0
Yi-1
Yi(yi-1) =0

Fig. 2. Schematic description of coarse block and extended coarse block
regions.

are nonconforming. Using these basis functions, the global
problem is solved using (2.7). We emphasize that this meth-
od is not limited to rectangular global domain. In the case
of non-rectangular domains, one can still use global auxil-
iary solutions with some generic boundary conditions. It is
required that these auxiliary fields are linearly independent,
so that one can construct linearly independent multiscale
basis functions ¢;,.

In our simulations, we are interested in taking the over-
sampled domain to be the entire region, i.e., K’ = Q. This is
in particular used for porous media without scale separa-
tion and strong non-local effects such as those considered
in this paper. By taking the oversampling region to be
the entire domain, one avoids typical resonance errors in
numerical homogenization (see e.g., [20,18]). Associated
with this is the global solutions corresponding to single-
phase flow problems which are computed once. We refer
to the standard oversampling technique when generic over-
sampling functions are used (as described above) for con-
structing multiscale basis functions.

In this work, we propose the use of flow based oversam-
pling auxiliary functions for the construction of basis func-
tions. This method differs from the standard oversampling
method. In the flow based oversampling method, we
replace some of the standard oversampling auxiliary func-
tions (solutions of single-phase flow equations) by the ones
obtained from solving the single-phase flow problem with
the actual boundary conditions of two-phase flow. More
precisely, if two-phase flow equation is solved subject to
some boundary conditions, then we replace some of the
generic oversampling auxiliary functions, ; in (3.1), with
oversampling functions with the boundary conditions as
those in two-phase flow. Note that the standard oversam-
pling assumes that the oversampling functions have linear
boundary conditions. In applications, the boundary condi-
tions are often non-smooth and can have an impact on the
flow solutions. For this purpose, one needs to take into
account non-smooth effects via auxiliary oversampling

functions. Typical situations occur, for example, when
the flow is corner-to-corner (see next section for details).
In this case, the boundary conditions are no longer smooth
and one of the oversampling functions is taken to be the
solution of corner-to-corner flow.

We would like to remark that the computational time
required for the standard oversampling and the flow based
oversampling is similar. Indeed, in the flow based oversam-
pling approach, some of the standard oversampling auxil-
iary functions are replaced by flow based single-phase
flow solutions. The latter does not affect the computational
time unless we need to incorporate many flow boundary
conditions into the multiscale basis functions. However,
the computational time required for flow based approaches
is, generally, larger than that for local multiscale methods.
Since in local approaches one still needs to solve the local
problems over each coarse grid block, the total computa-
tional time can be similar to solving the global problems.
This is, in particular, holds if the oversampling regions
are larger than the target coarse grid blocks. We would like
to stress again that the global solutions are computed off-
line for the calculation of multiscale basis functions. Note
one can incorporate multiple global information in the flow
based oversampling approach which is not the case in mul-
tiscale finite element method using limited global informa-
tion introduced in [17,15].

3.1. Analysis

In this section, we show that the use of actual flow
boundary conditions in oversampling methods is impor-
tant. Consider the flow equations for two-phase flow in
the form

Op

—V - (AS)k-Vp) =0, plr, =gp, 7 |r, = &n: (3-2)

where g, and gy may be discontinuous along the bound-
aries I'y, I';. Let Q be the solution for the single phase flow
equation,

Y

V- (k-V0) =0, Ol =gp: 5 (33)

‘Fz = 4N-

By using Egs. (3.2) and (2.3) (with 4, = 0), we can derive
the equation for p:

-~V (k-Vp) = —ﬁv (AS)k - Vp) — M;)z
x (A(S)k - Vp) - 2(S)V(S) (3.4)
__ A g = L (L
BTG A T <A(S>),
with p[. =g, %|r2 =gn. Now let w=p—Q, and by

subtracting Egs. (3.2) and (3.4) we get

! 1 ow
1(S) (MS)>,’ W, =0, 5 I, =0.
(3.5)



J. Chu et al. | Advances in Water Resources 31 (2008) 599-608

This shows the difference between p and Q satisfies the
elliptic equation with nonzero source and homogeneous
boundary condition. Therefore, if ﬁ /(I—S) has certain
regularity, w can be approximated by generic solutions very
well. Thus, p = O + w, where w is a smooth function of two
linearly independent solutions of single-phase flow equa-
tion as it was shown in [25]. This result further justifies
the use of Q, the solution of single-phase flow with actual

flow boundary conditions.
4. Numerical results

In this section, we present representative simulation
results with quadratic relative permeabilities, k. (S) = S*
and ko (S) = (1 — S)*. In all cases the system uses perme-
ability fields from one of the layers in the benchmark test,
the SPE comparative project [12] (upper Ness layers).
These permeability fields are highly heterogeneous, chan-
nelized, and difficult to upscale. Fig. 3 depicts the log-per-
meability for one of the layers.

We employ the flow based multiscale finite volume ele-
ment method for solving the pressure Eq. (2.2). The basis
functions are constructed once and used throughout the

Fig. 3. Log-permeability for one of the layers of upper Ness.

15 T T T T T T T T
| * Standard MsFVEM-os
Domain=5 x 1
12 * —
U?Z
= 9r 1
&)
>
&
= 6 i
S K
3% .
0 " 1 " 1 " 1 " 1 "
0 3 6 9 12 15

Qﬁne
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simulations without updating them. The saturation Eq.
(2.3) is solved on the fine grid using upwind finite volume
method with flux limiter. For this purpose, the fine-scale
velocity field is reconstructed from the multiscale basis
functions representation of the pressure and via Darcy’s
Law.

Simulation results are presented for the saturation fields
as well as total flow rate and the oil cut as a function of
pore volume injected (PVI). The oil cut is also referred to
as the fractional flow of oil. The oil cut (or fractional flow)
is defined as the fraction of oil in the produced fluid and is
given by ¢,/q,, where ¢, = q, + q,,» with g, and ¢,, being the
flow rates of oil and water at the production edge of the
model. In particular, g, = [,pon f(S)vV-n dw, ¢, = [,
v-ndw, and ¢, = ¢, — q,,, where 9Q°" is the outer flow
boundary. We use the notation Q for total flow ¢, and F
for fractional flow ¢,/q, in numerical results. Pore volume
injected, defined as PVI = Vip 3 ,(t) dr, with 7, being the
total pore volume of the system, provides the dimensionless
time for the displacement. When using multiscale finite vol-
ume element methods for two-phase flow, one can update
the basis functions near the sharp fronts. Indeed, sharp
fronts modify the local heterogeneities and this can be
taken into account by resolving the local Eq. (2.6), for basis
functions. If the saturation is smooth in the coarse block, it
can be approximated by its average in (2.6), and conse-
quently, the basis functions are not needed to be updated.
It can be shown that this approximation yields first-order
errors (in terms of coarse mesh size). In our simulations,
we have found only slight improvement when the basis
functions are updated, thus the numerical results for the
MsFVEM presented in this paper do not include the basis
functions update near the sharp fronts.

In all numerical examples, the fine-scale field is
220 x 60, while the coarse-scale field is 22 x 6. We have
observed similar results for other coarse grids. The bound-
ary condition is imposed by specifying p =1, S = 1 along

15 T T T T T T T T
| * Flow Based MsFVEM-os
Domain =5 x 1
12 R
¢
= 91 T
A
=
=
= 6t i
c
3 - -
0 " 1 " 1 " 1 " 1

0 3 6 9 12 15

Qﬁne

Fig. 4. Total single-phase flow rate for 50 layers of SPE 10 using the standard oversampling (left) and the flow based oversampling (right). Domain size is

Sx1.
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8 T T T T T T 8 T T T T T T
* Standard MsFVEM-os * Flow Based MsFVEM-os
| Domain = 20 x 1 * 1 | Domain = 20 x 1
6 R 6 R
s} * w
9 9
= * =
= 4 * . = 4+ .
g * g
= =
@7 e
2 Bk B 2 F B
0 " 1 " 1 " 1 " 0 " 1 " 1 " 1 "
0 2 4 6 8 0 2 4 6 8

Qﬁne Qﬁne

Fig. 5. Total single-phase flow rate for 50 layers of SPE 10 using the standard oversampling (left) and the flow based oversampling (right). Domain size is
20 x 1.
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Fig. 6. Fractional flow (left figure) and total production (right figure) comparison for the standard oversampling and the flow based oversampling
techniques. The viscosity ratio is u,/p, = 5.
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Fig. 7. Fractional flow (left figure) and total production (right figure) comparison for the standard oversampling and the flow based oversampling
techniques. The viscosity ratio is u,/p, = 15.
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the x =0 edge for 0 <z < 0.1 and p =0 along the x =L
edge for 0.9 <z < 1. On the rest of the boundaries, we
assume no flow boundary condition. Here, L is the hori-
zontal size of the global rectangular domain. We note that
these boundary conditions are different from those used in
constructing generic oversampling functions.

In our first numerical results, we compare the total flow
rate Q for single-phase flow using the standard oversam-
pling and the flow based oversampling methods. The global
domain sizes are 5 x 1 (Fig. 4) and 20 x 1 (Fig. 5), i.e.,
L =5 and L = 20, respectively. In both cases, we observe
that the flow based oversampling gives nearly exact results,
while standard oversampling methods are not as accurate.
The accuracy of standard oversampling methods deterio-
rates as the anisotropy ratio increases.

Fine-scale Solution

Standard MsFVEM-os

Next, we present numerical results for dynamic quanti-
ties, such as fractional flow, total flow rate and saturation
maps for two-phase flow and transport. In Figs. 6 and 7,
we present the fractional flow (F = q,/q,, left figure) and
the total flow (Q = ¢,, right figure) for two viscosity ratio
cases, i,/ = 5 and p,/u, = 15. The solid line designates
the fine-scale reference solution, while dotted line desig-
nates the standard oversampling method where generic glo-
bal single-phase flow solutions are used, and dashed line
designates the flow-based oversampling method. We
observe from these figures that the flow based oversam-
pling method is more accurate. This is more evident from
the total flow plot. Next, we compare the saturation fields
at different time instances. In Fig. 8, the saturation fields at
the time instances, PVI = 0.1, ..., 0.9, are depicted. One

Flow Based MsFVEM-os

Fig. 8. Saturation maps at PVI=0.1-0.9 for fine-scale solution (left figure), standard MsFVEM-os (middle figure), and flow-based MsFVEM-os (right

figure). Corner-to-corner boundary condition is used. Layer 61.
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Fig. 9. L, saturation errors at different PVIs.
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can observe that the saturation fields obtained from the
standard oversampling method are not very accurate. This
is more evident in the regions close to upper right corner.

To compare the saturation maps at different time
instances quantitatively, we plot L, errors of the satura-
tions fields in Fig. 9. In particular, we present these plots
for four different layers of SPE 10 with two different viscos-
ity ratios p,/u, = 5 (left figures) and u,/u,, = 15 (right fig-
ures). The saturation errors are computed at
PVl =0.1,0.2, ..., 0.9. We observe that the errors in satu-
ration fields for the flow based oversampling techniques are
smaller compared to the standard oversampling method in
all cases. In most cases, the error is smaller by several fac-
tors. We note again that the cost of these computations are
the same and involve computing four auxiliary oversam-
pling functions. We have also tried numerical results with
different boundary conditions where Dirichlet boundary
conditions are imposed over two coarse grid blocks at
x =0 and x = L. In these cases, we have observed consis-
tent improvement when the flow based oversampling
method is used.

In the paper, we discussed the cases with singular type
boundary conditions and assumed no source terms. The
source terms representing well information are common
in applications. One can consider singular source terms
(such as Dirac é functions) within the proposed frame-
work. In this case, the flow based auxiliary functions will
the global solutions containing the singular sources. We
will present these results elsewhere.

5. Concluding remarks

In this paper, we study oversampling techniques for
multiscale simulation of two-phase immiscible flow in het-
erogeneous porous media with strong non-local effects. We
propose the flow based oversampling technique where the
actual two-phase flow boundary conditions are used in
constructing the oversampling functions. In our numerical
simulations, the oversampling region is taken to be the
entire domain due to strong non-local effects. We compare
the proposed approach to standard oversampling tech-
nique which uses generic global boundary conditions that
do not reflect the actual flow boundary conditions. The
flow based oversampling approach replaces some of the
global oversampling basis functions with the solutions of
single-phase flow equation with actual two-phase flow
boundary conditions. Our numerical results show that the
second approach is several times more accurate in almost
all the cases considered in the paper. We provide partial
theoretical explanation for these numerical observations.
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