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Abstract. We prove convergence of a modified point vortex method for time-

dependent water waves in a three-dimensional, inviscid, irrotational and incompress-
ible fluid. Our stability analysis has two important ingredients. First we derive a
leading order approximation of the singular velocity integral. This leading order
approximation captures all the leading order contributions of the original velocity

integral to linear stability. Moreover, the leading order approximation can be ex-
pressed in terms of the Riesz transform, and can be approximated with spectral
accuracy. Using this leading order approximation, we construct a near field cor-
rection to stabilize the point vortex method approximation. With the near field

correction, our modified point vortex method is linearly stable and preserves all the
spectral properties of the continuous velocity integral to the leading order. Nonlin-
ear stability and convergence with 3rd order accuracy are obtained using Strang’s
technique by establishing an error expansion in the consistency error.

1. Introduction. We prove convergence of a modified point vortex method for
time-dependent water waves in a three-dimensional, inviscid, irrotational and in-
compressible fluid. Boundary integral methods have been one of the commonly
used numerical methods in studying fluid dynamical instabilities associated with
free interface problems. They have the advantage of reducing the problem of the
free surface flow to one defined on the interface only and thus allow higher order
approximations of the interface. Computations using a boundary integral formu-
lation in three space dimensions include [2, 6, 14, 20, 21, 25]. On the other hand,
boundary integral methods often suffer from high frequency numerical instabilities
[22, 11, 15]. Various stabilizing methods have been proposed in the literature to
alleviate this difficulty [11, 3, 5]. Using a spectral discretization and certain Fourier
filtering, Beale, Hou and Lowengrub [5] proved convergence of a spectrally accurate
boundary integral method for two-dimensional water waves. A key idea is to en-
force a compatibility between the quadrature rule of the singular velocity integral
and that of the spatial derivative. This discrete compatibility is achieved by using
a Fourier filtering. The amount of filtering is determined by the quadrature rule in
approximating the velocity integral and the derivative rule being used.
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The stability of boundary integral methods for three-dimensional water waves is
considerably more difficult than the corresponding two-dimensional problem. The
two-dimensional interface problem has a special property, namely the singular ker-
nel has a removable simple pole singularity. As a consequence, spectrally accurate
approximations can be constructed for the velocity integral and certain compatibil-
ity between the quadrature for velocity integral and the quadrature for the deriva-
tive can be enforced. In a three-dimensional free surface, the singular kernel has a
branch point singularity which is not removable. Straightforward approximations
of the singular integrals do not preserve the spectral properties of these singular
integral operators. By the spectral properties of a singular integral operator, we
mean the high frequency information contained in the Fourier transform of a sin-
gular integral operator. The well-posedness of 3-D water waves is a consequence of
the subtle balance of the spectral properties of various singular integral operators.
Violation of this subtle balance makes it susceptible to numerical instability. This
is why it is difficult to design a numerically stable boundary integral method for
three-dimensional water waves.

In this paper, we propose a stable and convergent boundary integral method
for three-dimensional water waves. The method is a variant of the point vortex
approximation. Without any modification, the point vortex method approximation
is numerically unstable for three-dimensional water waves. Our stability analysis
has two important ingredients. First we derive a leading order approximation of the
singular velocity integral. This leading order approximation captures all the leading
order contributions of the original velocity integral to linear stability. Moreover,
the leading order approximation can be expressed in terms of the Riesz transform,
and can be approximated with spectral accuracy. Thus the spectral properties
of the original velocity integral are preserved exactly at the discrete level by this
leading order approximation. Secondly, the term consisting of the difference of
the original velocity integral and the leading order approximation is less singular
and does not contribute to linear stability. Thus it can be approximated by any
consistent quadrature rule such as the point vortex method approximation. Since
the leading order approximation in effect has desingularized the velocity integral,
we obtain an improved 3rd order accuracy of the (modified) point vortex method
approximation for 3-D water waves.

Our boundary integral method can be interpreted as a stabilizing method for
the point vortex method. The difference between the spectral discretization and
the point vortex discretization of the leading order approximation constitutes a
near field correction to the original point vortex method. This nonlocal correction
accounts for the near field contribution of the singular velocity integral. Although
this correction term is small (of order O(h)), it contains the critical small scale in-
formation which is essential to the stability of the boundary integral method. With
the near field correction, we can show that our modified point vortex method pre-
serves all the spectral properties of the linearized operators at the continuum level.
As a consequence, we prove that the modified point vortex method is stable and
convergent with third order accuracy. Furthermore, using a generalized arclength
frame (see section 6, and [16]), the near field correction becomes a convolution oper-
ator which can be computed by Fast Fourier Transform with O(M logM) operation
count, here M = N2 is the total number of discrete Lagrangian particles on the
free surface.
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As in the convergence study for a boundary integral method for 2-D water waves
in [5], it is important to separate the treatment of linear stability from that of
nonlinear stability. It is linear stability that plays the most important role in
obtaining convergence of a boundary integral method, as long as the solution is
sufficiently smooth. As observed by Strang [24], if there exists an error expansion
for the consistency error and the problem is linearly stable, then nonlinear stability
can be obtained by the smallness of the error. In conventional convergence analysis,
we usually compare our numerical solution with the exact solution. Strang’s trick is
not to use the “exact” solution in studying convergence, but to construct a “smooth
approximate solution” that is O(hp) perturbation of the “exact” solution (p is the
order of the numerical scheme being considered). This smooth approximate solution
satisfies the discrete equations more accurately: R(t) = O(hr) for arbitrarily large r
as long as the continuous solution is sufficiently smooth. Existence of such smooth
particles is guaranteed by the existence of the error expansion for the consistency
error. Then, in the stability step, one can bound e(t), the difference between the
smooth approximate solution and the numerical solution. If the numerical method
is linearly stable, nonlinear stability can be obtained by using the smallness of the
error e(t). This greatly simplifies the nonlinear stability analysis. In our modified
point vortex method, the order of accuracy is p = 3. This is not accurate enough
and Strang’s trick has to be applied to obtain nonlinear stability. In section 5, we
prove the existence of the error expansion in terms of the odd powers of h. We
then use this error expansion to construct a smooth particle solution which satisfies
the modified point vortex method with 5th order accuracy. Thus application of
Strang’s technique proves nonlinear stability and convergence.

We remark that Beale [4] has recently analyzed convergence of a boundary in-
tegral method for three-dimensional water waves. The method analyzed in [4] is
based on a different boundary formulation and uses a desingularization in the inte-
gral formulation. Another important ingredient in his analysis is the use of a special
cut-off function in regularizing the singular kernel. One advantage of using desingu-
larization in the boundary integral formulation is that it does not require smoothing
to control the aliasing error. In this paper, we also use a similar desingularization
technique to avoid the need of using Fourier smoothing.

The organization of the rest of the paper is as follows. In section 2, we present
a boundary integral formulation for three-dimensional water waves. In section 3,
we demonstrate the instability of the classical point vortex method. In section 4,
we introduce our new stabilizing technique and present our modified point vortex
method. Section 5 is devoted to the consistency analysis. Section 6 is devoted to
studying properties of some singular integral operators which are closely related
to our stability analysis. In section 7, we present our stability and convergence
analysis. The proof of several technical lemmas is deferred to the Appendix.

2. A Boundary Integral Formulation for 3-D Water Waves. We first review
the boundary integral formulation for the 3-D water wave problem. Throughout
the paper, we will use bold face letters to denote vector variables. We assume
that the flow is inviscid, incompressible, irrotational, and is separated by a free
interface. We assume that the fluid has infinite depth. The state of the system at a
time t is specified by the interface x(α, t) and the velocity potential φ(α, t) on the
interface, where α = (α1, α2). To simplify the notations, we often drop the time
variable from now on, but all the quantities, x, φ and µ will be time-dependent. To
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express the evolution, we need to write the velocity on the surface in terms of these
variables. Following [1, 14], we begin with a double layer or dipole representation
for the potential in terms of the dipole strength µ(α), to be determined from φ. We
write the potential in the fluid domain as

φ(x) =
∫ ∫

µ(α′)N(α′) · ∇x′G(x− x(α′))dα′, (1)

where N(α′) = xα1(α
′)×xα2(α

′) is the unnormalized outward normal to the surface,

G(x− x′) = − 1
4π|x− x′|

,

is the free space Green function for the Laplace equation, and

∇x′G(x− x′) = − x− x′

4π|x− x′|3
.

We define the corresponding unit outward normal vector as n(α) = N(α)/|N(α)|.
It follows from the properties of the double layer potential that the value of φ on
the interface is given by

φ(α) =
1
2
µ(α) +Kµ(α), (2)

where φ(α) = φ(x(α)) and

Kµ(α) =
∫ ∫

µ(α′)N(α′) · ∇x′G(x(α)− x(α′))dα′. (3)

Differentiating both sides of equation (1) with respect to x and integrating by parts,
we obtain

∇φ(x) =
∫ ∫

η(α′)×∇x′G(x− x(α′))dα′, (4)

where η(α) = (γ1xα2 − γ2xα1)(α), and γi = ∂µ
∂αi

, i = 1, 2. Since the tangential
velocity of the interface is not unique, we need to specify an interface velocity. For
water waves, it is customary to evolve the interface with the interface velocity from
the fluid domain. Thus, to obtain the interface velocity, we need to compute the
limiting value of ∇φ(x) as x approaches to the interface from below. By combin-
ing the stream function formulation with the double layer potential formulation,
Haroldsen and Meiron in [14] have shown that the interface velocity is given by

w(α, t) =
∫ ∫

η(α′)×∇x′G(x(α)− x(α′))dα′ +
1
2
η(α)× xα1 × xα2

|xα1 × xα2 |2
. (5)

To make it easier for our presentation, we denote by w0 the integral part of the
interface velocity,

w0(α) =
∫ ∫

η(α′)×∇x′G(x(α)− x(α′))dα′, (6)

and by wloc the local velocity field

wloc(α) =
1
2
η(α)× xα1 × xα2

|xα1 × xα2 |2
. (7)

In Lagrangian formulation, we evolve the free surface by the interface velocity
derived above, i.e.

∂x
∂t

(α, t) = w(α, t), x(α, 0) = x0(α). (8)
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For the evolution of φ(α, t), we use Bernoulli’s equation. If we neglect surface
tension, Bernoulli’s equation in the Lagrangian frame is

φt −
1
2
|w|2 + g · x = 0, (9)

where g = (0, 0, g), g is the gravity acceleration coefficient. The evolution equations
(8) and (9), together with the relations (2)-(5) completely specify the motion of the
system.

Using equation (2) directly in numerical approximations is more sensitive to
numerical instability. To alleviate this difficulty, we first derive an equivalent for-
mulation for equation (2) which gives better numerical stability property than (2).
To this end, we differentiate equation (2) with respect to αl. Using (4)-(5), we
obtain

φαl
=

γl

2
+ xαl

·w0, l = 1, 2. (10)

Note that γ1 and γ2 are not independent. Thus equation (10) as it stands is not
invertible in general. To solve for γ1 and γ2, one has to supplement equation (10)
by the constraint γl = µαl

, l = 1, 2. Instead of solving (10) subject to the above
constraint, we will use an equivalent formulation of (10) for γ in our numerical
discretization:

φαl
=
γl

2
+ Pl1(xα1 ·w0) + Pl2(xα2 ·w0), l = 1, 2. (11)

where Pij (i, j = 1, 2) are projection operators with zero constant mode. More
precisely we define Pij in Fourier transform space as follows: (P̂ij)k = kikj

|k|2 for

k 6= 0, where k = (k1, k2), and (P̂ij)k = 0 for k = 0. Here (P̂ij)k stands for the
Fourier transform of Pij . Using the definition of operator Pij , we have

D2P11 = D1P12, D1P22 = D2P12, P12 = P21, P11 + P22 = I, (12)

for functions with zero modes, i.e. f̂0 = 0. Here Dl = ∂
∂αl

is a partial derivative
operator with respect to ∂αl, l = 1, 2. The reason that equation (11) has a better
stability property than equation (2) at the discrete level is because in deriving
equation (11) we have performed one integration by parts to cancel the leading
order singular terms.

We now show that (2) and (11) are equivalent formulations at the continuum
level. We assume that φ̂0 = µ̂0/2. As we mentioned earlier, γ1 and γ2 are not
independent. Using (11) and (12), we can prove (γ1)α2 = (γ2)α1 . Thus there exists
µ, such that γl = µαl

, l = 1, 2. To solve for γl from (11), we differentiate (11) with
respect to αl and add the resulting equations. This gives

4φ =
4µ
2

+ (xα1 ·w0)α1 + (xα2 ·w0)α2 , (13)

where we have used the identities:

D1P11 +D2P21 = D1P11 +D1P22 = D1(P11 + P22) = D1,

D1P12 +D2P22 = D2P11 +D2P22 = D2(P11 + P22) = D2,

which follows from (12).
Define 4−1 as follows:(

4̂−1
)
k

= − 1
|k|2

, if k 6= 0,
(
4̂−1

)
0

= 0.
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Applying the 4−1 operator to the both sides of the above equation, we get the
equation for µ

φ =
µ

2
+4−1 ((xα1 ·w0)α1 + (xα2 ·w0)α2) , (14)

where we have used the fact that φ̂0 = µ̂0/2. Using integration by parts and
equation (4), we can show that ∂K

∂αj
= xαj ·w0, which implies

(xα1 ·w0)α1 + (xα2 ·w0)α2 = 4K(µ).

Therefore, equation (11) is equivalent to equation (2) up to a constant. Since
φ̂0 = µ̂0/2, the constant must be zero. Thus the solvability of (2) for µ [1] implies
solvability of (11) for γ.

Next we express (11) as follows:

(
1
2
I +A)γ = 5αφ, (15)

where A is two by two matrix, A = (aij), with

a11 = P11K1 + P12K3, a12 = P11K2 + P12K4,

a21 = P21K1 + P22K3, a22 = P21K2 + P22K4,

and

K1f(α) = xα1(α) ·
∫
f(α′)xα2(α

′)×5x′G(x(α)− x(α′))dα′,

K2f(α) = −xα1(α) ·
∫
f(α′)xα1(α

′)×5x′G(x(α)− x(α′))dα′,

K3f(α) = xα2(α) ·
∫
f(α′)xα2(α

′)×5x′G(x(α)− x(α′))dα′,

K4f(α) = −xα2(α) ·
∫
f(α′)xα1(α

′)×5x′G(x(α)− x(α′))dα′.

Recall that an integral kernel K(x, y) is called weakly singular (see e.g. page
6 of [7]) if there exists a positive constant M and α ∈ (0, 2] such that for all
x, y ∈ G, x 6= y, we have

|K(x, y)| ≤M |x− y|α−2.

It is easy to prove that the kernels Ki, i = 1, 2, 3, 4 defined above are integral
operators with weakly singular kernels. It follows from Theorem 1.11 in page 6 of [7]
that Ki, i = 1, 2, 3, 4 are compact operators. Moreover, PijKl is a compact operator
since Pij is a bounded operator (see Definition 1.1 in page 2 of [7]). Consequently
A is a compact operator (see Theorem 1.4 in page 2 of [7]).

By the solvability of (11) for γ, we have

(
1
2
I +A)γ = 0 =⇒ γ = 0. (16)

Using (16) and the fact that A is a compact operator, we can apply Theorem 1.16
in Colton and Kress [7] (page 13) to show that (1

2I +A)−1 exists and is bounded.
Moreover, we define a set of complementary tangent vectors x∗αl

and x∗α2
as

follows:

x∗α1
=

1
|xα1 × xα2 |

(xα2 × n), x∗α2
=

1
|xα1 × xα2 |

(n× xα1).
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It is easy to verify that

x∗αl
· xαk

= δlk, l, k = 1, 2, (17)

where δlk are the Kronecker delta functions. By projecting the interface velocity
w(α) into x∗α1

, x∗α2
and n vectors respectively, we obtain using (17) that

w(α) = w0 + wloc

= (w · xα1)x
∗
α1

+ (w · xα2)x
∗
α2

+ (w · n)n
= (φα1)x

∗
α1

+ (φα2)x
∗
α2

+ (w0 · n)n , (18)

where we have used

d

dαl
φ(x(α)) = ∇φ · xαl

= w · xαl
, l = 1, 2.

In summary, the evolution equations for the 3-D water wave problem are as follows:

xt = w(α) = (φα1)x
∗
α1

+ (φα2)x
∗
α2

+ (w0 · n)n, (19)

φt =
1
2
|w(α)|2 − g · x, (20)

φαl
=

γl

2
+ Pl1(xα1 ·w0) + Pl2(xα2 ·w0), l = 1, 2, (21)

where w0 is defined in (6).
From now on, with x(α, t) = (α, 0) + s(α, t), we assume that s(α, t) and φ(α, t)

are double periodic in α with period 2π. To reduce the computational domain to
a single period, we need to replace the original Green’s function by a periodic one,
which is obtained by summing up all its periodic images

G̃(x) =
∑

m∈Z2

G(x + 2π(m, 0)), (22)

where m = (m1,m2) is a two-dimensional integer index. When the sum is written
as in (22), it is strictly divergent. Since only the derivatives of the periodic Green’s
function will be used, one way to alleviate this difficulty is to express this sum by
using the Ewald summation techniques as outlined by Baker, Meiron, and Orszag
[2], which converts the derivatives of the periodic Green’s function into sums of
error functions. Alternatively, one can write this sum with a reflection and with a
constant subtracted from each term [4]

G̃(x) =
1
2

∑
m∈Z2,n6=0

(
G(x + 2π(m, 0)) +G(x− 2π(m, 0)) +

1
2π|m|

)
. (23)

The gradient is

∇G̃(x) =
1
2

∑
m∈Z2

(∇G(x + 2π(m, 0)) +∇G(x− 2π(m, 0))) . (24)

It can be shown that both of these sums converge uniformly in L1 on bounded sets
and G̃(x) gives the double periodic Green’s function [4].
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3. An Unstable Boundary Integral Method for 3-D Water Waves. In this
section, we will demonstrate that the point vortex method approximation of the
3D water wave equations (2)-(5) and (8)-(9) is numerically unstable. We denote by
xj(t) the numerical approximation of x(αj , t), where αj = jh, j = (j1, j2) is a 2-D
integer index, h is the mesh size. Similarly we define φj , µj , etc. We also need to
introduce a discrete derivative operator, Dh

l , which approximates ∂αl
. This could

be a center difference derivative operator or a pseudo-spectral derivative operator
with smoothing. For the convenience of our later analysis, we express the discrete
derivative operator in terms of the discrete Fourier transform. We recall that for a
2π-periodic function,u, the discrete Fourier transform is given by

ûk =
h2

(2π)2

(N/2,N/2)∑
(j1,j2)=(−N/2+1,−N/2+1)

u(αj)e−ik·xj , (25)

where h = 2π/N .
The inversion formula is

uj =
(N/2,N/2)∑

(k1,k2)=(−N/2+1,−N/2+1)

ûke
ik·xj . (26)

In terms of the discrete Fourier transform, we can express the discrete derivative
operator as follows:

\(Dh
l f)

k
= iklρl(kh)f̂k, k1, k2 = −N

2
+ 1, · · · , N

2
, (27)

where f̂k is the discrete 2-D Fourier transform, and ρl(kh) is some non-negative cut-
off function depending on the approximation being used. For example, ρl(kh) =
sin(klh)

klh
for a second order center difference derivative operator. In the case of

spectral derivative, we require that ρl(x) = ρ(|x|) satisfies ρ(r) ≥ 0, ρ(π) = 0, and
ρ(r) = 1 for 0 ≤ r ≤ λπ with 0 < λ < 1. The Fourier smoothing is needed here to
prevent the aliasing error in the stability analysis, as in the 2-D case [5]. We also
denote by Sh

l the spectral derivative operator without smoothing, i.e.

\(Sh
l f)

k
= iklf̂k, k1, k2 = −N

2
+ 1, · · · , N

2
. (28)

The point vortex method for 3D water waves is given as follows:

dxi

dt
=

∑
j6=i

ηj ×∇x′G(xi − xj)h2 +
1
2

ηi × ni

|Dh
1xi ×Dh

2xi|
≡ wi, (29)

dφi

dt
=

1
2
|wi|2 − g · xi, (30)

µi = 2φi − 2
∑
j6=i

µjNj · ∇x′G(xi − xj)h2, (31)

where ηj = γ1jD
h
2xj − γ2jD

h
1xj, Nj = Dh

1xj ×Dh
2xj and nj = Nj

|Nj| , and γlj = Dh
l µj

(l = 1, 2).
To study the linear stability of the point vortex method, we first introduce the

following discrete convolution operators:
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Hlh(fi) =
1
2π

∑
j6=i

(αli − αlj)fj
((α1i − α1j)2 + (α2i − α2j)2)3/2

h2, l = 1, 2, (32)

and

Λh(fi) =
1
2π

∑
j6=i

(fi − fj)
((α1i − α1j)2 + (α2i − α2j)2)3/2

h2. (33)

These operators will appear in the linear stability analysis around equilibrium.
Moreover, we will also use the following discrete operator:

Rh = H1hD
h
1 +H2hD

h
2 . (34)

We now examine the linear stability around equilibrium. Let x = (α1, α2, 0) +
x′ and φ = 1

2 + φ′, where x′ and φ′ are assumed to be small. Substitute these
into the point vortex method, (29)-(31), and neglect nonlinear terms. After some
manipulations, we obtain the equations that govern the evolution of the perturbed
variables as follows:

dx′i
dt

=
(
Dh

1µ
′, Dh

2µ
′, Rhµ

′) , (35)

dφ′i
dt

= −gz′i, (36)

where µ′ = φ′i + 1
2 (Λh −Rh)(z′i). We will consider the following equations

dz′i
dt

=
(

0, 0, Rh(φ′i) +
1
2
Rh(Λh −Rh)(z′i)

)
, (37)

dφ′i
dt

= −gz′i, (38)

where z′ is the z-component of x′ = (x′, y′, z′). To study the growth rate of the
above linearized equations, we need to study the Fourier symbols of the discrete
operators, Hlh,Λh and Rh. Since these discrete operators are convolution operators,
we can compute their Fourier symbols as follows:

(Ĥlh)k = − ikl

|k|
bl(kh)f̂k, (39)

(Λ̂h)k = |k|c(kh)f̂k, (40)

(R̂h)k = |k|d(kh)f̂k, (41)
(42)
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where

b1(kh) =
1
2π

∑
j6=0

j1 sin(j1k1h) cos(j2k2h)
(j21 + j22)3/2

, (43)

b2(kh) =
1
2π

∑
j6=0

j2 sin(j2k2h) cos(j1k1h)
(j21 + j22)3/2

, (44)

c(kh) =
1

2πh|k|
∑
j6=0

1− cos(k1j1h) cos(k2j2h)
(j21 + j22)3/2

, (45)

d(kh) =
k1b1ρ1 + k2b2ρ2

|k|
. (46)

It can be shown that the above infinite series converge. Using the Fourier symbols
of the discrete operators, we can easily compute the eigenvalues of the linearized
system (37)-(38) as follows:

λ1, λ2 = 0, λ3, λ4 =
C|k|2

4
d(c− d)± 1

4

√
|k|4d2(c− d)2 − 16g|k|d. (47)

If d(kh) 6= 0 and c(kh) 6= d(kh), then the unstable eigenvalues can grow as fast
as O(|k|2) as |k| → ∞. Our numerical study has demonstrated convincingly that
|d(kh)| and |c(kh)− d(kh)| are bounded away from a positive constant for the ma-
jority of the Fourier modes. Thus the unstable eigenmodes can indeed grow expo-
nentially fast in frequency space for t > 0 in a rate proportional to O(exp(c0|k|2t)
for some positive constant c0. Numerical experiments for 3-D water waves near
equilibrium by David Haroldsen [13] also confirmed that numerical solutions of the
point vortex method for small analytic perturbation from the equilibrium devel-
oped order one oscillation in a short time even though the physical solution was
still perfectly smooth at this time. The instability occurred earlier if a finer mesh
was used.

It is clear that this instability is caused by violating the compatibility condition,
Λ = H1D1 +H2D2, at the discrete level. While this compatibility can be imposed
using a Fourier filtering as in the 2-D case [5], there are four additional compatibility
conditions for 3-D water waves that need to be satisfied in order to obtain stability
far from equilibrium. We simply do not have enough degree of freedom in filtering
the interface variables to satisfy all these compatibility conditions. This is why we
need to introduce a different stabilizing technique to obtain a stable 3-D boundary
integral method.

4. A New Stabilizing Technique for 3-D Water Waves. As we mentioned
in the introduction, it is important to separate the treatment of linear stability
from that of nonlinear stability when we consider stability of a numerical method
for a well-posed initial value problem. It is linear stability that plays the most
important role in obtaining convergence of a boundary integral method, as long
as the solution is sufficiently smooth. Our stability analysis has two important
ingredients. First we derive a leading order approximation of the singular velocity
integral. This leading order approximation captures all the leading order contri-
butions of the original velocity integral to linear stability analysis. Moreover, the
leading order approximation can be expressed in terms of the Riesz transform, and
can be approximated with spectral accuracy. Thus the spectral properties of the
original velocity integral are preserved exactly at the discrete level by this leading
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order approximation. Secondly, the term consisting of the difference of the original
velocity integral and the leading order approximation is less singular and does not
contribute to the linear stability. Thus it can be approximated by any consistent
quadrature rule such as the point vortex method approximation. Since the leading
order approximation in effect has desingularized the velocity integral, we obtain an
improved 3rd order accuracy of the (modified) point vortex method approximation
for 3-D water waves. The stabilizing technique described above can also be inter-
preted as a near field correction to the point vortex approximation. Although the
near field correction is small in ampltitude, O(h), it contains critical high frequency
contribution which stabilizes the point vortex approximation.

The leading order approximation of the velocity integral needs to satisfy two
properties: (i) It captures all the leading order contributions of the original velocity
integral, (ii) It can be evaluated with spectral accuracy. The nonlocal leading order
approximations for xαl

·w0, l = 1, 2 and w0 · n which satisfy these two criteria are
given by

Bl =
N(α)

2
· (γ1(α)H1 + γ2(α)H2)xαl

(α), l = 1, 2 (48)

and

Bn =
|N(α)|

2
{[H1(γ1) +H2(γ2)]

−γ1(α)x∗α1
· (H1D1 +H2D2)x(α)

−γ2(α)x∗α2
· (H1D1 +H2D2)x(α)} , (49)

where H1 and H2 are the Riesz transforms defined in (67) in section 6. The Fourier
symbols of the Riesz transforms can be computed explicitly (see section 6). Thus
these singular integrals can be evaluated via discrete Fourier transform with spectral
accuracy. Moreover, using a special coordinate frame with the property [16]

xα1 · xα2 = λ1(t)|xα2 |2, |xα1 |2 = λ2(t)|xα2 |2, (50)

the Riesz transforms become convolution operators and can be evaluated by Fast
Fourier Transform with O(N2 log(N)) operation counts.

In addition to using a near field correction described above, we also use desin-
gularization to stabilize the aliasing error introduced by the point vortex approxi-
mation. In our desingularization, we use the following two identities [2]∫

N(α′) · ∇x′G(x(α)− x(α′))dα′ = 0, (51)∫
∇x′G(x(α)− x(α′))×N(α′)dα′ = 0. (52)

The use of these identities to reduce the singularity was suggested in [2] and [4].
We define

Cl = γl(α)
∫

N(α′) · ∇x′G(x(α)− x(α′))dα′, l = 1, 2 (53)

Cn =
η(α)
|N(α)|

·
∫
∇x′G(x(α)− x(α′))×N(α′)dα′. (54)

It follows from (51) and (52) that Cl = 0, l = 1, 2 and Cn = 0.
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Now we are ready to describe our discretization for the 3-D water wave equations.
First we describe the approximation of the normal velocity integral w0 · n:

wh
0 · nh − Ch

n + (Bs
n −Bh

n) , (55)

where wh
0 , C

h
n , B

h
n are the point vortex approximations of w0, Cn, Bn respectively,

Bs
n is the spectral approximation of Bn, and

wh
0 =

∑
j6=i

ηj ×∇x′G(xi − xj)h2,

Ch
n =

ηi
|Ni|

·
∑
j6=i

Nj ×∇x′G(xi − xj)h2,

where ηj = γ1jD
h
2xj − γ2jD

h
1xj, Nj = Dh

1xj ×Dh
2xj.

In the discretization of (55), the second term, −Ch
n , is a desingularizing term

and is introduced to remove the aliasing error associated with the point vortex
approximation of w0 · n. As noted by Beale in [4], the desingularizing term helps
prevent spurious terms from appearing in the stability analysis. The last term in
(55) is a near field correction term. This term is small (of order O(h)), but it
contributes to the stability of the discretization in an essential way.

Next we describe the approximation of the tangential velocity integral xαl
·

w0, l = 1, 2:

Dh
l xi ·wh

0 − Ch
l + (Bs

l −Bh
l ), l = 1, 2 (56)

where wh
0 , C

h
l , B

h
l are the point vortex approximations of w0, Cl, Bl respectively,

Bs
l is the spectral approximation of Bl, and

Ch
l = γli

∑
j 6=i

Nj · ∇x′G(xi − xj)h2, l = 1, 2.

As in the discretization of the normal velocity, the second term in (56), −Ch
l , is a

desingularizing term and is introduced to remove the aliasing error associated with
the point vortex approximation of Dh

l xi ·w0. The last term in (56) is a near field
correction term, which contributes to the stability of the discretization.

Now we can state our modified point vortex method for the 3-D water wave
problem.

dxi

dt
= Dh

1φiD
h
1x∗i +Dh

2φiD
h
2x∗i + (wh

0 · nh
i − Ch

n +Bs
n −Bh

n)ni ≡ wi, (57)

dφi

dt
=

1
2
|wi|2 − g · xi, (58)

Dh
l φi =

γli

2
+ Ph

l1(D
h
1xi ·wh

0 − Ch
1 + (Bs

1 −Bh
1 )) + Ph

l2(D
h
2xi ·wh

0 − Ch
2

+(Bs
2 −Bh

2 )), l = 1, 2 (59)

where Ni = Dh
1xi × Dh

2xi and ni = Ni

|Ni| , D
h
l is a spectral derivative operator,

and Ph
lk, l, k = 1, 2 is a spectral approximation of Plk, l, k = 1, 2, which is defined

through the discrete Fourier transform of Ph
lk as follows: (P̂h

ij)k = kikj

|k|2 for k 6= 0,

where k = (k1, k2), and (P̂h
ij)k = 0 for k = 0.

Note that because we project the tangential velocity field into x∗α1
and x∗α2

, we
obtain a simplified expression for the discretization of the interface equation (57).
On the other hand, since we use the reformulation for the γ1 and γ2 equations which
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involve the tangential velocity xαi
·w0, we need to use the near field correction and

the desingularization to the tangential velocity field to obtain stability.
The main result of this paper is the following convergence result.

Theorem 1. Assume that the water wave problem is well-posed and has a
smooth solution in CM (M ≥ 6) up to time T . Then the modified point vortex
method (57)-(59) is stable and convergent. More precisely, there exists a positive
h0(T ) such that for 0 < h ≤ h0(T ) we have

‖x(t) − x(·, t)‖l2 ≤ C(T )h3 , (60)
‖γl(t) − γl(·, t)‖l2 ≤ C(T )h3, l = 1, 2. (61)

Here ‖x‖2l2 =
∑N

i,j=1 |xi,j |2h2 .

The proof of Theorem 1 will be deferred to Section 5.

5. Consistency of the modified point vortex method. In this section, we
will prove the consistency of the modified point vortex method for 3-D water waves.
Since we approximate the derivative operator and the leading order approximation
of the velocity integral with spectral accuracy, it is sufficient to prove the consistency
of the point vortex method approximation of the desingularized tangential and
normal velocity integrals xαl

· w0, l = 1, 2 and w0 · n . We will show that the
modified point vortex method approximation is third order accurate and has an
error expansion in the odd powers of h. First, we introduce a function vl(α, α′), l =
1, 2 and vn(α, α′) as follows:

vl(α, α′) = xαl
(α) · η(α′)×∇x′G(x(α)− x(α′))

−γl(α)N(α′) · ∇x′G(x(α)− x(α′))

−N(α)
2

· (γ1(α)
α1 − α′1
r3

+ γ2(α)
α2 − α′2
r3

)xαl
(α), l = 1, 2,(62)

and

vn(α, α′) = n(α) · η(α′)×∇x′G(x(α)− x(α′))

− η(α)
|N(α)|

· ∇x′G(x(α)− x(α′))×N(α′)

−|N(α)|
2

((
α1 − α′1
r3

γ1 +
α2 − α′2
r3

γ2)(α)

−γ1(α)
2

x∗α1
(α) · (α1 − α′1

r3
D1 +

α2 − α′2
r3

D2)x(α)

−γ2(α)
2

x∗α2
(α) · (α1 − α′1

r3
D1 +

α2 − α′2
r3

D2)x(α)) , (63)

where r = |r|, r = xα1(α)(α1−α′1)+xα2(α)(α2−α′2). It is easy to see that vl(α, α′)
and vn(α, α′) are the corresponding continuous integrands in the desingularized
point vortex approximations of the tangential and normal components of the in-
terface velocity. Then the consistency of the point vortex method approximation
of the desingularized tangential and normal velocity integrals is reduced to proving
that∫ ∫

vl(αi, α
′)dα′ −

∑
j6=i

vl(αi, αj)h2 = C3h
3 + C5h

5 + · · ·+ C2n+1h
2n+1 + · · · .(64)
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for l = 1, 2, and similarly for the normal component. The error expansion (64)
can be proved by using an argument similar to that in [12]. We first break this
error estimate into far field and near field estimates using a smooth cut-off function,
fδ(|α|), which satisfies (i) fδ(|α|) = 1 for |α| ≤ δ/2, (ii) fδ(|α|) = 0 for |α| ≥ δ.
We will take δ to be small, but independent of h. For the far field estimate, which
amounts to replacing vl by vl(α, α′)gδ(|α − α′|) with gδ = 1 − fδ, classical error
analysis shows that the far field error is of spectral accuracy, O(hM ) (M is the
degree of regularity of x and γ), see, e.g. [9]. For the near field error, we can Taylor
expand vl(α, α′) around α′ = α. Without loss of generality, we may assume that
αi = 0. It is not difficult to show that for |α′| ≤ δ small

vl(0, α′) = m−2(α′) + m−1(α′) + m0(α′) + m1(α′) + · · · (65)

where ml(α) (l = −2,−1, 0, 1, · · · ) are homogeneous functions of degree l, and
ml(α) is odd function of α for l even. Since the cut-off function fδ(|α|) is an even
function of α, ml(α)fδ(|α|) is also an odd function of α for l even.

To justify the expansion (65), we Taylor expand γl(α′), xαl
(α′), and∇x′G(x(0)−

x(α′)) around α′ = 0. We have

γl(α′) = γl(0) + (γl)α(0)(α′) + m2(α′) + · · · ,
xαl

(α′) = xαl
(0) + (xαl

)α(0)(α′) + m2(α′) + · · · ,

∇x′G(x(0)− x(α′)) = ∇x′G(r(0))−∇x′∇x′G(r(0))(
1
2
(α′)T∇∇x(0)(α′))

+m0(α′) + · · · ,
where r(α) = D1x(α)(α1−α′1) +D2x(α)(α2−α′2) and ml(α) is a generic notation
for a homogeneous function of degree l. Substituting the above expansions into
the (62), and collecting the terms of the same order give rise to the expansion
(65). Moreover, direct calculations show that the homogeneous terms of degree
−1 exactly cancel each other. This implies that m−1(α) ≡ 0 in the expansion
(65). Since both m−2 and m0 are odd, they do not contribute to the continuous
integral nor the discrete sum. Therefore the first term in the expansion of vl that
contributes to the error is the m1(α) term.

We now show that∫
ml(α′)fδ(|α′|)dα′ −

∑
j6=0

ml(αj)fδ(|αj|)h2 = Cl+2h
l+2 +O(hM ), for l ≥ 1. (66)

The proof follows closely that of [12]. Using the homogeneity of ml, we can write∑
j6=0

ml(αj)fδ(|αj|)h2 = hl+2Sl(h), with Sl(h) =
∑
j6=0

ml(j)fδ(|j|h).

Since Sl is a finite sum due to the cut-off fδ, we may differentiate Sl(h) with respect
to h. We have

d

dh
Sl(h) =

∑
j6=0

ml(j)
d

dr
fδ(|j|h)|j| = h−(l+3)

∑
j6=0

ml(jh)
d

dr
fδ(|j|h)|jh|h2.

The sum is a trapezoidal rule approximation to∫
ml(y)

d

dr
fδ(|y|)|y|dy.

Note that the integrand is a smooth function with compact support since d
drfδ(|y|)

vanishes near the origin and has a compact support. It is well-known that the
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trapezoidal rule gives spectral accuracy for such smooth integrand with compact
support [9]. That is∑

j6=0

ml(jh)
d

dr
fδ(|j|h)|jh|h2 =

∫
ml(y)

d

dr
fδ(|y|)|y|dy +O(hM ).

On the other hand, using the polar coordinate, we obtain∫
ml(y)

d

dr
fδ(|y|)|y|dy =

∫ 2π

0

∫ ∞

0

rlml(θ)
d

dr
fδ(r)r2drdθ

=
∫ 2π

0

ml(θ)dθ
∫ ∞

0

rl+2 d

dr
fδ(r)dr

= −(l + 2)
∫ 2π

0

ml(θ)dθ
∫ ∞

0

rlfδ(r)rdr

= −(l + 2)
∫

ml(y)fδ(|y|)dy,

where we have used the homogeneity of ml. Thus we have
d

dh
Sl(h) = −(l + 2)h−(l+3)

∫
ml(y)fδ(|y|)dy +O(hM ).

Integrating the above equation from h to 1 gives

Sl(h) = −Cl+2 + h−(l+2)

∫
ml(y)fδ(|y|)dy +O(hM ),

where Cl+2 is an integration constant. This implies that∫
ml(y)fδ(|y|)dy −

∑
j6=0

ml(αj)fδ(|αj|)h2 =
∫

ml(y)fδ(|y|)dy − h(l+2)Sl(h)

= Cl+2h
(l+2) +O(hM ),

for all l ≥ 1. Observe that Cl = 0 for l even due to the oddness of ml. Thus we
obtain an error expansion in the odd powers of h. This proves the consistency of
the modified point vortex method.

6. Properties of some singular integral operators. Before we proceed to an-
alyze the stability of our 3-D boundary integral method, we need to study the
spectral properties of certain singular integral operators. We first define the Riesz
transform (which is the 2-D analogue of the Hilbert transform) and the Λ operator

Hl(f) =
1
2π

∫ ∫
(αl − α′l)f(α′)

r3
dα′, l = 1, 2, (67)

Λ(f) =
1
2π

∫ ∫
f(α)− f(α′)

r3
dα′, (68)

where r = |r|, and

r = xα1(α)(α1 − α′1) + xα2(α)(α2 − α′2).

The Fourier transform of a 2-D function f is defined by

f̂(ξ) = (2π)−2

∫ ∫
f(x)e−ix·ξdx. (69)
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The inverse transform is given by

f(x) =
∫ ∫

f̂(ξ)eix·ξdξ. (70)

Note that the Riesz transforms defined in (67) are not a convolution operator.
They are pseudo-differential operators. Their ‘Fourier symbols’ depend on the free
surface x(α). Nonetheless, we can still characterize their spectral properties via the
Fourier transform. The result is summarized in the following lemma.

Lemma 6.1. The Riesz transforms have the following spectral representation:

(H1f)(α) =
−i

|xα1 × xα2 |2

∫ ∫
(|xα2 |2ξ1 − (xα1 · xα2)ξ2)f̂(ξ)eiξ·α

(|xα2 |2ξ21 − 2(xα1 · xα2)ξ1ξ2 + |xα1 |2ξ22)1/2
dξ,

(71)

(H2f)(α) =
−i

|xα1 × xα2 |2

∫ ∫
(|xα1 |2ξ2 − (xα1 · xα2)ξ1)f̂(ξ)eiξ·α

(|xα2 |2ξ21 − 2(xα1 · xα2)ξ1ξ2 + |xα1 |2ξ22)1/2
dξ.

(72)

Proof: In the special case of an orthogonal parametrization of the free surface, i.e.
xα1 · xα2 = 0, this result has been obtained in Lemma 3.1 of [18]. The result for
a non-orthogonal parametrization can be obtained in a similar way. We express f
in terms of his Fourier transform and substitute it into the Riesz transforms. We
obtain

(H1f)(α) =
1
2π

∫ ∫
f̂(ξ)dξ

∫ ∫
(α1 − α′1)e

iξ·α′

r3
dα′

=
1
2π

∫ ∫
f̂(ξ)eiξ·αdξ

∫ ∫
α′1e

−iξ·α′

(|xα1 |2α
′2
1 + 2xα1 · xα2α

′
1α

′
2 + |xα2 |2α

′2
2 )3/2

dα′.

(73)

We define

Φ(ξ1, ξ2) =
∫ ∫

α′1e
−iξ·α′

(|xα1 |2α
′2
1 + 2xα1 · xα2α

′
1α

′
2 + |xα2 |2α

′2
2 )3/2

dα′.

By making a change of variables from α′ to β′,

β′1 =
|xα1 × xα2 |
|xα2 |

α′1, β′2 =
xα1 · xα2

|xα2 |
α′1 + |xα2 |α′2,

and using the identity

|xα1 × xα2 |2 + (xα1 · xα1)
2 = |xα1 |2|xα2 |2, (74)

we can show that

Φ(
|xα1 × xα2 |
|xα2 |

ξ1 +
xα1 · xα2

|xα2 |
ξ2, |xα2 |ξ2) =

|xα2 |
|xα1 × xα2 |2

∫ ∫
β′1e

−iξ·β′

(β′2
1 + β

′2
2 )3/2

dβ′.

It has been shown in [23] (pp. 57-58) that the Fourier transform of the Riesz kernel
β1

(β2
1+β2

2)3/2 is given by∫ ∫
β′1e

−iξ·β′

(β′2
1 + β

′2
2 )3/2

dβ′ = −2π
iξ1

(ξ21 + ξ22)1/2
.
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Therefore, we obtain

Φ(ξ1, ξ2) =
−2πi

|xα1 × xα2 |2
(|xα2 |2ξ1 − (xα1 · xα2)ξ2)

(|xα2 |2ξ21 − 2(xα1 · xα2)ξ1ξ2 + |xα1 |2ξ22)1/2
.

By (73), we have

(H1f)(α) =
−i

|xα1 × xα2 |2

∫ ∫
(|xα2 |2ξ1 − (xα1 · xα2)ξ2)f̂(ξ)eiξ·α

(|xα2 |2ξ21 − 2(xα1 · xα2)ξ1ξ2 + |xα1 |2ξ22)1/2
dξ.

Using the same argument, we can get the expression of (H2f)(α). This proves
Lemma 6.1.

Lemma 6.2. The Λ operator satisfies the following compatibility condition:

Λ = H1D1 +H2D2. (75)

where Dl = ∂αl
. Moreover, ΛHl is a local derivative operator to the leading order:

ΛH1(f) = − 1
|xα1 × xα2 |4

(
|xα2 |2D1 − (xα1 · xα1)D2

)
f +A0(f), (76)

ΛH2(f) = − 1
|xα1 × xα2 |4

(
|xα1 |2D2 − (xα1 · xα2)D1

)
f +A0(f), (77)

where A0(f) is a bounded operator from Hs to Hs.

Proof: The identity (75) can be verified directly by using integration by parts.
Using (75) and Lemma 6.1, we obtain

(Λf)(α) =
1

|xα1 × xα2 |2

∫
(|xα2 |2ξ21 − 2(xα1 · xα2)ξ1ξ2 + |xα1 |2ξ22)1/2f̂(ξ)eiξ·αdξ. (78)

Define the commutator operator as follows:

[Λ, g](f) = Λ(gf)− gΛ(f).

It is easy to show that the commutator operator [Λ, g] = A0 is a bounded operator
for g smooth. Now using (78), Lemma 6.1, and [Λ, g] = A0, we have

ΛH1(f) = − i

|xα1 × xα2 |4

∫
(|xα2 |2ξ1 − (xα1 · xα2)ξ2)f̂(ξ)eiξ·αdξ +A0(f)

= − |xα2 |2

|xα1 × xα2 |4

∫ ∫
iξ1f̂(ξ)eiξ·αdξ +

xα1 · xα2

|xα1 × xα2 |4

∫ ∫
iξ2f̂(ξ)eiξ·αdξ

+A0(f)

= − 1
|xα1 × xα2 |4

(
|xα2 |2D1 − (xα1 · xα1)D2

)
f +A0(f).

This proves (76). The proof of (77) follows similarly. This completes the proof of
Lemma 6.2.

Now we can describe the spectral discretization of Hl, l = 1, 2 defined in section
4. Using the explicit Fourier representation of Hl in Lemma 6.1, we can define
our spectral discretization of the Hl operator, denoted as Hs

l . To this end, it is
sufficient to give a spectral discretization of the Riesz transform. We denote by Hs

l

the spectral discretization of the Riesz transform Hl,

(Hs
1,hf)(αj) = − i

|Dh
1x×Dh

2x|2
∑

k∈KN

(|Dh
2x|2k1 − (Dh

1x ·Dh
2x)k2)f̂keik·αj

(|Dh
2x|2k2

1 − 2(Dh
1x ·Dh

2x)k1k2 + |Dh
1x|2k2

2)1/2
,
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(Hs
2,hf)(αj) = − i

|Dh
1x×Dh

2x|2
∑

k∈KN

(|Dh
1x|2k2 − (Dh

1x ·Dh
2x)k1)f̂keik·αj

(|Dh
2x|2k2

1 − 2(Dh
1x ·Dh

2x)k1k2 + |Dh
1x|2k2

2)1/2
,

where Dh
l x = Dh

l x(αj) and KN = {k : k 6= 0,−N/2 + 1 ≤ kl ≤ N/2, l = 1, 2}.

Remark 6.1 If we evaluate directly the above spectral discretization of the Riesz
transform, it will cost O(N4 logN) operations which are comparable to the oper-
ation count of the point vortex method approximation using direct summations.
On the other hand, it is possible to reduce the Riesz transform, Hl, to a convolu-
tion operator by introducing a generalized arclength parametrization for the free
surface. Such a generalized arclength parametrization can be obtained by imposing

xα1 · xα2 = λ1(t)|xα2 |2, |xα1 |2 = λ2(t)|xα2 |2.

It can be shown that such a parametrization exists, at least for near equilibrium
initial data [16]. Our numerical experiments have indicated that this parametriza-
tion exists quite generically even for large perturbations from the equilibrium [16].
Once we have found such parametrization of the free surface initially, this property
is preserved in time by adding two tangential velocities dynamically. We refer the
reader to [16] for more details. Using this generalized arclength frame, the Riesz
transform now becomes a convolution operator. In fact, we now have

(Hs
1,hf)(αj) = − |Dh

2x| i
|Dh

1x×Dh
2x|2

∑
k∈KN

(k1 − λ1(t)k2)f̂keik·αj

(k2
1 − 2λ1(t)k1k2 + λ2(t)k2

2)1/2
,

(Hs
2,hf)(αj) = − |Dh

2x| i
|Dh

1x×Dh
2x|2

∑
k∈KN

(k2 − λ1(t)k1)f̂keik·αj

(k2
1 − 2λ1(t)k1k2 + λ2(t)k2

2)1/2
,

which can be evaluated by Fast Fourier Transform with O(N2 logN) operation
count.

7. Stability of the modified point vortex method for 3-D water waves. In
this section, we will analyze stability the modified point vortex method. We first
consider the linear variation of the modified point vortex method approximation to
the tangential and normal velocity integral, i.e. the terms xαl

·w0, l = 1, 2 and w0·n.
Denote the errors in xj, γlj and φj by ẋj = xj−x(αj), γ̇lj = γlj−γl(αj), l = 1, 2, and
φ̇j = φj − φ(αj) respectively. Ėpvm(j), Ėnear(j), and Ėlocal(j) are defined similarly.
We sometimes also use the notation, Er(f)(j) = f(αj) − fj when the quantity f
consists of several terms. Further, we define

El(αi) ≡
(
−xαl

(α) ·
∫ ∫

η(α′)×∇x′G(x(α)− x(α′))dα′

+Dh
l xi ·

∑
j6=i

ηj ×∇x′G(xi − xj)h2

−γli

∑
j6=i

Nj · ∇x′G(xi − xj)h2

 + (Bs
l −Bp

l )

≡ El
pvm + El

near, l = 1, 2, (79)
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and

En(αi) ≡
(
−n(α) ·

∫ ∫
η(α′)×∇x′G(x(α)− x(α′))dα′

+ni ·
∑
j6=i

ηj ×∇x′G(xi − xj)h2

− ηi

|Ni|
·
∑
j6=i

∇x′G(xi − xj)×Njh
2

 + (Bs
n −Bp

n)

≡ En
pvm + En

near, (80)

where Bp
l , l = 1, 2,n denotes the point vortex method approximation of Bl, and

Bs
l denotes the spectral approximation of Bl using the exact Fourier symbols of

Bl. Stability analysis of our approximations to the tangential and normal velocity
integrals is to estimate El and En in terms of ẋj and γ̇lj, etc.

The first term on the right hand side of (79) and (80) measures the stability
error due to the point vortex method approximation of the velocity integral. So we
call it El

pvm (l = 1, 2) and En. The second term on the right hand side is due to
the contribution of a near field correction. So we term it El

near (l = 1, 2) and En.
We first study the linear variation of El

pvm, l = 1, 2. Direct calculations show
that the linear variation of El

pvm, l = 1, 2, denoted as Ėl
pvm, is given by

Ė1
pvm(i) = Dh

1 ẋi ·wh
0 +Kh

1 γ̇1 −Kh
2 γ̇2

+
Ni

2
· (γ1iH

p
1,h + γ2iH

p
2,h)Dh

1 ẋi

+O(h)(γ̇i) +A0(ẋi), (81)

Ė2
pvm(i) = Dh

2 ẋi ·wh
0 +Kh

3 γ̇1 −Kh
4 γ̇2

+
Ni

2
· (γ1iH

p
1,h + γ2iH

p
2,h)Dh

2 ẋi

+O(h)(γ̇i) +A0(ẋi), (82)

Ėn
pvm(i) = ṅ ·wh

0 +
|Ni|
2

(
Hp

1,h(γ̇1i) +Hp
2,h(γ̇2i)

−γ1iD
h
1x∗i · (H

p
1,hD

h
1 +Hp

2,hD
h
2 )ẋi

−γ2iD
h
2x

∗
i · (H

p
1,hD

h
1 +Hp

2,hD
h
2 )ẋi

)
+A−1(γ̇i) +A0(ẋi), (83)

where γli = γl(αi) (l=1,2), Kh
l is a point vortex method approximation of Kl

(l = 1, 2, 3, 4), wh
0 is a point vortex method approximation of w0, A0 is a bounded

operator from lp to lp, and A−1 is a smoothing operator of order one, i.e. Dh
l A−1 =

A−1(Dh
l ) = A0. We defer to Appendix C to give a more detailed derivation of the

above error estimates.
Next we estimate the linear variation of the near field term Enear. Direct calcu-

lations show that the linear variation of Enear, denoted as Ėl
near(l=1,2) and Ėn

near,
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is given by

Ė1
near(i) =

Ni

2
· (γ1iH

s
1,h + γ2iH

s
2,h)Dh

1 ẋi

−Ni

2
· (γ1iH

p
1,h + γ2iH

p
2,h)Dh

1 ẋi

+O(h)(γ̇i) +A0(ẋi). (84)

Ė2
near(i) =

Ni

2
· (γ1iH

s
1,h + γ2iH

s
2,h)Dh

2 ẋi

−Ni

2
· (γ1iH

p
1,h + γ2iH

p
2,h)Dh

2 ẋi

+O(h)(γ̇i) +A0(ẋi). (85)

Ėn
near(i) =

|Ni|
2

(
Hs

1,h(γ̇1i) +Hs
2,h(γ̇2i)

−γ1iD
h
1x∗i · (Hs

1,hD
h
1 +Hs

2,hD
h
2 )ẋi

−γ2iD
h
2x∗i · (Hs

1,hD
h
1 +Hs

2,hD
h
2 )ẋi

)
−|Ni|

2

(
Hp

1,h(γ̇1i) +Hp
2,h(γ̇2i)

−γ1iD
h
1x∗i · (H

p
1,hD

h
1 +Hp

2,hD
h
2 )ẋi

−γ2iD
h
2x∗i · (H

p
1,hD

h
1 +Hp

2,hD
h
2 )ẋi

)
+A−1(γ̇i) +A0(ẋi) . (86)

Again, we defer to Appendix C to give a more detailed derivation of the above error
estimates.

By adding Ėl
pvm and Ėl

near (l = 1, 2) and adding Ėn
pvm and Ėn

near, we obtain
after some cancellations that

Ė1
pvm(i) + Ė1

near(i) = Dh
1 ẋi ·wh

0 +Kh
1 γ̇1 −Kh

2 γ̇2

+
Ni

2
· (γ1iH

s
1,h + γ2iH

s
2,h)Dh

1 ẋi

+O(h)(γ̇i) +A0(ẋi), (87)

Ė2
pvm(i) + Ė2

near(i) = Dh
2 ẋi ·wh

0 +Kh
3 γ̇1 −Kh

4 γ̇2

+
Ni

2
· (γ1iH

s
1,h + γ2iH

s
2,h)Dh

2 ẋi

+O(h)(γ̇i) +A0(ẋi), (88)

Ėn
pvm(i) + Ėn

near(i) = ṅ ·wh
0 +

|Ni|
2

(
Hs

1,h(γ̇1i) +Hs
2,h(γ̇2i)

−γ1iD
h
1x∗i · (Hs

1,hD
h
1 +Hs

2,hD
h
2 )ẋi

−γ2iD
h
2x∗i · (Hs

1,hD
h
1 +Hs

2,hD
h
2 )ẋi

)
+A−1(γ̇i) +A0(ẋi). (89)

Projection of errors into local normal and tangent vectors.

As we can see from (87)–(89), the leading order error terms of the tangential and
normal velocity components can be naturally expressed in terms of the local normal
and tangent vectors. This suggests that we project the interface errors into the local
normal and tangent vectors instead of using the original (x, y, z) coordinate. In the



CONVERGENCE OF A BOUNDARY INTEGRAL METHOD FOR 3-D WATER WAVES 21

local normal and tangent coordinates, the equations that govern the growth of the
leading order errors greatly simplify and we can identify cancellation of interface
errors in certain tangent direction. This makes it easier to obtain stability by
performing energy estimates.

On the other hand, we have from (59) that

Dh
l φ̇i =

γ̇li

2
+ Ph

l1Er((D
h
1xi ·wh

0 − Ch
1 ) + (Bs

1 −Bh
1 ))

+ Ph
l2Er((D

h
2xi ·wh

0 − Ch
2 ) + (Bs

2 −Bh
2 )), (90)

where Er(f) = f(αj) − fj denotes the error of f . Using (87) and (88) , and the
definition of Epvm(i) and Enear(i), we get(

I

2
+Ah +O(h)

)
γ̇i = 5hφ̇i −5hẋi ·wh

0 +
Ni

2
· (γ1iH

s
1,h + γ1iH

s
1,h)5h ẋi (91)

where Ah is two by two matrix, Ah = (ah
ij) with aij given by

ah
11 = Ph

11K
h
1 + Ph

12K
h
3 , ah

12 = Ph
11K

h
2 + Ph

12K
h
4 ,

ah
21 = Ph

21K
h
1 + Ph

22K
h
3 , ah

22 = Ph
21K

h
2 + Ph

22K
h
4 .

We can show that 1
2I + Ah + O(h) is invertible by using the invertibility of the

corresponding continuous operator and the fact that the kernel of Ah approximates
that of A to the leading order. The following lemma, which is proved in Appendix
A, concerns the solvability of (91).

Lemma 7.1. Given x(α, t) smooth for 0 ≤ t ≤ T , the operator I+2Ah is invertible
for h sufficiently small, and the norm of (I+2Ah)−1 as an operator on L2

h is bounded
uniformly in h and t.

Since Kl is an integral operator with weakly singular kernel, one can verify that
Kh

l (φ̇) is a smoothing operator of order one, i.e. Kh
l (φ̇) = A−1(φ̇) (l = 1, 2, 3, 4).

We defer to Appendix B to prove this property (see also [4] for proof of a similar
result). We can show that the invertibility of (1

2I + Ah) and the fact Kh
l (φ̇) =

A−1(φ̇) (l = 1, 2, 3, 4) imply

γ̇li

2
= Dh

l φ̇i −
(
Dh

l ẋi ·w0(αi) +
Ni

2
· (γ1iH

s
1,h + γ2iH

s
2,h)Dh

l ẋi

)
+ A0(φ̇i) +A0(ẋi), (92)

which can be rewritten as

γ̇li

2
= Dh

l (Ḟi + Elocal(αi) · ẋi) +
Ni

2
· (γ1iH

s
1,h + γ2iH

s
2,h)Dh

l ẋi

+A0(ẋi) +A0(Ḟi), (93)

where

Ḟi = φ̇i −w(αi) · ẋi, (94)
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and

Elocal(α) = w(α)−w0(α)
= φα1x

∗
α1

+ φα1x
∗
α2

+ (w0 · n)n
−((w0 · xα1)x

∗
α1

+ (w0 · xα2)x
∗
α2

+ (w0 · n)n)
= ((φα1 −w0 · xα1)x

∗
α1

+ (φα2 −w0 · xα2)x
∗
α2

=
γ1

2
x∗α1

+
γ2

2
x∗α2

. (95)

It follows from (93) that A−1(γ̇i) = A0(Ḟi) +A0(ẋi). From the definition of Elocal,
we have

Elocal · ẋi =
1
2

(
γ1iD

h
1x∗i + γ2iD

h
2x∗i

)
· ẋi. (96)

Substituting (93) into (89) and using (96), we obtain after some cancellations that

Ėn
pvm(i) + Ėn

near(i) = ṅ ·wh
0 + |Dh

1xi ×Dh
2xi|(Hs

1,hD
h
1 +Hs

2,hD
h
2 )Ḟi

+
|Ni|2

2
ni · (γ1iH

s
1,h + γ2iH

s
2,h)(Hs

1,hD
h
1 +Hs

2,hD
h
2 )ẋi

+ A0(ẋi) +A0(Ḟi). (97)

Furthermore, direct calculations show that

Ėlocal(i) · ni =
γ1i

2|Ni|2
(
(Dh

2x× n)i ×Dh
2xi ·Dh

1 ẋi − (Dh
2x× n)i ×Dh

1xi ·Dh
2 ẋi

)
+

γ2i

2|Ni|2
(
(n×Dh

1x)i ×Dh
1xi ·Dh

2 ẋi − (n×Dh
1x)i ×Dh

2xi ·Dh
1 ẋi

)
=

γ1i

2|Ni|2
ni ·

(
|Dh

2xi|2Dh
1 ẋi − (Dh

2xi ·Dh
1xi) ·Dh

2 ẋi

)
+

γ2i

2Ni|2
ni ·

(
|Dh

1xi|2Dh
2 ẋi − (Dh

1xi ·Dh
2xi)Dh

1 ẋi

)
. (98)

Using (97), (98) and Lemma 4.2, we obtain after canceling the local terms that

ẇi · ni = Er
(
Dh

1φiD
h
1x

∗
i +Dh

2φiD
h
2x∗i + (wh

0 · nh
i − Ch

n +Bs
n −Bh

n)ni

)
· ni

= Er(Dh
1φiD

h
1x∗i +Dh

2φiD
h
2x∗i ) · ni + Ėn

pvm(i) + Ėn
near(i)

= −(Dh
1φiD

h
1x∗i +Dh

2φiD
h
2x∗i ) · ṅi + Ėn

pvm(i) + Ėn
near(i)

= −Elocal · ṅi −
(
wh

0 ·Dh
1xi)Dh

1x∗i + (wh
0 ·Dh

2xi)Dh
2x∗i

)
· ṅi + Ėn

pvm(i)

+Ėn
near(i)

= Ėlocal · ni −wh
0 · ṅi + Ėn

pvm(i) + Ėn
near(i)

= |Dh
1xi ×Dh

2xi|(Hs
1,hD

h
1 +Hs

2,hD
h
2 )Ḟi +A0(ẋ) +A0(Ḟ ). (99)

Here Er(f) = f(αj)−fj as it was defined earlier. This completes our error estimate
for the normal velocity component.

The error estimate for the tangential velocity component is much easier. Note
that equation (57) implies

Dh
l φi = Dh

l xi ·wi.

Thus we have

Dh
l φ̇i = Dh

l ẋi ·wi +Dh
l xi · ẇi, (100)
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which implies

ẇi ·Dh
l x(αi) = Dh

l (Ḟ ) +A0(ẋi). (101)

This completes the error estimate for the tangential velocity component.

Derivation of the error equations in the normal and tangent coordinates.

We are ready to perform energy estimates to obtain stability. As in the 2-
D case [5], we need to first derive the error equations in the local normal and
tangent coordinates. Let t1, t2, and n be the local unit tangent and normal vectors
respectively. Denote by ẋtl

= ẋ · tl (l = 1, 2), and ẋn = ẋ · n. After projecting the
error equations into the local tangent and normal vectors, we obtain

∂ẋt1

i

∂t
=

1
|Dh

1xi|
Dh

1 Ḟi +A0(ẋ) (102)

∂ẋt2

i

∂t
=

1
|Dh

2xi|
Dh

2 Ḟi +A0(ẋ) (103)

∂ẋn
i

∂t
= |Dh

1xi ×Dh
2xi|

(
Hs

1,hD
h
1 +Hs

2,hD
h
2

)
Ḟi +A0(ẋ) +A0(Ḟ ), (104)

where we have used (99)-(101).
we will need to express the evolution equation for Ḟi in the new variables. From

the definition of Ḟi (see (94)), we have

(Ḟi)t = (φ̇i)t −w(αi) · (ẋi)t −wt(αi) · ẋi. (105)

To evaluate (φ̇i)t, we compare the continuous Bernoulli equation with its discrete
approximation, i.e.

(φi)t =
1
2
|wi|2 − g · xi, (106)

(φ(αi))t =
1
2
|w(αi)|2 − g · x(αi). (107)

Subtracting (107) from (106), we obtain

(φ̇i)t = ẇi ·w(αi)− g · ẋi +
1
2
|ẇi|2. (108)

Substituting (108) into (105), we have after some cancellations

(Ḟi)t = −(wt(αi) + g) · ẋi +
1
2
|ẇi|2. (109)

Noting that the Lagrangian velocity w satisfies the Euler equations in the fluid
domain in the form

wt = −∇p− g.
Thus we have

(Ḟi)t = ∇p · ẋi +
1
2
|ẇi|2. (110)

Moreover, p = 0 on the interface so that ∇p is in the normal direction. We have

∇p · ẋi = −c(αi)ẋn
i , (111)

where c(α) = −∇p · n = (wt + g) · n. Hence the evolution equation for Ḟ becomes

(Ḟi)t = −c(αi)ẋn
i +

1
2
|ẇi|2. (112)
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Now the whole set of evolution equations for ẋtl

(l = 1, 2), ẋn, and Ḟ is given by

∂ẋt1

i

∂t
=

1
|Dh

1xi|
Dh

1 Ḟi +A0(ẋ) (113)

∂ẋt2

i

∂t
=

1
|Dh

2xi|
Dh

2 Ḟi +A0(ẋ) (114)

∂ẋn
i

∂t
= |Dh

1xi ×Dh
2xi|

(
Hs

1,hD
h
1 +Hs

2,hD
h
2

)
Ḟi +A0(ẋ) +A0(Ḟ ) (115)

(Ḟi)t = −c(αi)ẋn
i +

1
2
|ẇi|2. (116)

Thus, we have reduced the error estimates for the full nonlinear, nonlocal water wave
equations into a simple linear and almost local system for the variation quantities.
The only nonlocality in the leading order terms comes from the discrete Riesz
transform Hs

l,h(l = 1, 2). The lower order terms are nonlocal, but they are smoother
than the principal linearized terms. This simplification helps us identify and balance
the most important terms in our energy estimates.

The energy estimates (113)-(116) can be obtained directly. As in the two dimen-
sional case, the normal variation plays an essential role. The tangential variations
only contribute to the lower order terms. To see this, we make the following change
of variables for the tangential variations ẋt1

i and ẋt2

i :

δ̇1i = ẋt1

i +
|Dh

1xi ×Dh
2xi|

|Dh
1xi|

[
|Dh

1xi|2Hs
1,h + (Dh

1xi ·Dh
2xi)Hs

2,h

]
ẋn
i (117)

δ̇2i = ẋt2

i +
|Dh

1xi ×Dh
2xi|

|Dh
2xi|

[
|Dh

2xi|2Hs
2,h + (Dh

1xi ·Dh
2xi)Hs

1,h

]
ẋn
i . (118)

Using Lemma 4.2 and the identity (74), we have

Λ(|xα1 |2H1 + (xα1 · xα2)H2)(f) = − 1
|xα1 × xα1 |2

D1f +A0(f) (119)

Λ(|xα2 |2H2 + (xα1 · xα2)H1)(f) = − 1
|xα1 × xα1 |2

D2f +A0(f). (120)

It follows from (119) and (120) that the leading order terms in dδ̇l
i/dt cancel each

other. We get

dδ̇1i
dt

= A0(ẋ) +A0(Ḟ ), (121)

dδ̇2i
dt

= A0(ẋ) +A0(Ḟ ). (122)

As a result, the error equations simplify further to the leading order,

dδ̇1i
dt

= A0(ẋ) +A0(Ḟ ), (123)

dδ̇2i
dt

= A0(ẋ) +A0(Ḟ ), (124)

∂ẋn
i

∂t
= |Dh

1xi ×Dh
2xi|Λs

hḞi +A0(ẋ) +A0(Ḟ ) (125)

(Ḟi)t = −c(αi)ẋn
i +

1
2
|ẇi|2, (126)

where Λs
h = Hs

1,hD
h
1 +Hs

2,hD
h
2 .
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Energy estimates and convergence analysis

In the above estimates, we only study the linear stability of the modified point
vortex approximation. To obtain convergence, we also need to obtain nonlinear
stability. To this end, we use Strang’s technique [24], which can be summarized
as follows. In proving convergence, there are two steps, consistency and stability.
In the consistency step, we usually use the exact solution of the continuum water
wave equations to construct “exact particles” x(αi, t) and vortex sheet strengths
γl(αi, t). Denote by R(t) (the consistency error) the amount by which these exact
particles fail to satisfy the modified point vortex equations. In our case, we have
R(t) = O(h3). Strang’s idea is not to use the exact particles, but to construct
“smooth particles” (x̃(αi, t) = x(αi, t)+h3x3(αi, t), γ̃l(αi, t) = γl(αi, t)+h3γl3(αi, t)
for some smooth x3 and γl3) that are O(h3) perturbations of the exact particles,
which satisfy the discrete equations more accurately: R(t) = O(hr) for r ≥ 5 as
long as the continuous solution is sufficiently smooth. Existence of such smooth
particles is guaranteed by the existence of the error expansion we obtained for the
consistency error in section 5. The perturbed solution, x3 and γl3, basically satisfies
the linearized water wave equations with coefficients depending the exact solution of
the water wave equations. Then, in the stability step, we bound e(t), the difference
between the smooth particles and the particles computed by the modified point
vortex method. As observed by Strang in [24], if the numerical method is linearly
stable, nonlinear stability can be obtained by using the smallness of the error e(t).
This greatly simplifies the nonlinear stability analysis.

To illustrate, we define

T ∗ = sup{t | t ≤ T, ‖ẋ‖l2 ≤ h3, ‖γ̇‖l2 ≤ h2}.

Here the errors ẋ and γ̇ are with respect to the “smooth” particles x̃(α, t) and the
smooth vortex vortex strengths γ̃(α, t) [24, 4, 8]. Since h2|ẋi|2 ≤ ‖ẋ‖2l2 , we conclude
that

‖ẋ‖∞ ≤ 1
h
‖ẋ‖l2 ≤ h2, for t ≤ T ∗ . (127)

Similarly we have

‖γ̇‖∞ ≤ h, for t ≤ T ∗,

and

‖Dh
l ẋ‖∞ ≤ 1

h
‖Dh

l ẋ‖l2 ≤
2π
h2
‖ẋ‖l2 ≤ 2πh, l = 1, 2, for t ≤ T ∗.

A typical nonlinear term has the following form:

ENL
i =

∑
j6=i

γ̇lj|ẋi − ẋj|2

|(x(αi)− x(αj)) + (ẋi − ẋj)|3
h2.

We assume that the exact water wave solution is smooth and non-self-intersecting.
Thus we have

|x(αi)− x(αj)| ≥ c|αi − αj| ≥ ch, for j 6= i.

Therefore, for h small and t ≤ T ∗, we have from (127) that

|x(αi)− x(αj)) + (ẋi − ẋj)| ≥ c|αi − αj| − 2h2 ≥ c

2
|αi − αj|.
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Thus, for t ≤ T ∗, we get

‖ENL‖l2 ≤ ‖γ̇‖∞‖ẋ‖l2maxi

∑
j6=i

Ch2

|αi − αj|3
≤ C

h
‖γ̇‖∞‖ẋ‖l2 ≤ C‖ẋ‖l2 , (128)

where we have used Young’s inequality. This shows that ENL = A0(ẋ). Other
nonlinear terms can be treated similarly.

Combining the consistency and stability steps, we obtain the following new error
equations,

dδ̇1i
dt

= A0(ẋ) +A0(Ḟ ) +O(hr), (129)

dδ̇2i
dt

= A0(ẋ) +A0(Ḟ ) +O(hr), (130)

∂ẋn
i

∂t
= |Dh

1xi ×Dh
2xi|Λs

hḞi +A0(ẋ) +A0(Ḟ ) +O(hr), (131)

dḞi

dt
= −c(αi)ẋn

i +
1
2
|ẇi|2, (132)

where we still use the same notation, ẋ, to denote the error between the particles
computed by the modified point vortex method and the smooth particles x̃, and
r ≥ 5 by construction.

To perform energy estimate, we first define a discrete H1/2 norm. From (78), we
have

(Λf)(α) =
∫
g2(ξ, α)f̂(ξ)eiξ·αdξ, (133)

where g(ξ, α) is defined as

g(ξ, α) =
1

|xα1 × xα2 |
(|xα2 |2ξ21 − 2(xα1 · xα2)ξ1ξ2 + |xα1 |2ξ22)1/4 (134)

Introduce a function ψ(α) defined as follows

ψ(α) =
∫
g(ξ, α)f̂(ξ)eiξ·αdξ.

We can show that if f is a real function, so is ψ. To see this, we compute the
complex conjugate of ψ. We have

ψ(α) =
∫
g(ξ, α)f̂(ξ)e−iξ·αdξ =

∫
g(ξ, α)\f(−ξ)e−iξ·αdξ (135)

=
∫
g(−ξ, α)f̂(ξ)eiξ·αdξ = ψ(α), (136)

where we have used the fact that g is an even function of ξ and f̂(ξ) =\f(−ξ) since
f is real.

By using the same argument as in the proof of Lemma 3.2 in [18], we can show
that the Λ operator satisfies the following estimate:

(Λf, f)− (ψ,ψ) = (A0(f), f), (137)

where (f, g) is the usual inner product in L2, and A0 is a bounded operator in L2.
Furthermore, we assume that |(A0(f), f)| ≤ c0‖f‖L2 . Define a generalized H1/2

norm as follows:

‖f‖2H1/2 = ((Λ + dI)f, f),
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where d = c0 + 1. It follows from (137) that

((Λ + dI)f, f) = (Λf, f) + d(f, f)
= (ψ,ψ) + (A0(f), f) + d(f, f)
≥ (ψ,ψ) + (f, f)
≥ 0.

Recall that ψ(α) =
∫
g(ξ, α)f̂(ξ)eiξ·αdξ, and |g(ξ, α)| ≤ c|ξ|1/2. Thus we also

have

((Λ + dI)f, f) ≤ C‖f‖2H1/2 .

Since Λs
h is a spectral approximation of Λ, we can introduce a discrete H1/2 norm

as follows:

‖f‖
H

1/2
h

= ((Λs
h + dI)f, f)1/2

h , (138)

where (·, ·)h is the inner product associated with the discrete l2 norm. Then the
above derivation for the continuous case can be carried out in the same way for the
discrete norm.

By assumption of the theorem, the problem is well-posed. It has been shown by
Wu [26] that the coefficient c(α) in (126) is positive

c(α) ≥ c0 > 0.

To obtain our energy estimate, we multiply (129) by δ̇1i , (130) by δ̇2i , (131) by
c(αi)

|Dh
1 xi×Dh

2 xi|
ẋn, (132) by (Λs

h + dI)Ḟi, we then add and sum in i. Let

y2
0(t) = ‖

(
c(αi)

|Dh
1xi ×Dh

2xi|

)1/2

ẋn(t)‖2l2 + ‖δ̇1(t)‖2l2 + ‖δ̇2(t)‖2l2 + ‖Ḟ (t)‖2
H

1/2
h

,

where

‖Ḟ (t)‖2
H

1/2
h

= ((Λs
h + dI)Ḟ (t), Ḟ (t))h.

We obtain
1
2
dy2

0

dt
= (Λs

hḞ , cẋ
n)h − (cẋn, (Λs

h + dI)Ḟ )h

+ (f1, δ̇1)h + (f2, δ̇2)h + (f3, ẋn)h + (f4, (Λs
h + dI)Ḟ )h, (139)

where

‖fj‖l2 ≤ C(‖ẋn‖l2 + ‖δ̇1‖l2 + ‖δ̇2‖l2 + ‖Ḟ‖l2 + hr), j = 1, 2, 3,

and f4 = 1
2 |ẇi|2.

Note that ẇi = dẋi

dt . Using the estimate on dẋi

dt and the fact that ‖ẋ‖∞ ≤ h2 and
‖γ̇‖∞ ≤ h for t ≤ T ∗, we can show that ‖ẇ‖∞ ≤ c h| log(h)|. Therefore, we obtain

|( (Λs
h + dI)Ḟ , |ẇi|2)h| ≤ ‖(Λs

h + dI)Ḟ‖l2‖ |ẇ|2‖l2

≤ c h | log(h)| ‖(Λs
h + dI)Ḟ‖l2

(
‖(Λs

h + dI)Ḟ‖l2 + ‖Ḟ‖l2 + ‖ẋ‖l2 + hr
)
.

It follows from the spectral property of Λs
h that

‖(Λs
h + dI)Ḟ‖l2 ≤ Ch−1/2‖Ḟ‖

H
1/2
h

.
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As a consequence, we get

|((Λs
h + dI)Ḟ , |ẇi|2)h| ≤ C‖Ḟ‖H1/2(y0(t) + chr).

Now we are ready to complete the convergence analysis. Note that the two
leading order terms in the righthand side of (139) containing the Λs

h operator cancels
each other and the entire right-hand side is bounded by y0(t)(y0(t) +Chr). Hence
we obtain

dy2
0

dt
≤ C0 y0(t)(y0(t) + hr),

for some constant C0. The Gronwall inequality then implies

y0(t) ≤ C(T )hr, t ≤ T ∗. (140)

In terms of the original variables, we have

‖ẋ‖l2 ≤ B(T )hr, ‖γ̇‖l2 ≤ B(T )hr−1, t ≤ T ∗, (141)

where we have used (93) for γ̇. Since r ≥ 5, for h small enough, we get

‖ẋ‖l2 ≤ B(T )h5 <
1
2
h3, ‖γ̇‖l2 ≤ B(T )h4 <

1
2
h2.

It follows from the definition of T ∗ that

T ∗ = T.

This implies that estimate (141) is valid for the entire time interval 0 ≤ t ≤ T .
Since the smooth particles and the smooth vortex sheet strengths are order O(h3)
perturbations from the exact particles and vortex sheet strengths, i.e. x̃(α, t) =
x(α, t)+O(h3) and γ̃l(α, t) = γl(α, t)+O(h3) (l = 1, 2) by construction, we conclude
that

‖x(t)− x(·, t)‖l2 ≤ Ch3, 0 ≤ t ≤ T, (142)
‖γl(t)− γl(·, t)‖l2 ≤ Ch3, 0 ≤ t ≤ T. (143)

This completes the convergence proof of the modified point vortex method for 3-D
water waves.

Appendix A. Proof of Lemma 7.1

Proof of Lemma 7.1: The invertibility of of I + 2Ah will follow from that of the
operator I + 2A of which it is an approximation, where A is the two by two matrix
operator acting on periodic functions of α. We have discussed the invertibility of
I + 2A, and now we treat Ah as a perturbation of A.

We would like to extend the discrete operator Ph
rsK

h
l (γk)j, r, s, , k = 1, 2, l =

1, 2, 3, 4 to a continuous operator in such a way that the L2 norm of the extended
continuous operator is the same as the discrete l2 norm of the discrete operator and
that the extended operator Ph

rs is a bounded operator. We do this in two steps. In
the first step, we extend fj = Kh

l (γk)j as a piecewise constant function in L2 using
the same method as in Lemma 6.1 of [4].

In the second step, we will extend Ph
rsf(α) for periodic function f defined in

[−π, π)2. Keep in mind that we need to define our extension in such a way that the
L2 norm of the extended operator should be the same as the discrete l2 norm of
the original discrete operator. Let Bj = {α ∈ [−π, π)2 : 0 ≤ αl− (αj)l < h, l = 1, 2}
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for j ∈ I, where I is the two-dimensional integer set. Define the average of f over
Bj as follows:

f̄j =
1
|Bj|

∫
Bj

f(x)dx.

Since f(α) is a piecewise constant function on Bj from our step 1, we have

f̄j = fj.

Let IN be a two-dimensional integer set defined by

IN = {(j1, j2), | −N/2 + 1 ≤ j1 ≤ N/2, −N/2 + 1 ≤ j2 ≤ N/2}.
Using the discrete Fourier transform, we havê̄f(k) = h2

∑
j∈IN

f̄je
ik·αj ,

and
f̂(k) = h2

∑
k∈IN

fje
ik·αj .

Since f̄j = fj, we have ̂̄f(k) = f̂(k). Now we define the extension of Ph
12 as follows:

Ph
12f(α) =

∑
k∈IN

k1k2

|k|2
̂̄f(k)eik·α.

We claim that

‖Ph
12f(α)‖L2 = ‖Ph

12f(αj)‖l2 , (144)

for any piecewise constant function f(α).
Proof of (144): Using Parseval equality and the fact ̂̄f(k) = f̂(k), we have

‖Ph
12f(α)‖2L2 = ‖

∑
k∈IN

k1k2

|k|2
̂̄f(k)eik·α‖2L2

=
∑
k∈IN

|k1k2

|k|2
̂̄f(k)|2

=
∑
k∈IN

|k1k2

|k|2
f̂(k)|2.

On the other hand, using the discrete Parseval equality, we get

‖Ph
12f(αj)‖2l2 = ‖

∑
k∈IN

k1k2

|k|2
f̂(k)eik·αj‖l2

=
∑
k∈IN

|k1k2

|k|2
f̂(k)|2.

Thus we have

‖Ph
12K̄

h
l (γk)(α)‖L2 = ‖Ph

12K̄
h
l (γk)j‖l2 , l = 1, 2, 3, 4.

Similar result applies to other Ph
rs operators, r, s = 1, 2.

Next we will prove

‖Ph
rsf(α)‖L2 ≤ ‖f‖L2 , (145)

for any L2 function f(α).
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Proof of (145): From the definition of the extension operator and using the
Parseval equality, we get

‖Ph
12f(α)‖2L2 = ‖

∑
k∈IN

k1k2

|k|2
̂̄f(k)eik·α‖L2 =

∑
k∈IN

|k1k2

|k|2
̂̄f(k)|2

≤
∑
k∈IN

|̂̄f(k)|2 = h2
∑
k∈IN

|f̄j|2 ≤
∑
j∈IN

∫
Bj

|f(α)|2dα = ‖f‖2L2 .

Using (144)-(145), and arguing as in the proof of Lemma 6.1 in [4], we can show
that

‖A−Ah‖L2
h

= O(h| log h|).
Finally, it follows from Theorem 1.37 in [7] that (1

2I + Ah +O(h))−1 exists and is
bounded since the unperturbed operator ( 1

2I +A)−1 exists and is bounded.

Appendix B. Proof of Kh
l (φ̇) = A−1(φ̇) (l = 1, 2, 3, 4)

Proof of Kh
l (φ̇) = A−1(φ̇) (l = 1, 2, 3, 4).

Similar to the regularized Green’s function Gh in [4], we define

Gh(x) = −(4πr)−1s(r/h), r = |x|,
with s chosen so that s(r) is smooth and

s(r) =
{

0, r < c/2,
1, r > 3c/4,

where the constant c is chosen such that |x(α, t)− x(α′, t)| ≥ c|α− α′|. Therefore,
Gh is smooth, for h > 0 and we have Gh(x) = h−1G1(x/h). Letting ψ = ∆G1, we
find

ψ(x) = ∆G1(x) = −(4πr)−1s′′(r), r = |x|,
and correspondingly

∆Gh(x) = ψh(x) = h−3ψ(|x|/h),
which approximates the Dirac delta function as h −→ 0.

Since 5xGh(0) = 0 by the definition of Gh, we can rewrite Kh
1 as follows:

Kh
1 (φ̇) =

∑
j6=i

Dh
1xi ×Dh

2xj · 5x′G(xi − xj)φ̇jh
2

=
∑
j

Dh
1xi ×Dh

2xj · 5x′Gh(xi − xj)φ̇jh
2

≡
∑
j

Kh(xi,xj)φ̇jh
2.

The following proof is similar to the proof of Theorem 5.1 in [4]. We first split
the regularized Green’s function into a far-field part and local part, in order to focus
attention on the latter. We wish to restrict the local analysis to a small neighbor-
hood of the singularity in which the coordinate mapping is well approximated by
its linearization. Let J(α) be the Jacobian matrix ∂x

∂α at α. It can be shown that
there is some δ0 small enough with δ0 < π/2 so that for all α and α′ satisfying
|α− α′| ≤ δ0 we have

|J(α)(α− α′)|/2 ≤ |x(α)− x(α′)| ≤ 2|J(α)(α− α′)|.
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It follows from the above inequalities and the fact that the Jacobian matrix J(α) is
nonsingular that there exists r0 > 0 with r0 < π/2 so that |x(α)−x(α′)| ≤ r0 implies
|α − α′| ≤ δ0. We can also assume that |J(α)(α − α′)| ≤ δ0 implies |α − α′| ≤ δ0.
We now choose a cut-off function ζ so that ζ(x) = 1 for x near 0 and ζ(x) = 0 for
|x| > r0. We write the regularized Kernel function as Kh = ζKh + (1− ζ)Kh. The
far-field part K∞

h = (1−ζ)Kh is smooth. Consequently a discrete integral operator
with kernel DmK∞

h (xi,xj) is l2-bounded, uniformly in h, where Dm is a derivative
operator of any order m. The local term Kh when evaluated on the surface is

Kh(x(α),x(α′))ζ(x(α)− x(α′))

for |α−α′| ≤ π; the remaining terms in the sum (those corresponding to |α−α′| >
π) are zero because the small support of ζ. Thus the boundedness properties of
a discrete operator with DmKh(xi,xj) reduce to consideration of DmK0

h(xi,xj),
where K0

h(xi,xj) = Kh(xi,xj)ζ(xi − xj).
We now consider the boundedness properties of the operator Kh

1 . Because of
the above remark, we can replace Kh by K0

h. We will make a Taylor expansion of
the kernel. We treat xi−xj as a perturbation of its linearization yij = Ji(αi−αj),
where Ji = J(αi). Thus we can write DGh(xi − xj) as an expansion in terms
Dm+1Gh(yij)(zij)m, summed over m with remainder, where zij = x(αi)− x(αj)−
yij, and m is a multi-index. We can further expand zij in powers of αi − αj,
quadratic or higher. We can also expand D2xj as D2xi plus powers of αi −αj. We
then have a linear combination of terms for Kh. A typical term for |αi−αj| ≤ π is
given by

Dm+1
x Gh(Ji(αi − αj))(αi − αj)p+l. (146)

Here p, l are some multi-indices, with |p| ≥ 2|m|, |l| ≥ 0. For a discrete integral
operator with (146) as a kernel, we can derive boundedness properties of this opera-
tor by estimating the Fourier transform of the kernel αp+lDm

x Gh(Jiα) with respect
to α. The relevant estimates have been stated in the lemma 5.3 in [4]. These es-
timates and the previous remarks show that the operator with kernel (146) gains
|p|+ |l| − |m| derivatives, i.e., it is of order |m| − |p| − |l| in l2 in the sense defined
above. The first term, with m = p = l = 0 vanishes because Dlx(αi) ·N(αi) = 0
(l = 1, 2), and the others are of order −1 or less since |p| ≥ 2|m|. This proves that
Kh

1 (φ̇) = A−1(φ̇). Similar argument applies to Kh
l for l = 2, 3, 4.

Appendix C. Derivation of (81)-(86)

Estimates for Ėl
pvm (l=1,2)

By the definition of E1
pvm(i), we have
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Ė1
pvm(i) = Dh

1 ẋi ·
∑
j6=i

ηj ×5x′G(xi − xj)h2

+Dh
1xi ·

∑
j6=i

(γ̇1jD
h
2xj − γ̇2jD

h
1xj)×5x′G(xi − xj)h2

+Dh
1xi ·

∑
j6=i

(γ1jD
h
2 ẋj − γ2jD

h
1 ẋj)×5x′G(xi − xj)h2

+Dh
1xi ·

∑
j6=i

ηj × Er(5x′G(xi − xj))h2

−γ̇1i

∑
j6=i

Nj · 5x′G(xi − xj)h2

−γ1i

∑
j6=i

(Dh
1 ẋj ×Dh

2xj +Dh
1xj ×Dh

2 ẋj) · 5x′G(xi − xj)h2

−γ1i

∑
j6=i

Nj · Er(5x′G(xi − xj))h2,

where Er(f) = f(αj)− fj. The first term is Dh
1 ẋi ·wh

0 ; the second term is Kh
1 γ̇1 −

Kh
2 γ̇2; the fourth and seventh terms cancel each other to the leading order; the

fifth term gives O(h)γ̇i. Combining the third and sixth terms, we can obtain Ni

2 ·
(γ1iH

p
1,h + γ2iH

p
2,h)Dh

1 ẋi to the leading order.
Similarly, we can derive (83) for Ė2

pvm(i).

Estimates for Ėn
pvm

By the definition of En
pvm(i), we have

Ėn
pvm(i) = ṅi ·

∑
j6=i

ηj ×5x′G(xi − xj)h2

+ni ·
∑
j6=i

(γ̇1jD
h
2xj − γ̇2jD

h
1xj)×5x′G(xi − xj)h2

+ni ·
∑
j6=i

(γ1jD
h
2 ẋj − γ2jD

h
1 ẋj)×5x′G(xi − xj)h2

+ni ·
∑
j6=i

ηj × Er(5x′G(xi − xj))h2

−Er( ηi
|Ni|

)
∑
j6=i

5x′G(xi − xj)×Njh
2

− ηi
|Ni|

∑
j6=i

5x′G(xi − xj)× (Dh
1 ẋj ×Dh

2xj +Dh
1xj ×Dh

2 ẋj)h2

− ηi
|Ni|

∑
j6=i

Er(5x′G(xi − xj))×Njh
2,

where we have used the notation Er(f) = f(αj)− fj. The first term is ṅi ·wh
0 ; the

second term is |Ni|
2 (Hh

1,p(γ̇1i)+Hh
2,p(γ̇2i)); the fourth and seventh terms cancel each

other to the leading order; the fifth term gives O(h)γ̇i + O(h)A1(ẋ) = A−1(γ̇i) +
A0(ẋ). Combining the third and sixth terms, we obtain to the leading order the
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following error terms:

−γ1iD
h
1x∗i · (H

p
1,hD

h
1 +Hh

2,hD
h
2 )ẋi − γ2iD

h
2x∗i · (H

p
1,hD

h
1 +Hh

2,hD
h
2 )ẋi.

Putting all the leading order estimates together, we get the desired estimates for
Ėn

pvm.

Estimates for Ėnear

By the definition of E1
near(i), we have

Ė1
near(i) = Er(

Ni

2
γ1i) · (Hs

1,h −Hp
1,h)Dh

1xi + Er(
Ni

2
γ2i) · (Hs

2,h −Hp
2,h)Dh

1xi

+(
Ni

2
γ1i) · Er(Hs

1,h −Hp
1,h)Dh

1xi + (
Ni

2
γ2i) · Er(Hs

2,h −Hp
2,h)Dh

1xi

(
Ni

2
γ1i) · (Hs

1,h −Hp
1,h)Dh

1 ẋi + (
Ni

2
γ2i) · (Hs

2,h −Hp
2,h)Dh

1 ẋi,

where we have used the notation Er(f) = f(αj)− fj. The first term is O(h)(γ̇i) +
O(h)A1(ẋi) = O(h)(γ̇i) + A0(ẋi); the second term is of the same order; the fifth
and sixth terms are the terms that we would like to get. We claim that the third
and fourth terms are O(h)A1(ẋi) = A0(ẋi). Let us study the third term in some
details. It can be expressed as follows:

(
Ni

2
γ1i) · (Dh

1xi ·Dh
1 ẋi)(Hs

1,11,h −Hp
1,11,h)Dh

1xi

+(
Ni

2
γ1i) · (Dh

1xi ·Dh
2 ẋi)(Hs

1,12,h −Hp
1,12,h)Dh

1xi

+(
Ni

2
γ1i) · (Dh

2xi ·Dh
1 ẋi)(Hs

1,21,h −Hp
1,21,h)Dh

1xi

+(
Ni

2
γ1i) · (Dh

2xi ·Dh
2 ẋi)(Hs

1,22,h −Hp
1,22,h)Dh

1xi

where the operator H1,lm, l,m = 1, 2 is an integral operator with the following
kernel

(α1 − α′1)(αl − α′l)(αm − α′m)
|r|5

,

and

r = Dh
1xi(α1 − α′1) +Dh

2xi(α2 − α′2).

As a consequence, we can show that the third term is O(h)A1(ẋi) = A0(ẋi). Sim-
ilarly, we can show that the fourth term is of the same order. This completes the
derivation for Ė1

near. Using a similar argument, we can derive (83) and (84) for
Ė2

near(i) and Ėn
near(i) respectively.
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