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a b s t r a c t

In this paper, we investigate a potential two-scale traveling wave singularity of the 3D incompressible
axisymmetric Euler equations with smooth initial data of finite energy. The two-scale feature is
characterized by the property that the center of the traveling wave approaches to the origin at a
slower rate than the rate of the collapse of the singularity. The driving mechanism for this potential
singularity is due to two antisymmetric vortex dipoles that generate a strong shearing layer in both the
radial and axial velocity fields. Without any viscous regularization, the 3D Euler equations develop an
additional small scale characterizing the thickness of the sharp front. In order to stabilize the rapidly
decreasing thickness of the sharp front, we apply a vanishing first order numerical viscosity to the Euler
equations. We present numerical evidence that the 3D Euler equations with this first order numerical
viscosity develop a locally self-similar blowup at the origin.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The question regarding the global regularity of the 3D Euler
quations with smooth initial data of finite energy is one of
he most challenging problems in fluid dynamics and nonlinear
artial differential equations. The interested readers may consult
he excellent survey [1] and the references therein. The main
ifficulty associated with the global regularity of the 3D Euler
quations is the presence of vortex stretching, which is absent
n the corresponding 2D problem. In recent years, there has
een some encouraging progress in search for potential Euler
ingularities. In particular, Luo and Hou [2,3] presented strong
umerical evidence that the 3D axisymmetric Euler equations
evelop a finite time singularity on the boundary. The presence
f the boundary and the symmetry properties of the initial data
eem to play a crucial role in generating a stable finite time
ingularity reported in [2,3]. In a recent paper [4], we presented
trong numerical evidence that the 3D incompressible axisym-
etric Navier–Stokes equations with smooth degenerate variable
iffusion coefficients and smooth initial data of finite energy
eem to develop a two-scale locally self-similar singularity. Unlike
he Hou–Luo blowup scenario, the potential singularity for the
avier–Stokes equations with degenerate diffusion coefficients
ccurs at the origin.

∗ Corresponding author.
E-mail addresses: hou@cms.caltech.edu (T.Y. Hou),

huang@math.pku.edu.cn (D. Huang).
ttps://doi.org/10.1016/j.physd.2022.133257
167-2789/© 2022 Elsevier B.V. All rights reserved.
The potential two-scale traveling wave singularity reported
in [4] is induced by a potential singularity of the 3D Euler equa-
tions. Without the viscous regularization, the 3D Euler equations
develop an additional small scale characterizing the thickness of
the sharp front. The degenerate variable diffusion coefficients are
designed in such a way that they select a stable locally self-similar
two-scale solution structure but are weak enough not to suppress
the potential singularity mechanism induced by the 3D Euler
equations. In this paper, we will further investigate the potential
two-scale traveling wave singularity of the 3D Euler equations by
applying a first order numerical viscosity to the Euler equations.
In some sense, we may consider the solution of the 3D Euler
equations with this first order numerical viscosity as a vanishing
viscosity limit of the 3D Navier–Stokes equations.

We consider the 3D Navier–Stokes equations in a periodic
cylinder as in [2,3]. We impose a no-slip and no-flow boundary
condition at r = 1 and a periodic boundary condition in the
xial variable z. Let uθ , ωθ , and ψθ be the angular components
f the velocity, the vorticity, and the vector stream function,
espectively. By making the following change of variables [5],

1 = uθ/r, ω1 = ωθ/r, ψ1 = ψθ/r,

e transform the Navier–Stokes equations into the following
quivalent form

u1,t + uru1,r + uzu1,z = 2u1ψ1,z + ν(t)∆u1, (1.1a)

ω1,t + urω1,r + uzω1,z = 2u1u1,z + ν(t)∆ω1, (1.1b)(
∂2r +

3
∂r + ∂2z

)
ψ1 = ω1, (1.1c)
r
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w
here ur
= −rψ1,z, uz

= 2ψ1 + rψ1,r . We choose a time-
dependent viscosity ν(t) that depends on the solution and van-
ishes at the potential singularity time. We use the same initial
condition as that given in [4].

By choosing an appropriately designed first order numerical
viscosity, we show that the potential blowup solution develops
a two-scale traveling solution approaching the origin. This two-
scale traveling solution shares many features similar to those
reported in our previous paper [4] using degenerate variable
diffusion coefficients. The two-scale traveling wave solution is
characterized by the property that the center of the traveling
wave, located at (R(t), Z(t)) with R(t) = O((T − t)1/2), approaches
to the origin at a slower rate than the rate of the collapse of the
singularity, which is Z(t) = O(T−t). Moreover, the odd symmetry
(in z) of the initial data of ω1 generates a dipole structure of the
angular vorticity ωθ . This antisymmetric dipole structure induces
a negative radial velocity near z = 0, which pushes the solution
near z = 0 towards the symmetry axis r = 0.

The solution generates a local hyperbolic flow in the rz-plane
and leads to strong nonlinear alignment of vortex stretching.
Moreover, we observe that ψ1,z(R(t), z, t) is a monotonically de-
creasing function of z and is relatively flat near z = 0. On the
other hand, ψ1,z(R(t), z, t) decreases quickly beyond z = Z(t) and
becomes negative. Through the vortex stretching term 2ψ1,zu1 in
(1.1a), the difference in the growth rate of ψ1,z induces a traveling
wave for u1 that approaches z = 0 rapidly. The traveling wave is
so strong that it overcomes the upward transport of advection.
Due to the oddness of u1 in z, the solution generates a large
positive gradient u1z , which contributes positively to the rapidly
growth of ω1 through the vortex stretching term 2u1u1z in (1.1b).
The rapid growth of ω1 in turn feeds back to the rapid growth of
ψ1,z , forming a positive feedback loop.

Another important feature is that the 2D velocity field (ur (t),
uz(t)) forms a closed circle right above (R(t), Z(t)). The flow spins
rapidly within this circle region and remains trapped inside this
region. This local circle structure of the 2D velocity field is critical
in stabilizing the blowup process by keeping the main parts of the
u1, ω1 profiles inside this region and traveling towards the origin.

It is worth emphasizing that the flow dynamically develops a
vacuum region between the sharp front of u1 and the symmetry
axis r = 0. Within the vacuum region, the angular velocity uθ =

ru1 is almost zero. Thus, there is almost no spinning around the
symmetry axis and the flow effectively travels upward along the
vertical direction inside the vacuum region. Outside the vacuum
region, the flow spins rapidly around the symmetry axis. The local
blowup solution resembles the structure of a tornado and we call
the potential singularity ‘‘a tornado singularity’’.

The two-scale nature of the potential singular solution presents
considerable challenges in obtaining a well-resolved numerical
solution for the Euler equations with a first order numerical
viscosity. To resolve this potential two-scale singular solution,
we design an adaptive mesh by constructing two adaptive mesh
maps for r and z explicitly. We use a second order finite differ-
ence method to discretize the spatial derivatives and a second
order explicit Runge–Kutta method to discretize in time with an
adaptive time-step size. As in [4], we need to apply a low pass
filter to the velocity field to stabilize some mild instability in the
tail region.

Based on the asymptotic scaling analysis that we performed in
our previous paper [4], we choose the time-dependent viscosity
ν(t) to vanish with the order h(O(R(t)2) + O(Z(t)2)) as (R(t), Z(t))
approaches the origin. This property and the scaling balance
between the vortex stretching and the diffusion term imply that
R(t) = O((T − t)1/2) and Z(t) = O(T − t). This further implies
that the vorticity vector blows up like O(1/(T − t)3/2) and the

1/2
velocity field blows up like O(1/(T − t) ). The results obtained

2

by our scaling analysis are consistent with our numerical fitting
of the blowup rates and surprisingly similar to those obtained
by using the degenerate variable diffusion coefficients reported
in [4]. Application of the well-known Beale–Kato–Majda blowup
criteria [6] implies that the 3D Navier–Stokes equations with the
time-dependent viscosity develop a finite time singularity.

We remark that the first author presented some new numer-
ical evidence that the 3D incompressible axisymmetric Navier–
Stokes equations with smooth initial data of finite energy develop
nearly singular solutions at the origin [7]. The new initial con-
dition introduced in [7] shares several attractive features of a
more sophisticated initial condition constructed by Hou–Huang
in [4]. This nearly singular behavior of the Navier–Stokes equa-
tions is induced by a potential finite time singularity of the 3D
Euler equations reported in [8]. One important feature of the
potential Euler singularity is that the solution develops nearly
self-similar scaling properties that are compatible with those
of the 3D Navier–Stokes equations, i.e. Z(t) ∼ (T − t)1/2. The
numerical results presented in the 3D Navier–Stokes equations
develop nearly singular scaling properties with maximum vor-
ticity increased by a factor of 107. However, the 3D Navier–
Stokes equations with this initial data do not develop a finite
time singularity. On the other hand, the 3D Navier–Stokes equa-
tions with a slowly decaying time-dependent viscosity of order
O(| log(T − t)|−3) seems to develop a finite time singularity.

There have been a number of important theoretical results
for the 3D Euler equations. One of the best known results for
the 3D Euler equations is the Beale–Kato–Majda non blowup
criteria [1], which states that the 3D Euler equations develop
a finite time singularity at time T from smooth initial data if
and only if

∫ T
0 ∥ω∥L∞dt = ∞. In [9], Constantin–Fefferman–

Majda showed that the local geometric regularity of the vorticity
vector near the region of maximum vorticity could lead to the
dynamic depletion of vortex stretching, thus preventing a po-
tential finite time singularity (see also [10]). An exciting recent
development is the work by Elgindi [11] (see also [12]) who
proved that the 3D axisymmetric Euler equations develop a finite
time singularity for a class of C1,α initial velocity with no swirl.
There have been a number of very interesting results inspired
by the Hou–Lou blowup scenario [2,3], see e.g. [13–17] and the
excellent survey article [18]. There has been a number of previous
attempts to search for potential Euler singularities numerically.
These include [19,19–26]. We refer to a recent review article [27]
for a more comprehensive list of other numerical results related
to potential Euler singularities.

The rest of the paper is organized as follows. In Section 2,
we review some major findings of the Navier–Stokes equations
using degenerate variable diffusion coefficients reported in our
previous paper [4], including the first sign of singularity and
the main features of the potentially singular solution. In Sec-
tion 3, we investigate the 3D Navier–Stokes equations using a
time-dependent vanishing viscosity. Some concluding remarks
are made in Section 4.

2. The Navier–Stokes equations with degenerate variable dif-
fusion coefficients

In this section, we review some major findings in our previous
paper in which we investigated the potential two-scale traveling
wave singularity for the 3D incompressible Navier–Stokes equa-
tions with degenerate variable diffusion coefficients. These results
are closely related to the results that we are going to present
for the 3D incompressible Euler equations with time-dependent

vanishing numerical viscosity.



T.Y. Hou and D. Huang Physica D 435 (2022) 133257

2

S

u

w
p
o
W
E

ν

i
a
(
(
f
ν

L
a
s

u

a
t

−

w

f

ω

w

a

T

m

t

g

.1. Description of the problem

We consider the 3D incompressible axisymmetric Navier–
tokes equations with variable diffusion coefficients:

t + u · ∇u = −∇p + ∇ · (ν∇u)
∇ · u = 0,

(2.1)

here u = (ux, uy, uz)T : R3
↦→ R3 is the 3D velocity vector,

: R3
↦→ R is the scalar pressure, ∇ = (∂x, ∂y, ∂z)T is the gradient

perator in R3, and ν : R3
↦→ R3×3 is the variable diffusion tensor.

hen the diffusion is absent (i.e. ν = 0), (2.1) reduce to the 3D
uler equations. We choose the variable diffusion tensor such that

= diag(νr , νr , νz)

n the cylindrical coordinates, where νr = νr (r, z), νz = νz(r, z)
re functions of (r, z). This is equivalent to choosing ν = diag
νx, νy, νz) with νx = νy = νr in the Euclidean coordinates
x, y, z) = (r cos θ, r sin θ, z). In order for ν to be a smooth
unction in the primitive coordinates (x, y, z), we require that
r (r, z), νz(r, z) are even functions of r with respect to r = 0.
et uθ , ωθ and ψθ be the angular velocity, the angular vorticity
nd the angular stream function, respectively. To remove the
ingularity, Hou and Li [5] introduced the variables

1 = uθ/r, ω1 = ωθ/r, ψ1 = ψθ/r

nd transformed the axisymmetric Navier–Stokes equations into
he equivalent form

u1,t + uru1,r + uzu1,z = 2u1ψ1,z + fu1 , (2.2a)

ω1,t + urω1,r + uzω1,z = 2u1u1,z + fω1 , (2.2b)(
∂2r +

3
r
∂r + ∂2z

)
ψ1 = ω1, (2.2c)

ur
= −rψ1,z, uz

= 2ψ1 + rψ1,r , (2.2d)

here the diffusion terms fu1 , fω1 are given by

fu1 = νr
(
u1,rr +

3
r
u1,r

)
+ νzu1,zz +

1
r
νrr u1 + νrr u1,r + νzz u1,z,

(2.3a)

ω1 = νr
(
ω1,rr +

3
r
ω1,r

)
+ νzω1,zz +

1
r
νrrω1 + νrrω1,r + νzzω1,z

+
1
r

(
νrz

(
ur
rr +

1
r
ur
r −

1
r2

ur
)

+ νzz u
r
zz − νrr

(
uz
rr +

1
r
uz
r

)
− νzr u

z
zz

)
+

1
r

(
νrrzu

r
r + νzzzu

r
z − νrrru

z
r − νzrzu

z
z

)
. (2.3b)

Since u1 and ω1 are even function of r , fu1 , fω1 are well defined
as long as the solution is smooth. We will solve the transformed
equations (2.2) in the cylindrical region

D = {(r, z) : 0 ≤ r ≤ 1},

and impose a periodic boundary condition in z with period 1 and
the no-slip no-flow boundary condition at r = 1. The no=flow
boundary condition is reduced to ψ1,r (1, z, t) = 0 and the no-slip
boundary in terms of the new variables u1, ω1, ψ1 is given by

u1(1, z, t) = 0, ω1(1, z, t) = −ψ1,rr (1, z, t), for all z. (2.4)

The no-slip boundary condition (2.4) will be enforced numeri-
cally. The initial data of u1, ω1 are designed to be odd function
of z with respect to z = 0, which is automatically preserved
by Eqs. (2.2). By the periodicity and the odd symmetry of the
3

solution, we only need to solve Eqs. (2.2) in the half-period
domain

D1 = {(r, z) : 0 ≤ r ≤ 1, 0 ≤ z ≤ 1/2}.

2.1.1. Initial data
The initial data introduced in [4] are given by

u0
1(r, z) = m(1)

u
u(1)
1 (r, z)

∥u(1)
1 ∥L∞

+ m(2)
u u(2)

1 (r, z),

0
1(r, z) = m(1)

ω

ω
(1)
1 (r, z)

∥ω
(1)
1 ∥L∞

+ m(2)
ω ω

(2)
1 (r, z), (2.5)

here

u(1)
1 =

sin(2πz)
1 + (sin(πz)/az1)2 + (sin(πz)/az2)4

·
r8(1 − r2)

1 + (r/ar1)10 + (r/ar2)14
,

u(2)
1 = sin(2πz) · r2(1 − r2),

ω
(1)
1 = g(r, z) ·

sin(2πz)
1 + (sin(πz)/bz1)2 + (sin(πz)/bz2)4

·
r8(1 − r2)

1 + (r/br1)10 + (r/br2)14
,

nd ω
(2)
1 = sin(2πz) · r2(1 − r2).

he parameters are chosen as follows:

(1)
u = 7.6 × 103, m(2)

u = 50, m(1)
ω = 8.6 × 107, m(2)

ω = 50,

az1 = (1.2 × 10−4)π, az2 = (2.5 × 10−4)π,

ar1 = 9 × 10−4, ar2 = 5 × 10−3,

bz1 = (1 × 10−4)π, bz2 = (1.5 × 10−4)π,

br1 = 9 × 10−4, br2 = 3 × 10−3.

The function g(r, z) is defined through a smooth soft-cutoff func-
tion, and it forces the profile of ω0

1 to have a smooth ‘‘corner’’
shape. If we define a soft-cutoff function

fsc(x; a, b) =
e(x−a)/b

e(x−a)/b + e−(x−a)/b , (2.6)

hen g(r, z) is given by the formula

(r, z) =
(
1 − fsc(sin(πz)/π; 0.7bz1, 0.5bz1)

· fsc(r; br1 + 0.5bz1, bz1)
)

×
(
1 − fsc(− sin(πz)/π; 0.7bz1, 0.5bz1)

· fsc(r; br1 + 0.5bz1, bz1)
)
.

Zoom-in veiws of the profiles of u0
1 and ω

0
1 are provided in Fig. 2.1.

Moreover, the initial stream function ψ0
1 is obtained from ω0

1 via
the Poisson equation

−

(
∂2r +

3
r
∂r + ∂2z

)
ψ0

1 (r, z) = ω0
1(r, z) for (r, z) ∈ D1,

subject to the homogeneous boundary conditions

ψ0
1,r (0, z) = ψ0

1 (1, z) = ψ0
1 (r, 0) = ψ0

1 (r, 1/2) = 0.

This initial condition was designed based on several principles
described in [4]. These principles are critical for the solution to
trigger a positive feed back mechanism that leads to a sustainable
focusing blowup.
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Fig. 2.1. Profiles (first row) and contours (second row) of the initial data u0
1 and ω0

1 on a zoom-in domain (r, z) ∈ [0, 4 × 10−3
] × [0, 8 × 10−4

].
.1.2. Variable diffusion coefficients
We choose the variable diffusion coefficients νr , νz to be the

um of a space-dependent part and a time-dependent part:

νr (r, z, t) =
10r2

1 + 108r2
+

102(sin(πz)/π )2

1 + 1011(sin(πz)/π )2
+

2.5 × 10−2

∥ωθ (t)∥L∞
,

(2.7a)

νz(r, z, t) =
10−1r2

1 + 108r2
+

104(sin(πz)/π )2

1 + 1011(sin(πz)/π )2
+

2.5 × 10−2

∥ωθ (t)∥L∞
.

(2.7b)

We remark that the space-dependent parts of νr , νz are very
small (below 10−7) on the whole domain and are of order O(r2)+
(z2) for r ≤ 10−4 and z ≤ 10−5. The time-dependent part in
νr , νz is also very small (below 4 × 10−7 initially) due to the
rapid increase of ∥ωθ (t)∥L∞ in time and is non-essential for the
potential singularity formation in our scenario. In fact, removing
the time-dependent part of νr , νz after the solution enters a
stable phase would have no impact on the solution behavior. The
degeneracy of the diffusion is crucial for the solution to develop
a two-scale singularity. On the other hand, the O(1) diffusion
in the far field prevents the shearing induced instability from
destabilizing the locally self-similar solution.

The potential blowup solution we compute develops a long
thin tail structure. In [4], we applied a second order low pass
filtering to control the mild oscillations induced by the shearing
flow along the thin tail. The overall numerical method is still
second order in space and time. We have performed careful
convergence to confirm that our numerical method is indeed
second order accurate, see [4] for detailed convergence study of
various solution quantities.

2.2. Profile evolution

In this subsection, we investigate how the profiles of the so-
lution evolve in time. We have computed the numerical solution
4

up to time t = 1.76 × 10−4 when it is still well resolved. The
computation roughly consists of three phases: a warm-up phase
(t ∈ [0, 1.6×10−4

]), a stable phase (t ∈ (1.6×10−4, 1.75×10−4
]),

and a phase afterwards (t > 1.75×10−4). In the warm-up phase,
the solution evolves from the smooth initial data into a special
structure. In the stable phase, the solution maintains a certain
geometric structure and blows up stably. Beyond the stable phase,
the solution exhibits some unstable features that may be due to
under-resolution.

In Fig. 2.2, we illustrate the evolution of u1, ω1 in the late
warm-up phase by showing the solution profiles at 3 different
times t = 1.38×10−4, 1.55×10−4, 1.63×10−4. The magnitudes
of u1, ω1 grow rapidly during this time period. The support of
the solution travels towards the origin. The profile of u1 develops
sharp gradients along both r and z directions. Let (R(t), Z(t))
denote the maximum location of u1(r, z, t). We will always us this
notation throughout the paper. Fig. 2.3 shows the cross sections of
u1 going through the point (R(t), Z(t)) in both directions. We also
observe a ‘‘vacuum’’ region where u1, ω1 are almost 0 between
the sharp front and the symmetry axis r = 0. It is interesting
to note that both u1 and ω1 form a long tail part propagating
towards the far field. The boundary of the vacuum region plays a
role similar to the moving boundary in a two-phase flow.

2.3. Two scales

One important feature of the solution is that it develops a
two-scale structure. To see this, we plot the trajectory of the
maximum location (R(t), Z(t)) of u1(r, z, t) in Fig. 2.4 (the first
column). We can see that the trajectory tends to become parallel
to the horizontal axis z = 0 in the stable phase, implying that Z(t)
converges to 0 much faster than R(t). To confirm the two-scale
solution structure, we plot in the second column of Fig. 2.4 the
ratio R(t)/Z(t). We observe that this ratio grows rapidly in time,
especially in the stable phase. In Fig. 2.5, we show the profiles and
level sets of u , ω at time t = 1.63 × 10−4 in a square domain
1 1
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Fig. 2.2. The evolution of the profiles of u1 (row 1 and 2) and ω1 (row 3 and 4) in Case 1. Line 1 and 3 are the profiles of u1, ω1 at three different times; Line 2
and 4 are the corresponding top-views. The red dot is the location of maximum u1 .

Fig. 2.3. Cross sections of u1 in both directions at different times.

5
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Fig. 2.4. The trajectory of (R(t), Z(t)) and the ratio R(t)/Z(t) as a function of time for t ∈ [0, 1.76× 10−4
]. First row: the whole computation. Second row: the stable

hase.
Fig. 2.5. Profiles and level sets of u1 (first row) and ω1 (second row) at time t = 1.63 × 10−4 in the square domain {(r, z) : 0 ≤ r ≤ 10−3, 0 ≤ z ≤ 10−3
}.
s
I
s

(r, z) : 0 ≤ r ≤ 10−3, 0 ≤ z ≤ 10−3
}. The profiles are extremely

hin in the z direction, reflecting the scale of Z(t) (the smaller
cale). On the other hand, the distance between the sharp front
nd the symmetry axis r = 0 is much longer, which corresponds
o the scale of R(t).
 v

6

Despite the thin structure when we view the solution in a
quare domain, the solution has a smooth locally isotropic profile.
n Fig. 2.6, we plot the local isotropic profiles of u1, ω1 near the
harp front at a later time t = 1.75 × 10−4. These profiles are
ery smooth with respect to the smaller scale Z(t). These local
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Fig. 2.6. Zoom-in views of u1, ω1 at time t = 1.75 × 10−4 . First row: profile and tow view of u1 . Second row: profile and top view of ω1 . The red curve (in all
igures above) is the level set of u1 for the value 0.3∥u1∥L∞ , and the red point is the maximum location of u1 .
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sotropic profiles are quite stable after the solution enters the
table phase. We will further investigate this in Section 2.9.
We can also interpret the evolution of u1 as some form of

‘‘density’’, as we can see in Fig. 2.6(a) and (b) that the profile of u1
as a clear ‘‘two-phase’’ feature. The sharp cliff surrounding the
ulk part of u1 behaves like a ‘‘moving boundary’’ between the
wo phases (see the red level set of u1 in Fig. 2.6). In the interior
of the ‘‘moving boundary’’ (where the red point is located), u1 is
large and smooth. We can interpret this as a heavier fluid phase.
On the exterior of the ‘‘moving boundary’’, u1 is close to 0. We
an call this a vacuum phase of the fluid. The evolution of the
1 profile thus can be locally interpreted as the evolution of a
wo-phase flow separated by a ‘‘moving boundary’’.

It is interesting to note that the contours of u1 and ω1 seem to
have the same shape. The thin structure of ω1 behaves like a reg-
ularized 1D delta function supported along the ‘‘moving bound-
ary’’. In [4], we showed that this phenomena is a consequence of
a two-scale, locally self-similar blowup.

2.4. Rapid growth

In this subsection, we report some results on the rapid growth
of the solution. The maximums of |u1|, |ω1| and |ω| as functions
of time are reported in Fig. 2.7. Here

ω = (ωθ , ωr , ωz)T = (rω1 , −ru1,z , 2u1 + ru1,r )T

s the vorticity vector, and

ω| =

√
(ωθ )2 + (ωr )2 + (ωz)2.

e can see that these variables grow rapidly in time and much
aster than a double-exponential rate (see the second row in
ig. 2.7). Using a standard argument, it is not hard to show that
7

the solution to the Navier–Stokes Eqs. (2.1) with a degenerate
diffusion coefficient ν ceases to exist in some regularity class Hs

(s ≥ 3) beyond a time instant T if and only if
T

0
∥∇u(t)∥L∞ dt = +∞.

ince ∥ω∥L∞ ≲ ∥∇u∥L∞ , the rapid growth of maximum vorticity
ω∥L∞ is still a good indicator for a finite time singularity in the
ase of a degenerate diffusion coefficient. We will demonstrate in
ection 2.8 that the growth of ∥ω∥L∞ has a very nice fitting to an
nverse power law

ω(t)∥L∞ ≈ (T − t)−γ

or some power γ > 1. This would imply that the solution
evelops a potential singularity at a finite time T .

.5. Velocity field

In this subsection, we investigate the feature of the velocity
ield by looking at the induced streamlines. An induced stream-
ine {Φ(s; X0)}s≥0 ⊂ R3 is completely determined by the back-
round velocity u and the initial point X0 = (x0, y0, z0)T through
he initial value problem

∂

∂s
Φ(s; X0) = u(Φ(s; X0)), s ≥ 0; Φ(0; X0) = X0.

Wewill generate different streamlines with different initial points
X0 = (r0 cos(2πθ ), r0 sin(2πθ ), z0)T . Due to the axisymmetry of
the velocity field, the streamline depends on (r , z ) only.
0 0
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Fig. 2.7. First row: the growth of ∥u1∥L∞ , ∥ω1∥L∞ and ∥ω∥L∞ as functions of time. Second row: log log ∥u1∥L∞ , log log ∥ω1∥L∞ and log log ∥ω∥L∞ .
Fig. 2.8. The streamlines of (ur (t0), uθ (t0), uz (t0)) at time t0 = 1.7 × 10−4 with initial points given by (a) (r0, z0) = (0.8, 0.01) and (b) (r0, z0) = (0.8, 0.1). The green
ole is the symmetry axis r = 0.
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.5.1. A tornado singularity
In Fig. 2.8, we plot the streamlines induced by the velocity field

(t) at t0 = 1.7×10−4 in the whole cylinder domain D1×[0, 2π ]

or different initial points with (a) (r0, z0) = (0.8, 0.01) and
b) (r0, z0) = (0.8, 0.1). The velocity field resembles that of a
ornado spinning around the symmetry axis (the green pole). In
he case when streamline starts near z = 0 as in Fig. 2.8(a), it
ill first approach the symmetry axis and then travels upward
owards z = 1/2 while spinning around the symmetry axis.
fter it gets close to z = 1/2, it turns outward away from
he symmetry axis. On the other hand, if the initial point is
igher (in the z coordinate) as in Fig. 2.8(b), the streamline will
ravel in an ‘‘inward–upward–outward–downward’’ cycle in the
z-coordinates but does not get close to the symmetry axis. In
he mean time, it circles around the symmetry axis.

We also examine the streamlines near the blowup region.
ig. 2.9 shows the streamlines at time t0 = 1.7×10−4 for different
nitial points near the maximum location (R(t0), Z(t0)) of u1(t0).
he red ring represents the location of (R(t0), Z(t0)), and the green
ole is the symmetry axis r = 0. The 3 settings of (r0, z0) are as
ollows.

(a) (r0, z0) = (2R(t0), 0.01Z(t0)). The streamline starts near z =

0 and below the red ring (R(t ), Z(t )). It first travels towards
0 0

8

the symmetry axis and then travels upward away from z =

0. There is almost no spinning since uθ = ru1 is small in this
region.

(b) (r0, z0) = (1.05R(t0), 2Z(t0)). The streamline starts right
above the ring (R(t0), Z(t0)). It gets trapped in a local region
and spins rapidly around the symmetry axis periodically.

(c) (r0, z0) = (1.5R(t0), 3Z(t0)). The streamline starts even
higher and away from the ring (R(t0), Z(t0)). It spins upward
and travels away from the blowup region.

.5.2. The 2D flow
To gain better understanding for the 3D velocity field as shown

n Fig. 2.9, we study the 2D velocity field (ur , uz) in the compu-
ational domain D1. In Fig. 2.10(a), we plot the vector field of
ur (t), uz(t)) at t0 = 1.7 × 10−4 in a local microscopic domain
0, Rb] × [0, Zb], where Rb = 2.5R(t0) ≈ 3.97 × 10−4 and Zb =

Z(t0) = 4.50 × 10−5. Fig. 2.10(b) is a schematic for the vector
ield in Fig. 2.10(a).

The vector plot shows that the streamline below (R(t0), Z(t0))
irst travels towards r = 0 and then move upward away from

= 0. Note that the angular velocity uθ = ru1 is almost 0 in
he region near z = 0. As the flow gets close to r = 0, the



T.Y. Hou and D. Huang Physica D 435 (2022) 133257

a

m

s
a
f
t
a

Fig. 2.9. The streamlines of (ur (t0), uθ (t0), uz (t0)) at time t0 = 1.7× 10−4 with initial points given by (a) (r0, z0) = (2R(t0), 0.01Z(t0)), (b) (r0, z0) = (1.05R(t0), 2Z(t0))
nd (c) (r0, z0) = (1.5R(t0), 3Z(t0)). (R(t0), Z(t0)) is the maximum location of u1(t0), indicated by the red ring. The green pole is the symmetry axis r = 0.
Fig. 2.10. (a) The velocity field (ur (t0), uz (t0)) near the maximum location (R(t0), Z(t0)) of u1(t0) (the red point) at t0 = 1.7 × 10−4 . The color corresponds to the
agnitude of

√
(ur )2 + (uz )2 . The size of the domain has been rescaled. (b) A schematic of the vector field near the point (R(t0), Z(t0)).
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trong axial velocity uz transports u1 from near z = 0 upward
long the z direction, creating a vacuum region between the sharp
ront of u1 and the symmetry axis r = 0. Moreover, we observe
hat the velocity field (ur (t0), uz(t0)) forms a closed circle right
bove (R(t0), Z(t0)) as illustrated in Fig. 2.10(b) and the streamline

is hence trapped in this circle region in the rz-plane. This local
circle structure of the 2D velocity field plays an essential role
in stabilizing the blowup process since the majority of u1, ω1 is
retained within this region instead of being transported upward.

The velocity field (ur (t), uz(t)) also explains the sharp local
structures of u1, ω1 shown in Fig. 2.6(a),(b). Fig. 2.11 shows the
level sets of ur , uz at t0 = 1.7 × 10−4. The radial velocity ur has
a strong shearing layer below (R(t0), Z(t0)) (the red point). This
shearing contributes to the sharp gradient of u1 in the z direction.
Similarly, the axial velocity uz also has a strong shearing layer
close to the point (R(t0), Z(t0)), which explains the sharp front of
u1 in the r direction.

2.6. Understanding the blowup mechanism

In this subsection, we would like to further examine several
critical factors that lead to a sustainable blowup solution.

2.6.1. Vortex dipoles and hyperbolic flow
First of all, we note that the 2D velocity field (ur , uθ ) can be

extended to the negative r plane as an even function of r . The odd
symmetry (in z) of ω1 constitutes a dipole structure of the angular
vorticity ωθ , which induces a hyperbolic flow in the rz-plane and
a pair of antisymmetric (with respect to z) local circulations. This
pair of antisymmetric convective circulations has the desirable
property of pushing the solution near z = 0 towards r = 0. In
9

Fig. 2.12, we show the dipole structure of the initial data ω0
1 in a

local symmetric region (r, z) ∈ [0, 3 × 10−3
] × [−3 × 10−4, 3 ×

10−4
] and the hyperbolic velocity field induced by it. One of the

important features of the antisymmetric vortex dipoles is that it
generates a negative radial velocity near z = 0, which pushes the
solution towards r = 0.

2.6.2. The odd symmetry and sharp gradient of u1
First of all, we observe that the driving force for the growth of

ω1 comes from the vortex stretching term 2(u2
1)z . Due to the odd

symmetry of u1, (u2
1)z is positive and large somewhere between

z = Z(t) and z = 0, which leads to the rapid growth of ω1
ear z = 0. A strong dipole structure of the angular vorticity
θ induces a strong negative radial velocity ur in between the
ipole (see Fig. 2.12). From the relationship ψ1,z = −ur/r , the

growth of −ur around z = 0 implies the growth of ψ1,z , which
n turn contributes to the rapid growth of u1 through the vortex
tretching term 2ψ1,zu1 in the u1 Eq. (2.2a).
Using the oddness of ψ1 as a function of z and the Poisson

q. (2.2c), one can show that ψ1,z , as a function of z, achieves
ts local maximum at z = 0 in a neighborhood of z = 0
n the singular region. Moreover, ψ1,z decreases rapidly beyond

= Z(t) and even becomes negative further away from Z(t).
he difference in the growth rate of ψ1,z as a function of z and
he nonlinear vortex stretching term 2ψ1,zu1 in the u1 equation
nduce a traveling wave for u1 propagating towards z = 0.
he traveling wave is so strong that it overcomes the upward
ransport of advection along the z direction. The fact that the
aximum location of u1 traveling towards z = 0 generates an
ven sharper gradient of u2 in the z direction. The whole coupling
1
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Fig. 2.11. The level sets of ur (left) and uz (right) at t0 = 1.7 × 10−4 . The red point is the maximum location (R(t0), Z(t0)) of u1(t0).
Fig. 2.12. The dipole structure of the initial data ω0
1 and the induced local velocity field.
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echanism described above forms a positive feedback loop,

u2
1)z ↑ H⇒ ω1 ↑ H⇒ ψ1,z ↑ H⇒ u1 ↑ H⇒ (u2

1)z ↑ .

(2.8)

To trigger this mechanism, it is important that the maximum
location of ω1 should align with the location where u1,z is positive
and large, which is slightly lower (in z) than the maximum loca-
tion of u1. This is one of the guiding principles in the construction
of our initial data.

Fig. 2.13 demonstrates the alignment between ψ1,z and u1.
rom Fig. 2.13(b), we can see that ψ1,z(R(t), z, t) is monotonically

decreasing for z ∈ [0, 2Z(t)] and relatively flat for z ∈ [0, 0.5Z(t)],
and is comparable to u1 in magnitude. This strong quadratic
alignment between u1 and ψ1z leads to the rapid growth of u1
and pushes Z(t) moving towards z = 0. In Fig. 2.13(c), we
plot the alignment ratio ψ1,z(R(t), Z(t), t)/u1(R(t), Z(t), t). One
can see that the ratio ψ1,z/u1 settles down to a stable value
in the stable phase which is characterized by the time interval
[1.6 × 10−4, 1.75 × 10−4

]. Within this stable phase, we have
ψ1,z(R(t), Z(t), t) ∼ u1(R(t), Z(t), t). The formally quadratic align-
ment between u1 and ψ1z at the maximum location of u1 implies
that maximum u1 should blow up like (T − t)−1 for some finite
time T .

2.7. The pressure

In this subsection, we study the pressure p, which may explain
the formation of the potential two-scale blowup from a more
physical perspective. Formally, the pressure is related to the
velocity field through the Eqs. (2.1), where the variable diffusion
coefficient ν now affects the value of p. In order to only investi-
gate the physical meaning of the pressure distribution, we choose
10
to compute the p as the pressure characterized by the original 3D
Navier–Stokes equations:

−∆p = tr[(∇u)2].

This relation only defines p up to a function of t . A general way
to normalize p for the Navier–Stokes equations in the whole
space R3 is by assuming p = 0 at infinity. Accordingly, we will
normalize p in our computation by setting p = 0 at (r, z) = (1, 0),
ince the outer boundary r = 1 can be viewed as the far field
hen compared with the vanishing blowup scale.
In Fig. 2.14, we plot the profile of the pressure p in a domain

8 × 10−4, 8 × 10−5
] at t = 1.7 × 10−4 and compare it with the

profile of u1. We can see that the pressure develops a deep well
that coincides with the peak of u1, and the maximum location of
u1 (the red point) falls right at the bottom of the pressure well.
The pressure drop around (R(t), Z(t)) forms an attractive hole that
revents the ‘‘mass’’ of u1 from escaping the traveling front of the
olution. More rigorously, the fluid particles with high angular
elocity are trapped within the low pressure region and forced
o travel towards (r, z) = (0, 0). This explains the ‘‘two-phase’’
eature of u1 and the ‘‘vacuum’’ region to the left hand side of the
lowup region.
The low pressure well also explains the closed circle in the 2D

elocity field (ur , uz) as shown in Fig. 2.10. Due to the attracting
ffect of the pressure well, the flow field is forced to circle around
ocally near the maximum location of u1. Moreover, we can see
hat the pressure has large gradient in the r direction as the
aximum of p is actually achieved just to the left of the pressure
ell. The sharp gradient of p here forms a strong force pointing in
he opposite direction of the traveling wave and thus generates
sharp front in the solution. This provides another explanation

or the formation of the sharp front in u1 from the physical
erspective.
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Fig. 2.13. The alignment between u1 and ψ1,z . (a) and (b): cross sections of u1 and ψ1,z through the point (R(t), Z(t)) at t = 1.7× 10−4 . (c): the ratio ψ1,z/u1 at the
oint (R(t), Z(t)) as a function of time up to t = 1.75 × 10−4 .
Fig. 2.14. Profiles of p and u1 at time t = 1.7 × 10−4 . First row: profile and tow view of p. Second row: profile and top view of ω1 . The red point is the maximum
ocation of u1 .
f

The change of the pressure in time also provides important
ndicators of potential blowup of the Navier–Stokes equations
r the Euler equations. According to [28], if there is a blowup
or the Navier–Stokes equations, the minimum of the normalized
ressure p must tend to negative infinity at the singularity time,
r the maximum of |u|

2/2 + p must tend to positive infinity.
recent result [29] states that the Hessian of p must grows

aster than O((T − t)−2) if the solution to the Euler equations
s to blowup at time T . We thus also monitor the growth of the
aximums of −p, |u|

2/2+p and |D2p| and plot them in Fig. 2.15.
e can see that they all grow rapidly in time and faster than
double-exponential rate in the stable phase, which provides
dditional evidence for the potential two-scale singularity in our
cenario. In particular, to check the blowup criterion with respect
11
to the pressure Hessian, we need to fit the growth rate of |D2p|
and compare it with O((T − t)−2). We will perform careful fitting
of growth rate of the solution in the following section.

2.8. Scaling properties of the solution

In this section, we will summarize some main findings of the
scaling properties of the solution reported in [4]. In particular, we
show that the growth and the spatial scaling of the solution obey
some (inverse) power laws.

2.8.1. Linear fitting procedure
For a solution quantity v(t) that is expected to blow up at some

inite time T , a typical asymptotic model is the inverse power law:
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(t) ∼ α(T − t)−cv as t → T , (2.9)

here cv > 0 is the blowup rate and α > 0 is some constant.
o verify that v(t) satisfies an inverse power law and to learn the
ower cv , we follow the idea of Luo and Hou [3] and study the
ime derivative of the logarithm:

d
dt

log v(t) =
v′(t)
v(t)

∼
cv

T − t
.

his naturally leads to the linear regression model

(t; v) :=
v(t)
v′(t)

∼ −
1
cv

(t − T ) =: ãt + b̃, (2.10)

with response variable y, explanatory variable t , and model pa-
ameters ã = −1/cv, b̃ = T/cv . The model (2.10) does not always
ield an ideal fitting even if the inverse power law (2.9) does exist
ue to numerical errors and the use of adaptive mesh. To obtain
better approximation of cv , we will conduct a local search near
he crude estimate c̃v and find a value c̄v such that the model

(t; v) := v(t)−1/c̄v ∼ α−1/c̄v (T − t)cv/c̄v ∼ α−1/cv (T − t) =: āt + b̄
(2.11)

has the best linear regression fitness (the R2) against a least-
square test.

2.8.2. Fitting of the growth rate
In [4], we have developed some effective fitting procedures

to study the scaling properties of the numerical solutions ob-
tained in our computation. Fig. 2.16 shows the fitting results for
the quantity ∥u1(t)∥L∞ on the time interval [t1, t2] = [1.6 ×

10−4, 1.75 × 10−4
]. We can see that both models, y(t; ∥u1∥L∞ )

and γ (t; ∥u1∥L∞ ), have excellent linear fitness with R2 values very
close to 1 (the R2 value for the model γ (t; ∥u1∥L∞ ) is greater
than 1 − 10−6). The blowup rates and the blowup times inferred
from the two models are close to each other, which cross-validate
both models. This strongly implies that ∥u1∥L∞ has a finite-time
singularity of an inverse power law with a blowup rate very close

to 1. Recall that ψ1,z(R(t), Z(t), t) ∼ u1(R(t), Z(t), t) in the stable

12
phase [1.6 × 10−4, 1.75 × 10−4
]. If we ignore the degenerate

diffusion, then the equation of ∥u1(t)∥L∞ can be approximated by

d
dt

∥u1(t)∥L∞ = 2ψ1,z(R(t), Z(t), t)·u1(R(t), Z(t), t) ∼ c0∥u1(t)∥2
L∞ ,

hich then implies that ∥u1(t)∥L∞ ∼ (T − t)−1 for some finite
ime T . This asymptotic analysis is now supported by our linear
itting results.

Next, we study the growth of the maximum vorticity ∥ω∥L∞ .
e apply the fitting procedure to the maximums of the vor-

icity components instead of to the maximum vorticity. As an
llustration, we present the study of the inverse power law of
he axial vorticity component ωz . Fig. 2.17 shows the linear fit-
ing for the associated models of ∥ωz(t)∥L∞ on the time interval
t1, t2] = [1.6×10−4, 1.75×10−4

]. We observe that both models
(t; ∥ωz

∥L∞ ) and γ (t; ∥ωz
∥L∞ ) have good linear fitness:

ωz(t)∥L∞ ∼ (T − t)−c̄ωz ,

ith the estimated blowup rate approximately equal to 1.5. This
mplies that

T

0
∥ω(t)∥L∞ ≥

∫ T

0
∥ωz(t)∥L∞ dt = +∞.

his provides strong numerical evidence of a finite-time sin-
ularity of the solution to the initial–boundary value problem
2.2)–(2.5).

As mentioned in Section 2.7, the unbounded growth of the
ressure and related quantities may also indicate the existence of
potential finite singularity. We thus also performed linear fitting
or the quantities ∥p∥L∞ , ∥|u|

2/2 + p∥L∞ , ∥D2p∥L∞ and obtained
he following inverse power law fitting:

p∥L∞ ∼ (T − t)−1, ∥|u|
2/2 + p∥L∞ ∼ (T − t)−1.28,

∥D2p∥L∞ ∼ (T − t)−2.4

The linear regression of the associated γ models are shown in
Fig. 2.18. The inverse power laws of ∥p∥L∞ and ∥|u|

2/2 + p∥L∞

mply that the no-blowup criteria in [28] are violated, and thus a
inite time singularity may exist. Moreover, the estimated blowup
ower of ∥D2p∥ ∞ being greater than 2 violates the no-blowup
L
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Fig. 2.16. The linear regression of (a) y(t; ∥u1∥L∞ ) and (b) γ (t; ∥u1(t)∥L∞ ) on the time interval [t1, t2] = [1.6 × 10−4, 1.75 × 10−4
]. The blue points are the data

oints obtained from our computation, and the red lines are the linear models. We plot the linear models on a larger interval.
Fig. 2.17. The linear regression of (a) y(t; ∥ωz
∥L∞ ) and (b) γ (t; ∥ωz

∥L∞ ) on the time interval [t1, t2] = [1.6× 10−4, 1.75× 10−4
]. The blue points are the data points

btained from our computation, and the red lines are the linear models. We plot the linear models on a larger interval.
Fig. 2.18. The linear regression of (a) γ (t; ∥p∥L∞ ), (b) γ (t; ∥|u|
2/2 + p∥L∞ ) and (c) γ (t; ∥D2p∥L∞ ) as functions of time. The blue points are the data points obtained

from our computation, and the red lines are the linear models. We plot the linear models on a larger interval.
criterion in [29], further supporting the potential finite time
blowup trend.

2.8.3. Fitting of spatial scales
Similarly, we can perform linear fitting for the two spatial

scales of the solution R(t) and Z(t):

R(t) = (T − t)cs , Z(t) = (T − t)cl . (2.12)
13
We obtain the following power law fitting:

R(t) ∼ (T − t)0.5, Z(t) ∼ (T − t). (2.13)

Fig. 2.19 presents the linear regression of model (2.11) for R(t)−1,

Z(t)−1. We can see in Fig. 2.19(a) that R(t) has an excellent fitting
to a power law with a rate c̄s ≈ 0.5. Fig. 2.19(b) shows that Z(t)
also approximately satisfies the power law with a rate c̄l ≈ 1. We
also observe that the fitness of Z(t) is not as good as that of R(t),
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Fig. 2.19. The linear regression of (a) γ (t; R(t)−1) and (b) γ (t; Z(t)−1) on the time interval [t1, t2] = [1.6 × 10−4, 1.75 × 10−4
]. The blue points are the data points

btained from our computation, and the red lines are the linear models. We plot the linear models on a larger interval.
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hich may be due to the fact that the numerical recording of Z(t)
s sensitive to the adaptive mesh and the interpolation operation
etween different meshes.

.9. Numerical evidence of locally self-similar profiles

It is well known that the 3D Euler equations have the scaling
nvariance property that, if u(x, t) is a solution to the equations,
hen

λ,τ (x, t) :=
λ

τ
u
(
x
λ
,
t
τ

)
, ∀λ, τ ∈ R,

s still a solution. Similarly, the 3D Navier–Stokes equations sat-
sfy a more restricted scaling invariance property that, if u(x, t) is
a solution to the equations, then

uλ(x, t) :=
1
λ
u
(
x
λ
,

t
λ2

)
, ∀λ ∈ R,

s still a solution. Regarding these scaling properties, a fundamen-
al question is whether the Euler equations or the Navier–Stokes
quations have self-similar solutions of the form

(x, t) =
1

(T − t)γ
U
(

x − x0
(T − t)β

)
, (2.14)

where U is a self-similar vector profile and β, γ > 0 are scaling
exponents. If such a solution exists, it will imply that the Euler
equations or the Navier–Stokes equations can develop a focusing
self-similar singularity at the point x0 at a finite time T .

We remark that these scaling properties of the Euler equations
or the Navier–Stokes equations cannot hold globally in our sce-
nario due to the existence of the cylinder boundary at r = 1
and the variable diffusion coefficients. Nevertheless, a focusing
self-similar blowup can still exist asymptotically and locally near
the symmetry axis r = 0. Below we provide some numerical
evidence on the existence of locally self-similar profiles in a
small-scale neighborhood of (R(t), Z(t)), the maximum location
of u1. More detailed scaling analysis and scaling properties can
be found in [4].

Fig. 2.20 compares the level sets of u1 at different time in-
stants. The first row of Fig. 2.20 plots the level sets of u1 in a
ocal domain (r, z) ∈ [0.8 × 10−4, 2.5 × 10−4

] × [0, 8 × 10−6
].

e can see that in a short time interval, from t = 1.72× 10−4 to
= 1.75 × 10−4, the profile of u1 has changed a lot. The support
f the profile shrinks in space and travels towards the origin. The
harp front also becomes thinner and thinner. In the second row
f Fig. 2.20, we plot the level sets of the spatially rescaled function

˜ (ξ, ζ , t) = u (Z(t)ξ + R(t), Z(t)ζ , t).
1 1 c

14
We can see that the landscape of ũ1 (in the ξζ -plane) almost does
not change in this time interval. Here

ξ =
r − R(t)
Z(T )

∼
r − R(t)
(T − t)cl

, ζ =
z

Z(T )
∼

z
(T − t)cl

re dynamically rescaled variables. This observation provides
trong evidence on the existence of a self-similar profile U(ξ, ζ )
or u1.

In Fig. 2.21, we compare the level sets of ω1 and the level sets
f the spatially rescaled function

˜ 1(ξ, ζ , t) = ω1(Z(t)ξ + R(t), Z(t)ζ , t)

n a similar manner. Again, we can see that this profile of ω1 has
hanged a lot in the time interval t ∈ [1.72× 10−4, 1.75× 10−4

],
hile the spatially rescaled profile ω̃1 seems to converge. This
rovides strong evidence on the existence of a self-similar profile
(ξ, ζ ) for ω1.

. The Euler equations with time-dependent vanishing nu-
erical viscosity

In this section, we study a new scenario of computation for
he 3D impressible Euler equations. In particular, we investigate
he potential two-scale singularity for the 3D axisymmetric Euler
quations with time-dependent vanishing numerical viscosity.
ur computational results imply that the 3D Euler equations may
lso develop a two-scale traveling wave singularity with the same
nitial data as in the previous section.

.1. Description of the problem

As reported in [4], the 3D axisymmetric Euler equations may
evelop a traveling wave singularity that is qualitatively simi-
ar to the potential two-scale singularity of the Navier–Stokes
quations with degenerate diffusion. However, without any reg-
larization of viscosity, the Euler equations quickly developed a
ery thin structure near the sharp front whose thickness collapses
o zero even faster than the scale of Z(t). This extra small scale
n the solution of the 3D Euler equations is extremely difficult to
esolve numerically, and thus the computation of the potential
lowup cannot reach to a stable phase.
In order to study the potential singularity of the 3D Euler

quations in a similar scenario for a longer time, we consider
o solve the Euler equations with time-dependent vanishing nu-
erical viscosity that may regularize the extra scale. That is, we
till consider the equations of the form (2.1) while the diffusion
oefficient ν now represents the numerical viscosity that vanishes
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Fig. 2.20. Comparison of the level sets of u1 at different time instants. First row: original level sets of u1 in the domain (r, z) ∈ [0.8×10−4, 2.5×10−4
]×[0, 8×10−6

].
econd row: rescaled level sets of u1 as a function of (ξ, ζ ) in the domain (ξ, ζ ) ∈ [−2, 5] × [0, 3.5].
Fig. 2.21. Comparison of the level sets of ω1 at different time instants. First row: original level sets of u1 in the domain (r, z) ∈ [0.8×10−4, 2.5×10−4
]×[0, 8×10−6

].
econd row: rescaled level sets of ω1 as a function of (ξ, ζ ) in the domain (ξ, ζ ) ∈ [−2, 5] × [0, 3.5].
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n time and depends on the resolution (mesh size) of the numer-
cal solution. In the cylindrical coordinates and in terms of the
ransformed variables u1, ω1, ψ1, the equations we solve in this
ection are

u1,t + uru1,r + uzu1,z = 2u1ψ1,z + gu1 , (3.1a)

ω1,t + urω1,r + uzω1,z = 2u1u1,z + gω1 , (3.1b)(
∂2r +

3
r
∂r + ∂2z

)
ψ1 = ω1, (3.1c)

ur
= −rψ1,z, uz

= 2ψ1 + rψ1,r , (3.1d)

here numerical diffusion terms gu1 , gω1 are given by

gu1 = νr
(
u1,rr +

3
r
u1,r

)
+ νzu1,zz, (3.2a)

ω1 = νr
(
ω1,rr +

3
ω1,r

)
+ νzω1,zz . (3.2b)
r p

15
ote that the formulas in (3.2) are much simpler than those
n (2.3) because νr , νz are now constants in space at each time
nstant.

.1.1. Vanishing numerical diffusion coefficient
In this scenario, the diffusion coefficients νr , νz are chosen to

e only functions of time:

νr (t) = 256h ·

(
10R(t)2

1 + 108R(t)2
+

102(sin(πZ(t))/π )2

1 + 1011(sin(πZ(t))/π )2

)
,

(3.3a)

z(t) = 256h ·

(
10−1R(t)2

1 + 108R(t)2
+

104(sin(πZ(t))/π )2

1 + 1011(sin(πZ(t))/π )2

)
,

(3.3b)

here (R(t), Z(t)) is the maximum location of u1 and h is a mesh
arameter proportional to the computational grid size.
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There are two major reasons for choosing the diffusion coef-
ficients in the form above. First of all, we want the numerical
viscosity to mimic the effect of the degenerate diffusion coeffi-
cients in the previous scenario, especially in the small blowup
region around the point (R(t), Z(t)). As discussed in [4], the de-
enerate diffusion coefficients plays a critical role in the stable
evelopment of the potential two-scale singularity reviewed in
ection 2. Therefore, part of the numerical diffusion coefficients
r , νz are constructed using exactly the same formulas as in (2.7)
ith the spatial coordinates r, z replaced by the time-dependent
arameters R(t), Z(t), so that they have the same dynamic scaling
roperties as those for the degenerate diffusion coefficients (2.7)
ear the center of the traveling wave, (R(t), Z(t)). Note that νr , νz
anish in time if R(t), Z(t) converge to 0 as in the previous
cenario.
Secondly, we want the numerical viscosity to tend to zero as

he numerical resolution of the solution goes to infinity. In this
ay, the numerical solution may converge to the solution of the
riginal Euler equations as we refine the resolution by reducing
he grid size. However, we also do not want the numerical vis-
osity to converge to zero too fast such that it is too weak to
ontrol the Euler instability at a finite resolution. This is why we
dd a factor of h (rather than h2) to the time-dependent diffusion
oefficients νr , νz . In particular, we choose h = 1/m where m is
he number of the mesh points in the z direction, so the overall
umerical viscosity is of first order.

.1.2. Initial–boundary value problem
We will solve the transformed equations (3.1) in the cylinder

egion D = {(r, z) : 0 ≤ r ≤ 1} using the same initial data
2.5) and the same boundary conditions as described in 2.1. That
s, the only difference in the current problem is the choice of
he diffusion coefficients. As we will see, the solution to the 3D
xisymmetric Euler equations with the new vanishing numerical
iscosity will develop a two-scale traveling wave blowup that
s qualitatively similar to that of the Navier–Stokes equations
ith spatially degenerate diffusion coefficients. Such potential
lowup phenomenon is robust as we refine the resolution (so that
he numerical viscosity is weaker), implying that the original 3D
xisymmetric Euler equations may also develop a traveling wave
ingularity with the same features.
Since the problem setting is almost the same as before, we will

mploy the same numerical method in [4] to solve the initial–
oundary value problem. Moreover, in addition to the first order
umerical viscosity (3.2), we also apply a first order low pass
iltering to control the strong Euler instability along the thin tail
f the solution. Therefore, the overall algorithm is first order in
pace and second order in time. We have also performed careful
onvergence to confirm that our numerical method is indeed first
rder convergent.
For convenience, we will refer the computation of the Navier–

tokes equations with degenerate diffusion coefficient (Section 2)
s Case I and the computation of the Euler equations with first
rder vanishing diffusion coefficient as Case II.

.2. Profile evolution

In this subsection, we study the evolution of the solution in
ase II. We will compare the numerical results with those of
ase I and of the original Euler equations. We will also compare
he computations in Case II of different resolutions as the grid
ize determines the strength of the numerical viscosity. When
he resolution is not specified, we assume to use the results
omputed with mesh size 1024 × 512, in which case the factor
56h equals to 0.5.
16
We have computed the numerical solution up to time t =

.75 × 10−4 when it is still well resolved. As in Case I, the com-
utation in Case II also has a warm-up phase and a stable phase
ut with a earlier transition time. In the warm-up phase (t ∈

0, 1.56×10−4
]), the solution evolves from the smooth initial data

nto a special structure that is qualitatively similar to the solution
n Case I. In the stable phase (t ∈ (1.56 × 10−4, 1.75 × 10−4

]),
the solution again maintains the special geometric structure and
blows up stably. The overall behavior of the solution in Case II is
almost identical to that of Case I, implying that the modification
in the diffusion terms does not harm the potential blowup trend.

Fig. 3.1 plots the solution u1, ω1 in the rectangular domain
{(r, z) : 0 ≤ r ≤ 10−3, 0 ≤ z ≤ 10−4

} and the square domain
{(r, z) : 0 ≤ r ≤ 10−3, 0 ≤ z ≤ 10−3

} at time t = 1.63 × 10−4.
One may compare it with Figs. 2.2, 2.5 and see that the solution
shares almost the same geometric features of that in Case I.
The solution again forms a thin structure in the z direction, a
sharp front in the r direction, and a long tail part propagating
towards the far field. There is a ‘‘vacuum’’ region between the
sharp front and the symmetry axis where the velocity field has
almost no angular component. The high contrast between the
scale of the thin structure and the scale of the vacuum region
again characterizes the two-scale feature of the solution.

A closer look of the solution in a local region around (R(t), Z(t))
is presented in Fig. 3.2. The solution profiles are still very smooth
with respect to the smaller scale Z(t). By comparing Fig. 3.2 with
Fig. 2.6 we can also see that the solution structure near the front
in Case II is basically the same as in Case I: the profile of u1
develops a ‘‘two-phase’’ feature and the profile of ω1 forms a
thin structure that behaves like a regularized 1D delta function
supported along the ‘‘boundary’’ of u1.

We compare in Fig. 3.3 the trajectories of (R(t), Z(t)) (the max-
imum location of u1) for Case I, Case II and the original Euler case.
Since the resolution affects the numerical viscosity in Case II, we
thus present two results in Case II with different mesh sizes. As
reported in [4], the original Euler equations with the same initial
data can only be resolved before 1.6 × 10−4. We therefore have
no trustworthy data for the Euler equations in the stable phase.
Nevertheless, the four trajectories seem to agree with each other
qualitatively over the whole computation. The ratio between the
two scales (R(t)/Z(t)), however, reflects the effect of different
diffusion coefficients. The vanishing diffusion coefficients in Case
II is relatively smaller than the degenerate diffusion coefficients
near (R(t), Z(t)) due to the factor 256h that is proportional to grid
size. Fig. 3.3 thus shows that the contrast between the two scales
R(t) and Z(t) becomes larger as the diffusion becomes weaker,
hich implies that the Euler solution, if can be continued to a

ater time, may develop a much stronger two-scale feature. This
lso suggests that the potential two-scale blowup is intrinsic to
he Euler equations in this special scenario rather than an artifact
f the specific diffusion coefficients.
We remark that the structure and magnitude distribution of

he 2D flow field (ur , uz) in Case II are also qualitatively similar
o those in Case I. We thus do not visualize the 2D flow field in
ase II to avoid redundancy.
The pressure function also develops a deep well in Case II as

hown in Fig. 3.4, and the location of the pressure well again
ligns with the peak of u1. One should compare Fig. 3.4 with
ig. 2.14 and see that the pressure forms a similar profile in Case
and Case II. Yet a more careful look reveals that the pressure
ell is deeper in Case II than in Case I at the same time instant,
ue to a decrease in the strength of the viscosity. As we discussed
n Section 2.7, the low pressure well contributes to the formation
f the two-phase feature of u1, as it prevents the fluid with high
ngular velocity from escaping the low pressure region around
R(t), Z(t)). The sharp jump of the pressure in the r direction
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Fig. 3.1. First row: profiles of u1, ω1 at t = 1.63 × 10−4 in the rectangular domain {(r, z) : 0 ≤ r ≤ 10−3, 0 ≤ z ≤ 10−4
}. Second row: in the square domain

{(r, z) : 0 ≤ r ≤ 10−3, 0 ≤ z ≤ 10−3
}.

Fig. 3.2. Zoom-in views of u1, ω1 at time t = 1.7× 10−4 . First row: profile and tow view of u1 . Second row: profile and top view of ω1 . The red curve (in all figures
above) is the level set of u1 for the value 0.3∥u1∥L∞ , and the red point is the maximum location of u1 .

17
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Fig. 3.3. The trajectory of (R(t), Z(t)) and the ratio R(t)/Z(t) as a function of time. First row: the whole computation. Second row: the stable phase.

Fig. 3.4. Profiles of p and u1 at time t = 1.7 × 10−4 . First row: profile and tow view of p. Second row: profile and top view of ω1 . The red point is the maximum
location of u1 .

18
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Fig. 3.5. First row: the growth of ∥u1∥L∞ , ∥ω∥L∞ and ∥D2p∥L∞ as functions of time. Second row: log log ∥u1∥L∞ , log log ∥ω∥L∞ and log log ∥D2p∥L∞ .
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yields a strong force pushing against the traveling wave of the
solution, thus resulting in a sharp front in the solution profile.

3.3. Faster growth

We have seen that modifying the diffusion coefficient from
a spatially degenerate function to a time-dependent vanishing
parameter does not destroy or change the major features of the
potential two-scale blowup. In fact, we can also observe the rapid
growth of the solution in this new scenario, and the growth of the
solution in Case II is faster than that in Case I. Fig. 3.5 compares
the growth of ∥u1∥L∞ , ∥ω∥L∞ , ∥D2p∥L∞ in Case I and Case II. One
can see that the vanishing numerical viscosity in Case II results in
a faster growth of these quantities than in Case I. Recall that the
rapid growth of ∥ω∥L∞ suggests a finite time blowup for the Euler
equations according the Beale–Kata–Majda criteria [6], and the
rapid growth of ∥D2p∥L∞ relates to a potential finite time blowup
via the criteria recently introduced in [29].

In order to predict the solution growth in the Euler limit,
we also compare the growth rates of the maximum vorticity
∥ω∥L∞ for different resolutions in Case II and for the original
Euler equations. Again, the Euler result is only presented up to
t = 1.6 × 10−4 when it is still resolved. As shown in Fig. 3.6,
the finer the resolution is, the faster the solution grows, and the
Euler solution grows the fastest before t = 1.6×10−4. Moreover,
the growth curve of ∥ω∥L∞ seems to converge and approach the
Euler case as the resolution is refined. Therefore, it is reasonable
to believe that the original Euler solution, if can be continued
beyond t = 1.6 × 10−4, should blow up even faster than the
solution in Case I or Case II.

Moreover, we have also tested the solution in Case I against
the Constantin–Fefferman–Majda non-blowup criterion [9] for
the 3D Euler equations. It asserts that the solution cannot blowup
if the velocity field u is uniformly bounded and the local vorticity
direction ξ = ω/|ω| is sufficiently ‘‘well behaved’’ near the
region of maximum vorticity. In particular, the ‘‘well behaving’’
condition for the vorticity direction ξ up to a finite time T re-
quires that the integral

∫ T
0 ∥∇ξ∥L∞(Bt ) dt is bounded for some

time-dependent neighborhood Bt of the maximum location of
|ω|. In the original statement of this non-blowup condition, the
19
evolution of the set Bt corresponds to the Lagrangian flow map
induced by the velocity field u, which is not easy to track accu-
rately using our current numerical method. We thus choose to
check a variant of the Constantin–Fefferman–Majda criterion by
monitoring the growth of maximum |∇ξ| over the dynamic set

t = {(r, z) : |ω(r, z, t)| ≥
1
2∥ω∥L∞}. Fig. 3.7(a) shows that

the quantity ∥∇ξ∥L∞(Ωt ) grows rapidly after t = 1.6 × 10−4.
ater in Section 3.5, a numerical fitting of the growth rate of
∇ξ∥L∞(Ωt ) suggests that the integral

∫ T
0 ∥∇ξ∥L∞(Ωt ) dt shall be-

ome unbounded for some finite time T , implying that a variant of
he Constantin–Fefferman–Majda criterion is violated. Fig. 3.7(b)
lots the 2D vector field of (ωr , ωz) in a rescaled neighborhood
f the maximum location of |ω| (indicated by the blue dot) at the
ime instant t0 = 1.7×10−4. We can see that the partial vorticity
ield (ωr , ωz) has a twisted structure near the maximum location
f |ω|, which also suggests a potential singular behavior of the
olution according to the Constantin–Fefferman–Majda criterion.

.4. Potential blowup mechanism

In Section 2.6, we summarize the blowup mechanism for the
otential two-scale singularity in Case I. Since the solution to the
uler equations with vanishing numerical viscosity evolves in a
ualitatively similar way as in Case I, we should expect that the
revious blowup mechanism also applies in Case II.
That is, the odd symmetry and thin structure of u1 in the z di-

ection yields a sharp gradient (u2
1)z near z = 0, which constitutes

o the rapid growth of ω1 via the ω1 Eq. (3.1b). A larger ω1 induces
stronger local flow with ur pointing towards the axis r = 0,
hich generates a larger positive value of ψ1,z = −ur/r near
r, z) = (R(t), 0). The growth of ψ1,z then accelerates the growth
f u1 via the vortex stretching term 2ψ1,zu1. The decreasing trend
f ψ1,z as a function of z also induces a traveling wave for u1
ropagating towards z = 0, which generates an even sharper
radient of u1 in z. This positive feedback loop is summarized in
2.8). In the mean time, the negative radial velocity field ur pushes
he solution towards the axis r = 0, resulting in a traveling wave
n the r direction. Since the shrinking in the z direction is induced
y the vortex stretching rather than the advection, the structure
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Fig. 3.6. Growth of ∥ω∥L∞ for different resolutions in Case II and for the original Euler equations.
Fig. 3.7. (a) The growth of ∥∇ξ∥L∞(Ωt ) in time. (b) The partial vorticity field (ωr , ωz ) in a rescaled domain at t = 1.7× 10−4 . The blue dot is the maximum location
f |ω|, and the reference coordinate (R, Z) is the maximum location of u1 .
3

i
t
v
s
t

3

o
s
γ

f

A
n
r
b

∥

f the solution in z is much thinner, inducing a two-scale solution
tructure.
The good alignment between u1 and ψ1,z is a critical part of

his blowup mechanism. We illustrate this alignment in Case II in
ig. 2.13. One can see that the spatial alignment between u1, ψ1,z
s almost the same as in Case I, and ψ1,z is again comparable to u1
n magnitude around (R(t), Z(t)) in the stable phase. This strong
uadratic alignment leads to the rapid growth of u1 and drags Z(t)
owards z = 0. In particular, it implies that maximum u1 should
low up like (T−t)−1 for some finite time T . In Fig. 3.8(c), we plot
he ratio ψ1,z/u1 at the point (R(t), Z(t)) as a function of time for
ifferent cases and we have the following observations. Firstly, all
he alignment curves look qualitatively similar, while the curves
n Case II are closer to the curve in the Euler case. This means
hat the equations in Case II with vanishing numerical viscosity
re closer to the Euler equations than the equations in Case I with
egenerate diffusion coefficient. Secondly, unlike the alignment
n Case I being steady in the stable phase, the alignment in Case
I tends to go up in the stable phase, which explains the faster
rowth of u1. Thirdly, the strength of the numerical viscosity in
ase II does not seem to affect the alignment much, as the curve
nly changes a little when the resolution is refined. Moreover,
hey seem to converge to the Euler solution.
20
.5. Fitting of the scaling

In this section, we follow the same linear fitting procedure
ntroduced in Section 2.8.1 to study the scaling properties of
he solution to the Euler equations with vanishing numerical
iscosity. We will see that the solution in Case II has almost the
ame blowup rates and spatial scales as in Case I, regardless of
he strength of the numerical viscosity.

.5.1. Fitting of growth rates
In Fig. 3.9, we plot the fitting results for the quantity ∥u1∥L∞

n the time interval [1.6 × 10−4, 1.7 × 10−4
], which demon-

trates excellent linear fitness for both models, y(t; ∥u1∥L∞ ) and
(t; ∥u1∥L∞ ), with R2 values very close to 1. It is shown that the
itting of cu1 is close to 1, implying that the growth of u1 obeys
an inverse power law with a power close to 1:

∥u1∥L∞ ∼ (T − t)−1.

s we remarked in the previous subsection, the blowup mecha-
ism of Case I is also valid for Case II. In particular, this fitting
esult matches the asymptotic analysis on the growth rate of u1
ased on the good alignment between u1 and ψ1.
We also report in Fig. 3.10 the fitting results for the quantities

ωz
∥ ∞ , ∥ψ ∥ ∞ , ∥|u|

2/2+p∥ ∞ , and ∥D2p∥ ∞ . One can see that
L 1,z L L L
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Fig. 3.8. The alignment between u1 and ψ1,z . (a) and (b): cross sections of u1 and ψ1,z through the point (R(t), Z(t)) at t = 1.7 × 10−4 in Case II. (c): the ratio
1,z/u1 at the point (R(t), Z(t)) as a function of time in different cases.
Fig. 3.9. The linear regression of (a) y(t; ∥u1∥L∞ ) and (b) γ (t; ∥u1(t)∥L∞ ) on the time interval [t1, t2] = [1.6 × 10−4, 1.7 × 10−4
] in Case II. The blue points are the

ata points obtained from our computation, and the red lines are the linear models. We plot the linear models on a larger interval.
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hey all have excellent fitness with R2 values very close to 1, and
he growth rates are close to those in Case I:

ωz
∥L∞ ∼ (T − t)−1.5, ∥ψ1,z∥L∞ ∼ (T − t)−1,

∥|u|
2/2 + p∥L∞ ∼ (T − t)−1.3, ∥D2p∥L∞ ∼ (T − t)−2.5.

This suggests a few things. Firstly, the solution in Case II may
blow up at a finite time. In particular, the growth rate of ωz

being greater than 1 (cωz ≈ 1.5) suggests a finite-time singularity
by the Beale–Kato–Majda criterion [6], and the growth rate of
D2p being greater than 2 (cD2p ≈ 2.5) violates the non-blowup
criterion proved in [29]. Secondly, the power of ψ1,z being close
to 1 (namely the power of u1) is consistent with our observation
of the good alignment between u1 and ψ1,z . Thirdly, the potential
two-scale blowup solutions in Case I and Case II are not just
qualitatively similar but also have the same blowup scalings. We
remark that the fitting of the growth rate of other quantities
also gives similar results in both cases. This means that the
modification of the diffusion coefficients does not alter the scaling
properties of the potential singularity.

In addition, Fig. 3.10(e) reports the linear fitting for the quan-
tity ∥∇ξ∥L∞(Ωt ) that is described in Section 3.3. The approximate
inverse power law ∥∇ξ∥L∞(Ωt ) ∼ (T − t)−1 suggests that the
integral

∫ T
0 ∥∇ξ∥L∞(Ωt ) dt shall become infinite at some finite

time T , which violates the non-blowup criterion of Constantin–
Fefferman–Majda [9]. We remark that the oscillating growth of
∥∇ξ∥L∞(Ωt ) is probably due to the irregular geometry of the

1
∥ω∥ ∞}.
time-dependent set Ωt = {(r, z) : |ω(r, z, t)| ≥ 2 L t

21
.5.2. Fitting of spatial scales
We have seen in Section 3.2 that the maximum location

R(t), Z(t)) of u1 also travels towards the origin in Case II, and
he ratio R(t)/Z(t) blows up faster. However, our fitting results
how that the scalings of R(t), Z(t) are almost the same as those
n Case II. In Fig. 3.11, we plot the linear fitting of the γ model
2.11) for R(t)−1 and Z(t)−1, showing that R(t) and Z(t) satisfy the
ame power laws in Case I,

(t) ∼ (T − t)0.5, Z(t) ∼ (T − t),

ith very good fitness. It is not surprising that R(t) should still
ehave like (T − t)0.5 since its scaling is closely related to the
caling of u1 through the conservation of total circulation. The
otal circulation is defined as Γ := ruθ = r2u1, and it is not hard
o show that Γ satisfies a maximum principle. We thus have

(t)2 · ∥u1∥L∞ = R(t)2 · u1(R(t), Z(t)) = Γ (R(t), Z(t)) ∼ O(1),

hich implies that R(t) ∼ ∥u1∥
−1/2
L∞ ∼ (T − t)0.5. What is more

nteresting is that Z(t) obeys the same power law as in Case I. It is
onjectured in [4] that the power of Z(t) being close to 1 in Case
is because the degenerate diffusion coefficients scale like
r , νz = O(R(t)2) + O(Z(t)2) = O(R(t)2)

n the critical blowup region around (R(t), Z(t)). The authors also
rovided an asymptotic scaling analysis to support this conjec-
ure. Here in Case II, the diffusion coefficients are modified so
hat they are constant in space and scale like O(R(t)2)+O(Z(t)2) in
ime. However, the power of Z(t) remains the same, which seems
o support the conjecture that the scaling of Z(t) is chosen by
he scaling of the diffusion coefficients near (R(t), Z(t)). Then the



T.Y. Hou and D. Huang Physica D 435 (2022) 133257

o

q
t

3

d
f
t
r
q
r
w
o
t
w

Fig. 3.10. The linear regression of (a) γ (t; ∥ωz
∥L∞ ), (b) γ (t; ∥ψ1,z∥L∞ ) (c) γ (t; ∥|u|

2/2 + p∥L∞ ), (d) γ (t; ∥D2p∥L∞ ), and (e) γ (t; ∥∇ξ∥L∞(Ωt )). The blue points are the
data points obtained from our computation, and the red lines are the linear models. We plot the linear models on a larger interval.
Fig. 3.11. The linear regression of (a) γ (t; R(t)−1) and (b) γ (t; Z(t)−1) on the time interval [t1, t2] = [1.6 × 10−4, 1.7 × 10−4
]. The blue points are the data points

btained from our computation, and the red lines are the linear models. We plot the linear models on a larger interval.
o
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uestion is whether such scaling can maintain as the strength of
he numerical viscosity is reduced by refining the mesh.

.5.3. Robustness of the fitting
To further study the scaling properties under the change of the

iffusion coefficient, we perform linear fitting of the growth rates
or the solutions obtained from different resolutions. Recall that
he strength of the numerical viscosity decreases as the resolution
efines in Case II. Table 3.1 reports the fitting results of different
uantities for different resolutions. It appears that the fitting
esults remain the same up to 2 digits as the numerical viscosity
eakens. This is surprising if we believe that it is the scaling
f the diffusion coefficients that chooses the spatial scaling of
he blowup. On the one hand, the vanishing diffusion coefficients
ill also be like O(R(t)2) + O(Z(t)2), which is consistent with the
 t

22
bserved scalings of potential blowup according to the asymp-
otic analysis in [4]. On the other hand, as the factor h in (3.3)
ecreases, the solution should converge to the solution to the
uler equations. Does it mean that the Euler solution from the
ame initial data, if can be continued for a longer time, will also
evelop a two-scale blowup with the same scalings as in Cases
and II? It would be interesting to explore this question in the
uture if we can afford enough computational capacity to resolve
he Euler solution to a later time.

.6. Numerical evidence of locally self-similar profiles

As in Case I, the scaling fitting above implies that the solution
n Case II may blow up in a self-similar manner. However, the
wo-scale property only allows self-similar feature to appear
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Table 3.1
Linear fitting results of model (2.11) for different quantities computed with different mesh sizes in Case II.
Mesh size ∥u1∥L∞ ∥ωz

∥L∞ R(t)−1 Z(t)−1

c̄ R2 c̄ R2 c̄ R2 c̄ R2

1024 × 512 0.9626 1.00000 1.5283 0.99955 0.4838 1.00000 0.9835 0.99966
1536 × 768 0.9629 1.00000 1.4901 0.99992 0.4826 1.00000 0.9844 0.99987
2048 × 1024 0.9630 1.00000 1.4925 0.99994 0.4825 1.00000 0.9848 0.99989
Fig. 3.12. Comparison of the level sets of u1 at different time instants. First row: original level sets of u1 in the domain (r, z) ∈ [0.6×10−4, 2.2×10−4
]×[0, 8×10−6

].
econd row: rescaled level sets of u1 as a function of (ξ, ζ ) in the domain (ξ, ζ ) ∈ [−2, 5] × [0, 3.5].
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ocally. We thus study the evolution of the rescaled profile in a
mall-scale neighborhood of (R(t), Z(t)).
In Fig. 3.12 and Fig. 3.13, we compare the level sets of u1

nd ω1, respectively, at different time instants. In the first row
f each figure, we plot the solution level sets in a local domain
r, z) ∈ [0.6 × 10−4, 2.2 × 10−4

] × [0, 8 × 10−6
]. It is obvious

hat the profiles of u1, ω1 have changed a lot with respect to the
hysical coordinates from t = 1.72 × 10−4 to t = 1.75 × 10−4.
imilar to the changes in Case I, the support of the profiles travels
owards the origin with their size shrinking. The sharp front of u1
nd the curved structure of ω1 also become thinner and thinner.
To investigate the potential local self-similar behavior, we also

tudy the properly rescaled profiles as in Section 2.9. the level sets
f the spatially rescaled functions

˜1(ξ, ζ , t) = u1(Z(t)ξ + R(t), Z(t)ζ , t),
ω̃1(ξ, ζ , t) = ω1(Z(t)ξ + R(t), Z(t)ζ , t).

re plotted in the second row of Fig. 3.12 and Fig. 3.13, respec-
ively. As before, the dynamically rescaled coordinates are given
y

=
r − R(t)
Z(T )

∼
r − R(t)
(T − t)cl

, ζ =
z

Z(T )
∼

z
(T − t)cl

.

One can see that the rescaled profiles of u1, ω1 seem to converge
to a steady structure that barely changes in time. Such converging
trend provides strong evidence on the existence of a locally
self-similar profile for the solution in Case II.

3.7. Asymptotic scaling analysis

In this subsection, we carry out an asymptotic analysis based
on our numerical observations to study the locally self-similar
feature of our potential blowup.
23
Guided by our observations of a two-scale feature in the
solution, we propose the following self-similar ansatz with two
spatial scalings in the axisymmetric setting:

u1(r, z, t) ∼ (T − t)−cu Ū
(

r − R(t)
(T − t)cl

,
z

(T − t)cl

)
, (3.4a)

ω1(r, z, t) ∼ (T − t)−cωΩ̄

(
r − R(t)
(T − t)cl

,
z

(T − t)cl

)
, (3.4b)

1(r, z, t) ∼ (T − t)−cψ Ψ̄

(
r − R(t)
(T − t)cl

,
z

(T − t)cl

)
, (3.4c)

R(t) ∼ (T − t)csR0. (3.4d)

ere Ū, Ω̄, Ψ̄ denote the self-similar profiles of u1, ω1, ψ1 respec-
tively. For notational simplicity, we use cu, cω, cψ for cu1 , cω1 , cψ1 .
s in our previous setting, the reference point R(t) is chosen
o be r-coordinate of the maximum location of u1, and R0 >

is some normalization constant. This ansatz depicts that, the
olution develops an asymptotically self-similar blowup focusing
t the point (R(t), 0) with a local spatial scaling (T − t)cl , and in

the mean time, the point (R(t), 0) travels towards the origin with
a different length scale (T − t)cs .

A common method to study a self-similar blowup is by substi-
uting the self-similar ansatz (3.4) into the physical Eqs. (2.2) and
eriving equations for the potential self-similar profiles Ū, Ω̄, Ψ̄ ,
ased on the fundamental assumption that these profiles exist
nd are smooth functions. A more systematic approach is to
ntroduce time-dependent profile solutions U,Ω,Ψ and treat
the potential self-similar profiles Ū, Ω̄, Ψ̄ as the steady state
of U,Ω,Ψ . Thus, we can relate (u1, ω1, ψ1) to (U,Ω,Ψ ) by a
dynamic change of variables given below:

u1(r, z, t) = (T − t)−cuU (ξ , ζ , τ (t)) , (3.5a)

ω (r, z, t) = (T − t)−cωΩ ξ, ζ , τ (t) , (3.5b)
1 ( )
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Fig. 3.13. Comparison of the level sets of ω1 at different time instants. First row: original level sets of u1 in the domain (r, z) ∈ [0.6×10−4, 2.2×10−4
]×[0, 8×10−6

].
econd row: rescaled level sets of ω1 as a function of (ξ, ζ ) in the domain (ξ, ζ ) ∈ [−2, 5] × [0, 3.5].
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1(r, z, t) = (T − t)−cψΨ (ξ , ζ , τ (t)) , (3.5c)

here

:=
r − R(t)
Cl(t)

, ζ :=
z

Cl(t)
, (3.5d)

nd τ (t) is a rescaled time variable satisfying
′(t) = (T − t)−1. (3.5e)

ow the self-similar ansatz (3.4) asserts that the profile so-
utions U(ξ, ζ , τ ),Ω(ξ, ζ , τ ),Ψ (ξ, ζ , τ ) in the ξζ -coordinates
hould converge to some time-independent profiles Ū(ξ, ζ ),
¯ (ξ, ζ ), Ψ̄ (ξ, ζ ) as τ → ∞ (i.e. t → T ). In particular, Ū, Ω̄, Ψ̄
should be smooth functions of ξ, ζ .

Before we derive the equations for the profile solutions U,Ω,
Ψ , we need to make some assumptions. We first assume that the
ansatz (3.4d) is actually an identity:

R(t) = (T − s)csR0.

Guided by our numerical observations, we make the two-scale
assumption:

cs < cl, or equivalently, R(t)/Cl(t) → +∞ as t → T . (3.6)

Here Cl := (T − t)cl is the scale of Z(t). We will also use the
following notations

C1(t) := (T − t)−1, Cu(t) := (T − t)−cu , Cω(t) := (T − t)−cω ,

Cψ (t) := (T − t)−cψ .

Now we substitute the change of variables (3.5) into the
Eqs. (2.2) (with the simplified diffusion terms). For clarity, we do
this term by term. For the u1 Eq. (3.1a), we have

u1,t = C1CuUτ + cuC1CuU + clC1Cu(ξUξ
+ ζUζ ) + csC1CuC−1

l RUξ ,

uru1,r + uzu1,z = CψCuC−1
l

(
−ξΨζUξ + (2Ψ + ξΨξ )Uζ

)
+ CψCuC−2

l R
(
−ΨζUξ + ΨξUζ

)
,

2ψ1,zu1 = 2CψCuC−1
l ΨζU,

gu1 = CuC−2
l

(
νrUξξ + 3νr (ξ + RC−1

l )−1Uξ + νzUζ ζ
)
.

(3.7a)
 C

24
Note that we have used the expressions of ur , uz in (3.1d). We
ave also used the relation (3.5e): τ ′(t) = (T − t)−1

= C1.
imilarly, for the ω1 Eq. (3.1b), we have

ω1,t = C1CωΩτ + cωC1CωΩ + clC1Cω(ξΩξ + ζΩζ )

+ csC1CωC−1
l RΩξ ,

urω1,r + uzω1,z = CψCωC−1
l

(
−ξΨζΩξ + (2Ψ + ξΨξ )Ωζ

)
+ CψCωC−2

l R
(
−ΨζΩξ + ΨξΩζ

)
,

2u1,zu1 = 2C2
uC

−1
l UζU,

gω1 = CωC−2
l

(
νrΩξξ + 3νr (ξ + RC−1

l )−1Ωξ + νzΩζ ζ

)
.

(3.7b)

Finally, for the Poisson equation (3.1c), we have

−

(
∂2r +

3
r
∂r + ∂2z

)
ψ1 = ω1

H⇒ −CψC−2
l

(
∂2ξ +

3
ξ + RC−1

l

∂ξ + ∂2ζ

)
Ψ = CωΩ. (3.7c)

The next step is to determine the relations between the quan-
tities Cu, Cω , Cψ , Cl and R by balancing the terms in each equation
of (3.7) in the asymptotic regime t → T , based on the assumption
that the limit profiles Ū, Ω̄, Ψ̄ are smooth regular functions of
ξ, ζ and are independent of time t . We also assume that the
diffusion term are of the same order as the vortex stretching term.
This balance is crucial in determining the length scale for Cl or
Z(t).

We have underlined some terms in (3.7a) and (3.7b) for some
reason to be clarified later. For those terms that are not under-
lined in (3.7a), the balancing among them as t → T requires

C1Cu = CψCuC−1
l ∼ νCuC−2

l .

Similarly, for those terms that are not underlined in (3.7b), the
balance among various terms as t → T enforces

C1Cω = CψCωC−1
l = C2

uC
−1
l ∼ νCωC−2

l .

inally, for the Poisson equation (3.7c) to balance each other as
→ T , we must have

C−2
= C .
ψ l ω
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ummarizing these relations, we obtain that⎧⎨⎩ Cu = C1,

Cω = C1C−1
l ,

Cψ = C1Cl,

⇐⇒

{ cu = 1,
cω = 1 + cl,
cψ = 1 − cl,

(3.8)

nd
r
∼ νz ∼ C1C2

l = (T − t)2cl−1. (3.9)

ote that the relations (3.8) also imply that the underlined terms
an balance with each other in (3.7a) and in (3.7b).
So far, we have already obtained some meaningful information

f the blowup rates. If the self-similar ansatz (3.4) is true, then no
atter what the spatial scalings cs, cl are, the asymptotic blowup

ates of u1, ψ1,z are always 1:

∥u1∥L∞ ∼ Cu = C1 = (T − t)−1,

∥ψ1,z∥L∞ ∼ CψC−1
l = C1 = (T − t)−1.

This result of the asymptotic analysis is consistent with our
discussion in Section 3.4 and fitting results in Section 3.5, which
confirms the inverse power law for u1 and that ψ1,z ∼ u1 in the
blowup region. To obtain the blowup rate of the other variables,
we still need to determine the value of cl.

To proceed, we need to make use of the conservation of the
total circulation, an important physical property of the axisym-
metric Euler or Navier–Stokes equations. Recall that the total
circulation is defined as

Γ (r, z, t) := ruθ (r, z, t) = r2u1(r, z, t).

We remarked in Section 3.5 that Γ satisfies a maximum principle.
In fact, it is easy to derive the equation of Γ from the u1 Eq. (3.1a):

Γt + urΓr + uzΓz = νrΓrr + νzΓzz, (3.10)

which immediately yields the maximum principle. As a result,
Γ (R, Z, t) = R2u1(R, Z, t) = O(1) as t → T . This means that

R(t) ∼ ∥u1∥
−1/2
L∞ ∼ (T − t)cu/2 = (T − t)1/2, or cs =

cu
2

=
1
2
.

e remark that the relation cs = cu/2 = 1/2 only relies on the
onservation of the maximum circulation and the fact that cu = 1,
hich are intrinsic to the Eqs. (3.1).
Next, to determine cl, we need to use the scaling of the

anishing diffusion coefficients,
r
∼ νz = O(R(t)2) + O(Z(t)2).

sing cs = 1/2 and the two-scale assumption (3.6) that cl > cs,
e have
r
∼ νz = O((T − t)2cs ) + O((T − t)2cl ) ∼ (T − t)1.

Comparing this with the relation (3.9), we reach that 2cl −1 = 1,
or cl = 1.

We have now obtained all the blowup rates and the spatial
scalings in the self-similar ansatz (3.4):

cs = 1/2, cl = 1, cu = 1, cω = 1+cl = 2, cψ = 1−cl = 0.

Moreover, the derivative relations and product relations yield
that

ωz
= 2u1+ru1,r = O((T −t)−cu )+O((T −t)−cu+cs−cl ) ∼ (T −t)−1.5.

These results are consistent with the fitting data (Table 3.1) in
Section 3.5. For the convenience of comparison, we put together
the values of the scaling powers obtained from the numerical

fitting (with mesh size 2048 × 1024) and from the asymptotic r

25
Table 3.2
Comparison of the scalings obtained from numerical fitting and from asymptotic
analysis.
Scaling powers cu1 cωz cψ1,z cs cl
Numerical fitting 0.9630 1.4925 0.9675 0.4825 0.9848
Asymptotic analysis 1 1.5 1 0.5 1

analysis in Table 3.2. The consistency between the numerical fit-
ting procedures and the asymptotic scaling analysis provides fur-
ther support for the existence of a finite time locally self-similar
blowup of the form (3.4).

We have seen that the leading order of the vanishing viscosity
coefficients plays a critical role in determining the smaller scale cl.
his was also the case in the related work [4]. As we know, the
uler equations have an extra degree of freedom that formally
llows an arbitrarily small scale. It is then wondered whether the
rder of the viscosity coefficients chooses this particular scaling,
r the original Euler equations can automatically develop the
ame major scalings from the same initial data and boundary
onditions.
Recall that we have underlined some terms in (3.7), as they

annot be balanced with the other terms in the analysis. Yet
hey can balance with each other according to the scaling results.
his would mean that the underlined terms should cancel out
s t → T in order for our analysis to hold. Such cancellation
ill provide extra constraints on the self-similar profiles if they
ctually exist. A more detailed discussion can be found in [4].

.8. Further investigation on the viscosity scaling

To gain more insights into the potential relation between the
rder of the vanishing viscosity coefficients and the smaller spa-
ial scale cl, we carry out some extra computations with different
ettings of the numerical viscosity. In particular, we modify the
umerical viscosity coefficients in (3.3) by parameterizing their
anishing orders:

r
α(t) = 256h ·

(
10R(t)2

1 + 108R(t)2
·

(
R(t)
R(0)

)α
+

102(sin(πZ(t))/π )2

1 + 1011(sin(πZ(t))/π )2
·

(
sin(πZ(t))
sin(πZ(0))

)α)
, (3.11a)

νzα(t) = 256h ·

(
10−1R(t)2

1 + 108R(t)2
·

(
R(t)
R(0)

)α
+

104(sin(πZ(t))/π )2

1 + 1011(sin(πZ(t))/π )2
·

(
sin(πZ(t))
sin(πZ(0))

)α)
. (3.11b)

Such parameterization ensures that (i) (νrα(0), ν
z
α(0)) = (νr (0),

z(0)) at t = 0 and (ii) (νrα(t), ν
z
α(t)) = O(R(t)2+α) + O(Z(t)2+α)

s (R(t), Z(t)) converges to the origin. We compare the solutions
omputed with α = −1, 0, 1 to study how the order of viscosity
an affect the blowup scaling. Note that the solution with α = 0
s the solution in Case II.

We first compare the growth of the solutions with α = −1 and
= 0 to see whether the stronger vanishing viscosity of order
(R(t)) + O(Z(t)) can prevent the potential two-scale blowup in
ur scenario. Fig. 3.14 compares the growth (in double-log scale)
f the solution quantities ∥u1∥L∞ , ∥ω∥L∞ and ∥D2p∥L∞ obtained
rom both cases. We can see that the solution under the stronger
umerical viscosity with α = −1 not only grows slower and
lower, but even starts to drop after around t = 1.74 × 10−4.
his means that the vanishing viscosity of order O(R(t))+O(Z(t))
oes not generate another blowup scaling; instead it destroys the
caling of the solution in the previous case. As a reference, it is
eported in [4] that, in the same axisymmetric scenario, there is
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Fig. 3.14. Comparison of the growth of log log ∥u1∥L∞ , log log ∥ω∥L∞ and log log ∥D2p∥L∞ with α = 0 and α = −1, respectively, in the time window t ∈

[1.2 × 10−4, 1.75 × 10−4
].
Fig. 3.15. The linear regression of (a) γ (t; ∥u1∥L∞ ), (b) γ (t; ∥ω1∥L∞ ) (c) γ (t; R(t)−1), and (d) γ (t; Z(t)−1) for the solution computed with α = 1. The blue points are
the data points obtained from our computation, and the red lines are the linear models.
no blowup observed for the original 3D Navier–Stokes equations
even with a very small constant viscosity coefficient. Our numer-
ical experiments here further show that the potential two-scale
blowup can be suppressed by a time-dependent diffusion effect
that does not vanish fast enough.

Next, we study the potential blowup scaling of the solution
with α = 1 to see whether the smaller scale cl = 1 is intrinsic
to the Euler equations. Fig. 3.15 presents the linear regression of
the quantities ∥u1∥L∞ , ∥ω1∥L∞ , R(t)−1 and Z(t)−1 for the solution
with α = 1, obtained from the fitting method introduced in
Section 2.8.1. Our result shows that these quantities have nice
fitting to the approximate power laws

∥u1∥L∞ ∼ (T − t)−1, ∥w1∥L∞ ∼ (T − t)−2,

R(t) ∼ (T − t)0.5, Z(t) ∼ (T − t),
26
which suggests that the solution has the same blowup scalings as
in the case of α = 0:

cu = 1, cω = 2, cs = 1/2, cl = 1.

It is not surprising that cu = 2cs = 1 for the solution with
α = 1, since these scalings are irrelevant to the order of the
viscosity according to our scaling analysis. What is interesting is
that we still have cl = 1 when the vanishing viscosity is of order
O(R(t)3) + O(Z(t)3). If we honestly go through the same scaling
analysis argument with νr ∼ νz = O(R(t)3)+O(Z(t)3), we should
obtain cl = 1.25. Our numerical results, however, suggest that
the smaller scale cl = 1 is robust when the vanishing viscosity is
weaker than O(R(t)2) + O(Z(t)2). We remark that with a weaker
numerical viscosity the solution is more sensitive to the Euler
instability occurring from the tail region. In fact, we have tried
computations with a larger α, but the early emerging of the Euler
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nstability has prevented us from resolving the solution to a stable
hase, just like in the original Euler case.
In summary, our further numerical results imply that the

anishing numerical viscosity of order O(R(t)2) + O(Z(t)2) does
ot select the smaller scale of cl = 1; instead, it is critically
ompatible with the potential two-scale blowup in our scenario.
n the one hand, if the vanishing viscosity is stronger than
(R(t)2) + O(Z(t)2), the two-scale blowup will be suppressed. On
he other hand, if the vanishing viscosity is weaker than O(R(t)2)+
(Z(t)2), the smaller spatial scale cl = 1 still remains, suggesting
hat it is a characteristic of the underlying solution to the Euler
quations. However, to finally determine whether the potential
wo-scale blowup with the current scalings can happen in the
riginal Euler case, we still need to find a better way to resolve
he Euler solution to a later stage. We will continue to pursue this
n the future.

. Concluding remarks

In this paper, we presented strong numerical evidences that
he 3D axisymmetric Euler equations with time-dependent van-
shing numerical viscosity develop a finite time singularity at
he origin. The solution of 3D axisymmetric Euler equations with
ime-dependent vanishing viscosity shares many common fea-
ures with those of the solution of 3D axisymmetric Navier–
tokes equations with degenerate diffusion coefficients that we
eported in [4]. An important feature of this potential singularity
s that the solution develops a two-scale traveling wave solution
hat travels towards the origin. The hyperbolic flow structure
ear the center of the traveling wave generates a vacuum region
ynamically. The flow evolves into a local ‘‘two-phase’’ flow that
eparates the ‘‘vacuum phase’’ from the fluid phase by a ‘‘moving
oundary’’. We performed careful resolution study and asymp-
otic scaling analysis to provide further support of the potential
ocally self-similar blowup.

The rapid decay of the time-dependent viscosity plays a role
imilar to that of the degenerate diffusion coefficients studied
n [4]. It stabilizes the potential singularity formation for the
ncompressible 3D Euler equations and selects a stable two-scale
olution structure. We have also studied the 3D Euler equations
sing the same initial data in previous works. Without any vis-
ous regularization, the Euler solution quickly developed a very
hin structure near the sharp front and the thickness of the sharp
ront collapses to zero faster than Z(t). Thus, the solution of
he 3D Euler equations seems to develop a 3-scale structure,
hich is extremely difficult to resolve numerically. By applying
first order numerical viscosity with time-dependent vanishing
oefficients of order O(R(t)2) + O(Z(t)2), we obtained strong nu-
erical evidence that the 3D Euler equations may develop a finite

ime singularity with scaling properties similar to those of the
avier–Stokes equations with degenerate diffusion coefficients.
hese scaling properties are found to be robust as the first order
umerical viscosity is weakened by refining the resolution.
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