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Abstract Based on the recently developed data-driven time-frequency analysis (Hou and Shi, 2013), we pro-

pose a two-level method to look for the sparse time-frequency decomposition of multiscale data. In the two-level

method, we first run a local algorithm to get a good approximation of the instantaneous frequency. We then pass

this instantaneous frequency to the global algorithm to get an accurate global intrinsic mode function (IMF)

and instantaneous frequency. The two-level method alleviates the difficulty of the mode mixing to some extent.

We also present a method to reduce the end effects.
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1 Introduction

Developing a truly adaptive data analysis method is important for our understanding of many natu-

ral phenomena. Traditional data analysis methods such as the Fourier transform or windowed Fourier

transform often use pre-determined basis. Although they are very effective in representing linear and

stationary data, applications of these methods to nonlinear and nonstationary data tend to give many

unphysical harmonic modes. Time-frequency analysis is a more effective way to analyze data. It rep-

resents a signal with a joint function of both time and frequency (see [9]). There have been several

powerful wavelet-based time-frequency analysis techniques (see [5, 22, 26, 30]). However, these methods

do not remove the artificial harmonics completely.

Another important approach in the time-frequency analysis is to study instantaneous frequency of a

signal. Some of the pioneering work in this area was due to Van der Pol [36] and Gabor [10]. They

introduced the so-called analytic signal (AS) method that uses the Hilbert transform to define instan-

taneous frequency of a signal. However, this method works mostly for monocomponent signals, and
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requires that the number of zero-crossings in the signal is equal to the number of local extrema of the

signal (see [1]). The zero-crossing method (see [28,33,34]) and the Wigner-Ville distribution method (see

[1,9,24,25,31,32]) have been also introduced to define instantaneous frequency. However, the zero-crossing

method cannot apply to signals with multiple components and is sensitive to noise. The method based

on the Wigner-Ville distribution is known to suffer from the interference between different components.

The empirical mode decomposition (EMD) method introduced by Huang [18] is a truly adaptive data

analysis method for multi-component signals. The EMD method decomposes a signal into a collection of

intrinsic mode functions (IMFs) sequentially. The main idea is the removal of the local median from a

signal by using a sifting process. The local median is approximated by the averaging the upper envelope

and the lower envelope of the signal using cubic spline. The sifting process stops when the following

two conditions are satisfied: (i) The number of the extrema and the number of the zero crossings of

the function is equal or differ at most by one; (ii) the upper envelope and the lower envelope should be

symmetric with respect to zero. Once one IMF is obtained, the Hilbert transform can be applied to get

the instantaneous frequency.

The EMD method has found many applications (see [20, 38, 39]). One important property of these

IMFs is that they contain physically meaningful information such as trend and instantaneous frequency,

and give a physically meaningful Hilbert spectral representation. One drawback of the EMD method is its

sensitivity to noise since it approximates the upper and lower envelopes of a signal by cubic spline based

on local extrema of a signal. Clearly, local extrema of a signal are very sensitive to noise perturbation.

To alleviate this difficulty, an ensemble EMD method (EEMD) was proposed to make it more stable to

noise perturbation (see [37]).

Despite the considerable success of the EMD method in various applications, there is a lack of theoret-

ical foundation of this method. Recently, there have been several attempts to establish a mathematical

foundation for the EMD method (see [6, 7, 13–17, 19]). An interesting observation of the EMD method

is that the signal is decomposed into the sum of only a small number of IMFs. In some sense, the EMD

method can be considered as a method that gives a sparse representation over the dictionary consisting

of all IMFs. Based on this observation, Hou and Shi [14] proposed a data-driven time-frequency analysis

method by looking for the sparsest decomposition over all IMFs. This idea gives rise to an optimization

problem

min
(ak)16k6M ,(θk)16k6M

M

subject to f(t) =
M∑
k=1

ak(t) cos θk(t), 0 6 t 6 T, ak cos θk ∈ D.
(1.1)

When the signal is polluted by noise, the equality in the above constraint is relaxed to be an inequality

depending on the noise level. Here, D is the dictionary consisting of all IMFs, which is defined as

D = {a(t) cos θ(t) : θ′(t) > 0, a(t) ∈ V (θ)},

V (θ) is the collection of all the functions that are less oscillatory than cos θ(t), i.e.,

V (θ) = span

{
φ

(
ξθ(t)

2πλφ
−m

)
: m = n1, n1 + 1, . . . , n2

}
, (1.2)

where ξ 6 1/2 is a fixed parameter that controls the regularity of the basis functions in V . The condition

ξ 6 1/2 roughly corresponds to requiring that the derivative of the basis functions in this dictionary is

less than 1/2 of the derivation of θ itself. This is how we enforce that the envelope a(t) is smoother than

the phase function θ(t). Here, φ is a preselected scaling function and λφ is the center frequency of φ, and

the integers n1 = n1(φ, θ) and n2 = n2(φ, θ) are chosen to make sure that the energy of each

φ

(
ξs

2πλφ
−m

)
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that lies inside the domain [θ(0), θ(T )] is not very small. In our computation, we select all

φ

(
ξs

2πλφ
−m

)
whose domain has nonempty intersection with [θ(0), θ(T )]. This choice of the dictionary generalizes the

overcomplete Fourier basis used in [14].

In some sense, this is a nonlinear version of the l0 minimization problem. Based on the studies in the

compressed (compressive) sensing (see [3,4,8,11]), Hou and Shi [14] proposed a data-driven time-frequency

analysis method. The data-driven time-frequency analysis method is based on looking for the sparsest

representation of a multiscale signal over certain multiscale basis. The multiscale basis is adapted to the

signal instead of being determined a priori. This explains the term “data-driven”. In [14], an efficient

algorithm based on nonlinear matching pursuit and fast Fourier transform has been proposed to solve the

above nonlinear optimization problem. Under the assumption of the scale separation, the convergence of

the algorithm for periodic data has been analyzed in [17].

The uniqueness of the optimization problem (1.1) is analyzed in [23] under the assumption of the scale

separation which is defined as follows.

Definition 1.1 (Scale-separation). A function f(t) = a(t) cos θ(t) is said to satisfy a scale-separation

property with a separation factor ϵ > 0, if a(t) and θ(t) satisfy the following conditions:

a(t) ∈ C1(R), θ ∈ C2(R), inf
t∈R

θ′(t) > 0,

supt∈R θ
′(t)

inft∈R θ′(t)
=M ′ < +∞,

∣∣∣∣a′(t)θ′(t)

∣∣∣∣ 6 ϵ,

∣∣∣∣ θ′′(t)(θ′(t))2

∣∣∣∣ 6 ϵ, ∀ t ∈ R.

Before we proceed, we give some explanation on the above definition. First of all, the instantaneous

frequency θ′(t) must be positive to have a physical meaning. This is why we impose that θ′(t) > 0 over the

time domain that we consider. Secondly, if the instantaneous frequency θ′(t) has unbounded variation over

the time domain that we consider, then it increases significantly the chance of mode mixing. As a result,

we would lose uniqueness. Therefore, it is necessary to assume that the instantaneous frequency θ′(t) has

a bounded variation over the time domain. The condition that |a′(t)| 6 ϵθ′(t) implies that the envelope a

is relatively smooth compared with the phase function θ(t), which is one of the essential requirements

of scale separation in the sense that the envelope fluctuation is smaller that of the phase function. The

last assumption on θ(t) is to ensure that θ(t) has some regularity in itself. This condition rules out

the case when we have strong frequency modulation, which is a source of uniqueness in the data-driven

time-frequency decomposition. Although the above definition is formulated on the entire domain, it can

be relaxed to each local time interval over the entire domain time that we consider.

It is proved that if the signal is well-separated as defined in Definition 1.2, the solution of the optimiza-

tion problem (1.1) is unique up to an error associated with the scale separation factor ϵ and the noise

level ϵ0.

Definition 1.2 (Well-separated signal). A signal f : R → R is said to be well-separated with separation

factor ϵ and frequency ratio d if it can be written as

f(t) =
M∑
k=1

ak(t) cos θk(t) + r(t), (1.3)

where each

fk(t) = ak(t) cos θk(t)

satisfies the scale-separation property with separation factor ϵ, r(t) = O(ϵ0) and their phase function θk
satisfies

θ′k(t) > dθ′k−1(t), ∀ t ∈ R. (1.4)

and d > 1, d− 1 = O(1).
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Solution 1

Figure 1 Mode mixing when applying the data-driven time-frequency analysis to the signal given in (1.5). (a) The first

IMF given by the data-driven time-frequency analysis. (b) The computed IMF and the first true IMF f1(t) = a1(t) cos θ1(t).

(c) The computed IMF and the second true IMF f2(t) = a2(t) cos θ2(t). (d) The computed instantaneous frequency (solid

line) versus the two true instantaneous frequencies (dashed lines)
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Figure 2 The signal given in (1.5)

In the above definition, in addition to requiring that each component satisfies the scale separation

conditions stated in Definition 1.1, we also require that the instantaneous frequency θ′k(t) in the k-th

component is strictly greater than that of the (k − 1)-th component by a constant factor d, i.e., strictly

greater than one. This rules out the possibility that the two adjacent components have comparable

instantaneous frequencies, which could easily lead to mode mixing, thus violates the uniqueness of the

decomposition.

This series of papers has established a solid framework for data-driven time-frequency analysis, from

theory to algorithms. However, there are still several issues unresolved. In this paper, we consider two

of them: initialization of the iterative algorithm and the end effect.

Initialization (Mode mixing). The data-driven time-frequency analysis is formulated as a global op-

timization problem. An iterative algorithm has been proposed to solve this nonconvex optimization

problem. To start the iteration, we need a good initial guess of the instantaneous frequency. In our pre-

vious work, we use the Fourier transform to get the initial instantaneous frequency, which is a constant.
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In the real world applications, the instantaneous frequency of the signal may have large variation. The

constant initialization may introduce mode mixing in the decomposition. Figure 1 shows one example of

this kind.

In Figure 2, the signal is given as follows:

f(t) = a1(t) cos θ1(t) + a2(t) cos θ2(t), t ∈ [0, 1], (1.5)

where

t =
3

2
s− 1

2
s2

and

a1 = 2− 1.5 cos(1.5πs),

a2 = 4 + 3 cos(2πs),

θ1 = 32πs,

θ2 = 84πs+ 10.4 sin(2πs) + 1.32 sin(4πs).

In this example, the variation of the instantaneous frequencies is very large, as shown in Figure 1.

However, it still satisfies the scale separation assumption and is also well-separated, as demonstrated

in (1.6), i.e.,

max
t∈[0,1]

∣∣∣∣ a′1(t)

a1(t)θ′1(t)

∣∣∣∣ ≈ 0.053,

max
t∈[0,1]

∣∣∣∣ θ′′1 (t)[θ′1(t)]
2

∣∣∣∣ ≈ 0.02,

max
t∈[0,1]

∣∣∣∣ a′2(t)

a2(t)θ′2(t)

∣∣∣∣ ≈ 0.033,

max
t∈[0,1]

∣∣∣∣ θ′′2 (t)[θ′2(t)]
2

∣∣∣∣ ≈ 0.0124.

(1.6)

Based on the theoretical analysis in [23], we have a unique decomposition up to a small error depending

on the scale separation factors given above. On the other hand, the optimization problem we want to

solve is nonlinear and nonconvex. If we start the iteration with a poor initial instantaneous frequency, the

algorithm may converge to a local minimum. As shown in Figure 1, from a constant initial instantaneous

frequency given by the Fourier transform, the algorithm gives an IMF with mode mixing. In the interval

[0, 0.8], the mode that we compute matches the second IMF and in the rest of the interval, it matches the

first IMF well. Two IMFs mix with each other in the decomposition. This phenomenon is called mode

mixing and is also observed in the EMD method. Intermittent signals and the perturbation of noise are

two of the common reasons that cause mode mixing. Moreover, for a signal in which the frequencies of

the IMFs change significantly, mode mixing is often observed in the EMD or the EEMD method since the

decomposition is dyadic. The mode mixing could also appear in the data-driven time-frequency analysis

if the initial guess is not chosen properly.

In this paper, we propose a two-level method to tackle the problem of the initialization. The main

idea is to generate the initial instantaneous frequency locally by cutting the signal to small pieces using

a window function and passing the result to the original iterative algorithm as the initial guess to refine

the result. Under the assumption that the instantaneous frequency is smooth, we can approximate the

instantaneous frequency by a constant locally with reasonable accuracy. In this small interval, we can

use the previous constant initialization and compute the decomposition. Then, we move the window to

both sides of this local interval and compute the decomposition in the new interval. To connect the local

decomposition to a global one, we keep the adjacent local intervals overlap with each other. After we

move the interval to cover the entire time interval, we get a global decomposition. We then use this

decomposition to obtain the initial guess of the instantaneous frequency to run the iterative algorithm

globally. The detailed description of the two-level algorithm can be found in Section 3.



1738 Liu C G et al. Sci China Math October 2017 Vol. 60 No. 10

End effect. In this paper, we also propose a method to alleviate the end effect of the decomposition.

The end effect is due to the finite time range of the signal. Reducing the end effect is important in the

prediction of the signal beyond the given time interval. It is very difficult, in some sense impossible, to

remove the end effect completely. In this paper, we introduce a method to alleviate the end effect under

the scale separation assumption. The main idea is to extend the signal a little bit while preserving its

intrinsic smoothness in the instantaneous frequency and the envelope. The extension algorithm will be

given in Section 4.

The rest of the paper is organized as follows. In Section 2, we review the data-driven time-frequency

analysis briefly for the sake of the completeness of the paper. The two-level algorithm is given in Section 3.

The end effect is discussed in Section 4. The complete two-level method is summarized in Section 5.

Several numerical examples are shown in Section 6. Finally, some concluding remarks are given in

Section 7.

2 A brief review

In this section, we review the global iterative algorithm introduced by Hou and Shi [14]. This global

algorithm was inspired by the well-known matching pursuit method. The optimization problem (1.1) can

be seen as a nonlinear l0 minimization problem. Matching pursuit and its variants have been shown to

be a powerful method to solve the l0 minimization problem (see [27, 29, 35]). Based on match pursuit,

Hou and Shi [14] proposed a nonlinear matching pursuit method to solve the optimization problem (1.1).

Algorithm (NMP).

Given data: The function f(t).

Task: Approximate the solution to (1.1) by matching pursuit.

Initialization: Let k = 0 and the initial residual r0(t) = f(t).

Main iteration:

Step 1. Increase k by 1. Solve the constrained nonlinear least-square problem

min
ak,θk

∥rk−1(t)− ak(t) cos θk(t)∥2L2

subject to ak ∈ V (θk), θ′k > 0.
(P2)

Step 2. If ∥ak cos θk∥L2 < ε0, decrease k by 1, STOP. Otherwise, update residual

rk(t) = rk−1(t)− ak(t) cos θk(t). (2.1)

Step 3. If ∥rk∥L2 < ε0, STOP. Otherwise, go back to Step 1.

Output: The approximate decomposition of f is

f(t) =
k∑

j=1

aj(t) cos θj(t) + rk(t). (2.2)

Here, V (θ) (defined by (1.2)) is the collection of all the functions that are less oscillatory than cos θ(t).

A key difficulty in solving the above nonlinear optimization problem is to solve Problem (P2) in

Step 1 of the above iteration. In [14], Hou and Shi proposed to use the following Gauss-Newton type

algorithm, which is based on successive linearization of the nonlinear optimization problem and updating

the solution using a Gauss-Newton type algorithm. For each linearized optimization problem, we can

solve the linearized optimization problem by using matching pursuit. The algorithm is described below.

Algorithm (P2).

Initialization: θ
(0)
k = θ0 (How to select θ0 will be discussed later).

Iteration:
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Step 1. Solve the following linear least-square problem:

Minimize ∥rk−1(t)− a
(n+1)
k (t) cos θ

(n)
k (t)− b

(n+1)
k (t) sin θ

(n)
k (t)∥2L2

subject to a
(n+1)
k , b

(n+1)
k ∈ V (θ

(n)
k ).

(2.3)

Step 2. Update θ
(n)
k ,

θ
(n+1)
k = θ

(n)
k − λ arctan

(
b
(n+1)
k

a
(n+1)
k

)
, (2.4)

where

λ = sup

{
β ∈ [0, 1] :

d

dt

(
θ
(n)
k − 2β arctan

(
b
(n+1)
k

a
(n+1)
k

))
> 0

}
. (2.5)

This step is necessary to enforce the condition that the instantaneous frequency is positive throughout

the iteration.

Step 3. If ∥θ(n+1)
k − θ

(n)
k ∥ < ε0, STOP. Otherwise, replace n by n+ 1, go to Step 1.

Output:

Phase function : θk = θ
(n+1)
k ,

IMF : Ik = an+1
k cos θn+1

k .

In the iterative process, the phase function θ
(n)
k is always monotonically increasing. Thus, we can use θ

(n)
k

as a new coordinate. In this new coordinate, cos θ
(n)
k and sin θ

(n)
k are simple Fourier modes, then the least-

square problem can be solved by using the Fast Fourier Transform. For more details of the algorithm,

we refer to [14].

This algorithm is very efficient and stable to noise perturbation. One problem left is the initial guess θ0k
in Algorithm (P2). In general, we set θ

(0)
k to be a linear function such that (θ

(0)
k )′ is the frequency at

which |r̂k−1| has the largest value, i.e.,

θ
(0)
k (t) = λ0t, (2.6)

where

λ0 = argmax
ω>0

|r̂k−1(ω)|.

In practice, the instantaneous frequency of a signal may have large variation. So, a constant initial

frequency in general is not a good choice. It may introduce mode mixing as shown in the previous section.

In the subsequent section, we will present a local algorithm to get a good initial instantaneous frequency.

3 A local algorithm

As we mentioned before, using a constant as an initial guess for the instantaneous frequency is clearly

not a good choice for real world applications since the instantaneous frequency may vary a lot over the

time interval that we consider. However, under the assumption that the instantaneous frequency is a

smooth function of time locally (over several periods), it can be well approximated by a constant locally.

If we divide the signal to a number of small time intervals, it would make sense to use a constant initial

frequency over each local time interval. On each local time interval, we can run the algorithm introduced

in the previous section with a constant initial frequency and get the local instantaneous frequency. To

construct a global frequency from the local instantaneous frequencies, we make the local time intervals

overlap with the adjacent time intervals. This is the main idea of our local algorithm.

Next, we will give the detailed implementation of the local algorithm. We start from one IMF. First, we

could obtain one IMF using Algorithm (P2) with constant frequency globally. Denote the corresponding
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envelope and phase function as aglobal and θglobal. As we mentioned before, this solution may not be

correct, but it still gives us some useful information about the IMF. Then, we cut the first piece, denoted

as [t0,l, t0,r] as follows. The center is the point at which aglobal reaches its maximum, i.e.,

t0,c =
t0,l + t0,r

2
= argmax

t
aglobal(t).

Over this subinterval, we have approximately Np periods, i.e.,

t0,r − t0,l =
2πNp

θ′global(t0,c)
. (3.1)

It is a challenge to select a suitable Np when we have no prior information of the IMFs. Obviously, too

large Np may cause mode mixing. On the other hand, Np cannot be too small either. Since we aim to

get the high frequency information of the IMFs, it is necessary to assume that Np > 1. However, taking

Np = 1 or 2 is often not very effective in practice. First of all, as we will show in the rest of this section

(see (3.2) and (3.3)), we use the information of an IMF on a subinterval to define the next subinterval,

so the number of periods of the IMF we are pursuing may change slightly among different subintervals.

When we take Np too small, this IMF may not have at least one period on some subinterval. Therefore,

we would not get the correct instantaneous frequency of this IMF. Secondly, if the Np is too small,

the number of subintervals would become quite large. So the small Np implies that the computation

would become more expensive. Finally, if we take into account the interference from the other IMFs

and noise, a small Np could lead to a big error on the instantaneous frequency of the IMF, and increase

the possibility of mode mixing. In fact, when we apply the two-level method with Np = 2 on the signal

defined in (1.5), we find that mode mixing still occurs (although this time the different parts of the real

IMFs are connected more smoothly than the parts of Solution 1 in Figure 1, the mode mixing leads to an

extra IMF and a big residual). From our numerical results, taking Np > 3 is necessary to alleviate the

difficulties mentioned above. If we have more knowledge about the IMFs, a bigger Np could be better.

In this paper, we choose Np = 6.

The key to the success of our two-level algorithm is to construct a sequence of overlapping local

subintervals and extend the locally constructed IMFs from one subinterval to its neighboring subintervals

successively so that we can glue these locally constructed IMFs to form the accurate global IMFs. In

order to make the construction successful, it is essential to determine the appropriate amount of overlap

among these local subintervals. The amount of overlap will determine the accuracy of the approximation

of the global IMFs from the local IMFs and the efficiency of our two-level algorithm. We obtain a nearly

optimal amount of overlap of the subintervals by solving a local weighted optimization problem and

using the fact that different IMFs are nearly orthogonal to each other. To maximize the accuracy of

our construction, we begin our construction of local IMFs from a local subinterval that gives the best

approximation to the global IMFs. Below, we will give a detailed description of our local algorithm and

the rationale for the way we determine the amount of overlap among different subintervals.

We begin with a subinterval [t0,l, t0,r]. We first apply Algorithm (P2) on the signal restricted to this

interval with the constant initial frequency θ′global(t0,c). Then we get an IMF on [t0,l, t0,r], denoted by

glocal0 (t) = alocal0 (t) cos θlocal0 (t). Now, we move the interval to extend the local IMF. Denote the new

interval as [t1,l, t1,r]. The left boundary is determined as follows:

t1,l = arg min
t∈[t0,l,t0,r ],

θlocal0 (t)/π∈Z

|t− [t0,l + ν(t0,r − t0,l)]| (3.2)

with ν = 1/3. The parameter ν is used to control the size of the overlap between [t0,l, t0,r] and [t1,l, t1,r].

The requirement that θlocal0 (t)/π ∈ Z is designed to alleviate the end effect. The right boundary t1,r is

given as

t1,r = t1,l + 2πNp ·
[t0,r − ν(t0,r − t0,l)]− [t0,l + ν(t0,r − t0,l)]

θ[t0,r − ν(t0,r − t0,l)]− θ[t0,l + ν(t0,r − t0,l)]
. (3.3)
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Based on this choice, t1,r − t1,l ≈ t0,r − t0,l (noticing (3.1) and that
[t0,r−ν(t0,r−t0,l)]−[t0,l+ν(t0,r−t0,l)]

θ[t0,r−ν(t0,r−t0,l)]−θ[t0,l+ν(t0,r−t0,l)]

≈ 1
θ′
global(t0,c)

), and [t1,l, t1,r] has approximately Np periods.

We denote t′0 = t0,r−ν(t0,r−t0,l) and solve the following weighted problem to extend IMF to [t1,l, t1,r]:

(alocal1 , θlocal1 ) = argmin
a,θ

∥f − a cos θ∥2L2
[t1,l,t1,r ]

+ w1∥glocal0 − a cos θ∥2L2
[t1,l,t

′
0]

subject to a ∈ V (θ), θ′ > 0.
(3.4)

Here, f is the original signal, and w1 is the wight to insure that the IMF on [t1,l, t1,r] and

glocal1 = alocal1 cos θlocal1 ≈ glocal0

on [t1,l, t
′
0] ⊂ [t0,l, t0,r] such that glocal1 is a natural extension of glocal0 on [t1,l, t1,r]. Solving the above

optimization problem, we are able to extend g to a larger interval. Similarly, we could extend g to the

left from [t0,l, t0,r].

To determine the value of w1 in (3.4), we suppose that the local IMF glocal0 gives a good approximation

to the IMF Ik = ak cos θk on the interval [t0,l, t0,r]. Since [t1,l, t1,r] is a small interval, we could suppose

that all the assumptions of [23, Theorem 3.4] are fulfilled for f on [t1,l, t1,r]. Then if w1 = 0 in (3.4),

some (am, θm) should be the approximate global optimal solution to (3.4), where m might be equal to k

or other l ̸= k, depending on which IMF has the largest energy. To avoid mode mixing, w1 should be

selected to make sure that m = k, i.e., for any other IMF Il = al cos θl (l ̸= k), the following inequality

should be satisfied:

∥f − Il∥2L2
[t1,l,t1,r ]

+ w1∥glocal0 − Il∥2L2
[t1,l,t

′
0]

> ∥f − Ik∥2L2
[t1,l,t1,r ]

+ w1∥glocal0 − Ik∥2L2
[t1,l,t

′
0]

. (3.5)

Noticing that glocal0 ≈ Ik on [t0,l, t0,r], t1,r − t1,l ≈ t0,r − t0,l, and that all the functions concerned do not

change very much on [t0,l, t1,r], we have the following approximation:

∥f − Il∥2L2
[t1,l,t1,r ]

≈ ∥f − Il∥2L2
[t0,l,t0,r ]

,

∥glocal0 − Il∥2L2
[t1,l,t

′
0]

≈ t′0 − t1,l
t0,r − t0,l

∥glocal0 − Il∥2L2
[t0,l,t0,r ]

,

∥f − Ik∥2L2
[t1,l,t1,r ]

≈ ∥f − glocal0 ∥2L2
[t0,l,t0,r ]

,

∥glocal0 − Ik∥2L2
[t1,l,t

′
0]

≈ 0.

(3.6)

So (3.5) is roughly equivalent to (noticing that
t′0−t1,l
t0,r−t0,l

≈ 1− 2ν)

w1(1− 2ν)∥glocal0 − Il∥2L2
[t0,l,t0,r ]

> ∥f − glocal0 ∥2L2
[t0,l,t0,r ]

− ∥f − Il∥2L2
[t0,l,t0,r ]

. (3.7)

To obtain the above inequality, it is necessary and sufficient to set

w1 >

∥f − glocal0 ∥2
L2

[t0,l,t0,r ]

− ∥f − Il∥2L2
[t0,l,t0,r ]

(1− 2ν)∥glocal0 − Il∥2L2
[t0,l,t0,r ]

. (3.8)

However, the right-hand side could not be computed, since we have no detailed information of Il. The only

thing we know is that all the IMFs of f are mutually nearly orthogonal (and glocal0 is nearly orthogonal

to Il for g
local
0 ≈ Ik), which implies that

∥f − Il∥2L2
[t0,l,t0,r ]

≈ ∥Ik∥2L2
[t0,l,t0,r ]

+
∑

m ̸=k,l

∥Im∥2L2
[t0,l,t0,r ]

> ∥Ik∥2L2
[t0,l,t0,r ]

≈ ∥glocal0 ∥2L2
[t0,l,t0,r ]

, (3.9)

∥glocal0 − Il∥2L2
[t0,l,t0,r ]

≈ ∥glocal0 ∥2L2
[t0,l,t0,r ]

+ ∥Il∥2L2
[t0,l,t0,r ]

> ∥glocal0 ∥2L2
[t0,l,t0,r ]

. (3.10)
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Thus, (3.8) holds and the optimization condition (3.5) should be satisfied if we set

w1 = max

{
0,

∥f − glocal0 ∥2
L2

[t0,l,t0,r ]

− ∥glocal0 ∥2
L2

[t0,l,t0,r ]

(1− 2ν)∥glocal0 ∥2
L2

[t0,l,t0,r ]

}
. (3.11)

Repeating the above process until the subintervals cover the whole interval, we get an IMF over the

whole interval. Using the local algorithm, we could avoid the mode mixing. However, the error is

relatively large. So, we pass the result of the local algorithm to the global algorithm in Section 2 to refine

the result. This gives the two-level algorithm in Section 5.

4 End effects

In this section, we discuss the end effects. End effects always emerge in data analysis due to the finite

time span of the real signal. Under the assumption that the envelope and the phase function are smooth

over the whole time span, we propose a numerical method to alleviate the end effects based on smoothly

extending the signal beyond the boundary.

First, we give the extension algorithm for a single IMF. Suppose the time span of the IMF is [0, T ], we

use the following algorithm to extend the IMF smoothly to [−T/2, 3T/2].
Algorithm (A).

Task: For an approximation (a, θ) to some pair (ak, θk) of f(t), diminish the error between (a, θ)

and (ak, θk) near the end points.

Main iteration:

Step 1. Extend a(t), θ(t) to ã(t), θ̃(t) on the interval [−T
2 ,

3T
2 ] as follows:

θ̃′′(t) =



θ′′(t), t ∈ [0, T ],

0.5

[
1 + cos

(
t− T

2−n0T

)]
· θ′′(T ), t ∈ [T, (1 + 2−n0)T ],

0.5

[
1 + cos

(
t

2−n0T

)]
· θ′′(0), t ∈ [−2−n0T, 0],

0, elsewhere,

(4.1)

and

ã′(t) =



a′(t), t ∈ [0, T ],

0.5

[
1 + cos

(
t− T

2−n0T

)]
· a′(T ), t ∈ [T, (1 + 2−n0)T ],

0.5

[
1 + cos

(
t

2−n0T

)]
· a′(0), t ∈ [−2−n0T, 0],

0, elsewhere,

(4.2)

where n0 > 2 is chosen such that, for some fixed δ ∈ (0.5, 1),

δmin[0,T ] θ
′(·) < θ̃′(t) < δ−1 max[0,T ] θ

′(·),
δmin[0,T ] a(·) < ã(t) < δ−1 max[0,T ] a(·),

∀ t ∈
[
− T

2
,
3T

2

]
. (4.3)

Let

f̃(t) =

 f(t), t ∈ [0, T ],

ã(t) cos θ̃(t), t ∈
[
− T

2
, 0

]
∪
[
T,

3T

2

]
.

(4.4)
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Step 2. Apply Algorithm (P2) to f̃(t) with the initial guess θ̃. Denote by b(t) and ϑ(t) the output.

Step 3. Replace (a, θ) by (b, ϑ).

Output: New (a, θ), which is supposed to have smaller error, especially near the end points.

Algorithm (A) is effective for a single IMF, but may not work well when there are two or more IMFs.

For the signal with multiple IMFs and noise,

f(t) = a0(t) +

K∑
k=1

ak(t) cos θk(t) + noise, ∀ t ∈ [0, T ], (4.5)

where Ik = {ak(t) cos θk(t)} are IMFs satisfying the scale separation property, and a0(t) is the trend, we

carry out a sweeping iteration to alleviate the end effects. Suppose that we already have a decomposition

of f ,

f(t) = b0(t) +
K∑

k=1

bk(t) cosϑk(t) + r(t), ∀ t ∈ [0, T ], (4.6)

where b0, bk and ϑk are approximations to a0, ak and θk, respectively, and r(t) is the sum of noise and

errors, we diminish the end effects for each IMF iteratively as follows:

Algorithm (End effects).

Task: Modify b0, b1, ϑ1, . . . , bK , ϑK given in (4.6).

Parameter: A predesigned positive integer L, and

η = min

{
ϑk(T )− ϑk(0)

2π
: k = 1, 2, . . . ,K

}
,

the number of periods of the IMF with lowest frequency on the entire time interval.

Main iteration:

Step 1. l = 1;

Step 2 (De-trend step, see Section 5). Solve the optimization problem (5.1) with f replaced by

b0(t) + r(t) and n = 2⌊η⌋. Replace b0(t) and r(t) by the solution and the remaining data, respectively.

Step 3. For k = 1 : K {Modify (bk, ϑk) using Algorithm (A) with f replaced by bk cosϑk+r. Replace

r by the remaining data.}
Step 4. l = l + 1. If l = L, STOP; otherwise, go back to Step 2.

In our computations, the number of iterations L = 3, unless we indicate the value of L.

5 A two-level method

Combining the local algorithm and the global algorithm, we get a two-level algorithm. Notice that the

local algorithm only works for IMFs with oscillations. If the signal has a large trend, it may introduce

some trouble for the two-level method. First, we give a de-trend method based on Fourier extension

(see [2, 21] and the references therein). Since a trend, denoted as a0, is often a monotonic function, we

regard a0 as the restriction of ã0 on [0, T ], where ã0 is a periodic function with period 4T , and its graph

is symmetric with respect to the vertical line t = −T
2 . We are going to solve the following optimization

problem to get an approximation of the trend:

a0 = argmin
h

∥h− f∥L2
[0,T ]

subject to h ∈ Gn := span

{
1, cos

π

2T
k

(
t+

T

2

)
, k = 1, 2, . . . , n

}
.

(5.1)

Combining all the algorithms together, we get the following two-level method:
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Figure 3 IMFs given by the two-level method for the signal in (1.5). (a) First IMF; (b) second IMF; (c) trend; (d)

residual
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Figure 4 (a)
∥g1−f1∥L2

∥f∥
L2

. The minimum 0.0062 is attained at L = 15. (b)
∥g2−f2∥L2

∥f∥
L2

. The minimum 0.0083 is attained

at L = 30. (c)
∥g0−f0∥L2

∥f∥
L2

. The minimum 0.0017 is attained at L = 14. (d)
max |gr|
max |f | (upper line) and

∥gr∥L2

∥f∥
L2

(lower line).

The minima 0.0510 and 0.0085 are attained at L = 30 simultaneously

Algorithm (Two-level).

Task: Approximate the modes of signal f(t) given in (4.6) by the two-level method.

Parameters: The threshold ε0, the scaling function φ, positive integer Np and L.

Initialization: Let k = 0 and the initial residual r0(t) = f(t). Let a0(t) ≡ 0.

Main iteration:

Step 1. Let λ0 = argmaxω>0 |r̂k(ω)|.
Step 2. If λ0·T

2π 6 Np

2 , solve the Fourier extension problem (5.1) with f replaced by rk and n = 2Np.

Add the solution to a0(t), subtract the solution from rk. Go back to Step 1.
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Step 3. Increase k by 1. Solve the constrained nonlinear least-square problem (P2) about (ak, θk).

Step 4. If ∥ak cos θk∥L2 < ε0, decrease k by 1, STOP.

Step 5. Use (ak, θk) to determine the initial subinterval, and search the IMF piecewisely. Replace

(ak, θk) by the new envelope and phase function.

Step 6. Modify θk to keep θ′k smooth. Solve Problem (P2) again with initial guess θ0 = θk. Replace

(ak, θk) by the new solution. Update the residual

rk+1(t) = rk(t)− ak(t) cos θk(t). (5.2)

Step 7. If ∥rk∥L2 < ε0, STOP. Otherwise, go back to Step 1.

Weaken the end effects: Let K = k and r(t) = rk(t). Apply Algorithm (End Effects) to

{a0, a1, θ1, . . . , aK , θK}.
Output: The approximate decomposition of f is

f(t) = a0(t) +

K∑
k=1

ak(t) cos θk(t) + r(t), (5.3)

where a0 is the trend, r(t) is the noise, and {ak cos θk} are IMFs.

Figure 3 shows the IMFs g0, g1 and g2 given by the two-level method (with L = 30 in Algorithm (End

effects)) for the signal given in (1.5). Comparing with the results shown in Figure 1, the mode mixing is

completely removed and we get almost perfect IMFs up to the boundary. In addition, we give the relative

errors with g1, g2, g0 and gr obtained by two-level method with L ranges from 0 to 100 (see Figure 4).

We see that the first several iterations make the greatest improvement.

6 Numerical results

In this section, we present some numerical results to demonstrate the performance of the two-level algo-

rithm.

Example 6.1. First, we consider a synthetic signal, which is generated as follows:

f(t) = b0(t) + b1(t) cos θ1(t) + b2(t) cos θ2(t) + b3(t) cos θ3(t), t ∈ [0, 1], (6.1)

where

t =
3

2
s− 1

2
s2

and

a1 = a3 = 2− 1.5 cos(1.5πs),

a2 = 4 + 3 cos(2πs),

ϕ1 = 32πs,

ϕ2 = 84πs+ 10.4 sin(2πs) + 1.32 sin(4πs) + 1,

ϕ3 = 160πs+ 20 sin(2πs) + 1.2 sin(4πs) + 2,

and

b0 = cos(2t+ 4), bi = ai(0.987t+ 0.01), θi = ϕi(0.987t+ 0.01), i = 1, 2, 3.

The signal f(t) is sampled over 1,024 uniform grid points in [0, 1].

The IMFs computed by the two-level algorithm are shown in Figure 5. The IMFs given by the two-level

algorithm match the exact IMFs very well, while the IMFs obtained by the EMD method have mode

mixing as shown in Figure 6.
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Figure 5 Original signal and IMFs in Example 6.1. Dash lines: exact IMFs; solid lines: IMFs obtained by the two-level

algorithm
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Figure 6 IMFs given by EMD in Example 6.1

We also test the two-level algorithm for signals with noise. In this numerical example, the noisy signal

is f(t)+0.5X(t), where f(t) is given in (6.1) and X(t) is the standard white noise with standard deviation

σ = 1. The results are given in Figure 7. As we can see, even with noise, the two-level algorithm still

gives IMFs with reasonable accuracy. In this case, the EMD method suffers from severe mode mixing as

shown in Figure 8. The EMD method gives a total of 6 IMFs. Each IMF has severe mode mixing among

noise and different IMFs. We can hardly see the pattern of the exact IMFs.

At the end of this example, we consider the prediction of the trend. As shown before in this example,

the two-level method gives very good estimates of the IMFs up to the boundary, which means that the

two-level method is capable of handling the end effect. In some sense, the alleviation of the end effect is

related to the prediction of the signal. Actually, from the two-level method, we can get the prediction of

the IMFs over a few periods beyond the boundary. For highly oscillatory IMFs, this is very small time in-

terval, may not be very significant in the application. However, for the trend, we can give prediction over

a relatively long interval. To predict trend is very important in some applications, for example, global

warming. In the following test, we use the signal in [0, 0.9] to predict the trend in [0.9, 1]. Figure 9 shows

the results of the prediction. Recall that L is the number of iterations in the two-level method. L = 0
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Figure 7 A noisy signal and IMFs obtained by the two-level algorithm in Example 6.1. Dash lines: exact IMF; solid

lines: IMF given by the two-level algorithm
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Figure 8 IMFs given by EMD method for a noisy signal given in Example 6.1

means no two-level iteration. We can see that, in this case, the end effect is very large and the prediction

is very poor. After 3 times two-level iteration, the end effect is reduced significantly and the prediction

also becomes much better. If we further run the two-level iteration to 60 times, the predictions become

even better. At the same time, the computational cost also becomes higher. Based on our experience,

L = 3 seems to be a good balance between accuracy and efficiency.
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Figure 9 Prediction of trend using 90% data. (a) Entire interval [0, 1]. (b) Zoom in on [0.8, 1]
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Figure 10 Length-of-day data from January 20, 1962 to April 8, 1973
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Figure 11 The 10 modes and the residual gr obtained by the two-level method on the length-of-day data
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Figure 13 (a) g2; (b) h1; (c) solid line: ga1 − g2, dash line: ha
1 − h1

Example 6.2 (Real data: Length-of-day data). In this example, we apply the two-level method to real

data: Length-of-day data, which was produced by Gross [12]. This set of data covers the time interval

from January 20, 1962 to January 6, 2001, totally 14,232 days, nearly 39 years. Using this data, we

perform the following two tasks:

Task I. To check if the periods of the IMFs obtained by the two-level method have relations with

natural meteorological cycle. Here, we only deal with the data of the first 4,097 days, from January 20,

1962 to April 8, 1973 (see Figure 10).

Task II. To check if our Algorithm (End effects) is more effective than the EMD method on real data.

Since we do not know what the true IMFs are, we restrict the IMFs obtained in Task I (and the IMFs

obtained by the EMD method on the same data) to their central time interval (from November 9, 1964 to

June 19, 1970, i.e., from the 1,025th day to the 3,073th day) and regard these restricted IMFs as nearly

true IMFs. Then we apply the two-level method and the EMD method to the length-of-day data in the

same central time interval and compare the end effect of the new IMFs.

First of all, applying the two-level method to the data in Task I, we obtain 10 IMFs (see Figure 11). In

the 10 IMFs, the first 4 IMFs (g10, g2, g5, g1) contain over 92.6% of the energy of the original signal. In

addition, for the residual gr, we have
∥gr∥L2

∥f∥L2
≈ 0.0323, max |gr|

max |f | ≈ 0.0619. Figure 12 shows that g2, g5, g1

and g4 (the IMF with 5th largest energy) could be related to some natural phenomenon.

Secondly, to test how well the two-level method handles the end effect, we apply the two-level method

to the interior part of the length-of-day data described in Task II, and obtain 8 IMFs, denoted by
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Figure 14 (a) g5; (b) g1; (c) h4; (d) h5; (e) solid line: ga2 − g5, dash line: ha
4 − h4; (f) solid line: ga3 − g1, dash line:
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5 − h5

gak (k = 1, . . . , 8). Except for the trend, the three IMFs with largest energies, ga1 , g
a
2 and ga3 , have similar

frequencies with g2, g5 and g1, respectively, and on the time interval from November 9, 1964 to June 19,

1970, we have

∥ga1 − g2∥L2

∥g2∥L2

≈ 0.0346,
∥ga2 − g5∥L2

∥g5∥L2

≈ 0.2046,
∥ga3 − g1∥L2

∥g1∥L2

≈ 0.1906.

As a comparison, we also perform the same test for the EMD method. We first apply the EMD

method to the length-of-day data from the first 4,097 days and from the 1,025th day to the 3,073th day,

respectively, which give IMFs hk (k = 1, . . . , 13) and hak (k = 1, . . . , 12), respectively. The IMFs h1, h4
and h5 have the largest energies except for the trend, and their frequencies are similar to those of g2, g5
and g1, respectively. Their corresponding parts in {hak} are ha1 , h

a
4 and ha5 . On the time interval from

November 9, 1964 to June 19, 1970, we have

∥ha1 − h1∥L2

∥h1∥L2

≈ 0.0300,
∥ha4 − h4∥L2

∥h4∥L2

≈ 0.6268,
∥ha5 − h5∥L2

∥h5∥L2

≈ 0.5309.

Moreover, we see that the end effects of ga1 , g
a
2 and ga3 are smaller than ha1 , h

a
4 and ha5 , respectively.

Here, we use g2, g5, g1 and h1, h4, h5 as the nearly true IMFs (see Figures 13 and 14).

7 Concluding remarks

In this paper, we introduced a two-level method based on the data-driven time-frequency analysis (see

[14, 15]) to find the sparse time frequency decomposition. This method alleviates mode mixing in the

data-driven time frequency analysis for certain signals that satisfy our scale separation assumption. The

method seems to work well even when the frequencies of the modes vary significantly over the entire time

interval. The main idea of the two-level method is to find all pieces of an IMF in overlapped subintervals

and connect them into a global IMF. Then, we use this IMF as an initial guess to find a more accurate

solution in the whole time domain.

Furthermore, we also constructed an extend-and-optimize algorithm to weaken the end effect. After

obtaining all modes in the whole time domain, for each IMF, we add the residual to the selected IMF,

and extend it to a larger time domain smoothly, then we use the data-driven time-frequency analysis to
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decompose this signal again. By doing so, the end effect seems to be reduced effectively for the signals

that we consider here.

There are some remaining issues to be resolved in the future. One of them is to generalize the two-level

method for real world data that do not satisfy our scale separation assumption. This is an important

issue that we plan to resolve in our future study.
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