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Abstract

Two physical parameters are introduced into the basic ocean equations to generalize numerical ocean
models for various vertical coordinate systems and their hybrid features. The two parameters are formu-
lated by combining three techniques: the arbitrary vertical coordinate system of Kasahara [Kasahara,
A., 1974. Various vertical coordinate systems used for numerical weather prediction. Mon. Weather
Rev. 102, 509–522], the Jacobian pressure gradient formulation of Song [Song, Y.T., 1998. A general pres-
sure gradient formation for ocean models. Part I: Scheme design and diagnostic analysis. Mon. Weather
Rev. 126 (12), 3213–3230], and a newly introduced parametric function that permits both Boussinesq (vol-
ume-conserving) and non-Boussinesq (mass-conserving) conditions. Based on this new formulation, a gen-
eralized modeling approach is proposed. Several representative oceanographic problems with different
scales and characteristics––coastal canyon, seamount topography, non-Boussinesq Pacific Ocean with
nested eastern Tropics, and a global ocean model––have been used to demonstrate the model�s capabilities
for multiscale applications. The inclusion of non-Boussinesq physics in the topography-following ocean
model does not incur computational expense, but more faithfully represents satellite-observed ocean-
bottom-pressure data. Such a generalized modeling approach is expected to benefit oceanographers in solv-
ing multiscale ocean-related problems by using various coordinate systems on the same numerical platform.
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1. Introduction

Numerical ocean models have become multi-disciplinary research tools for use in a variety of
ocean-related areas, including coastal ocean predictions, climate simulations, data assimilations,
and coupled physical–biogeochemical studies. Several ocean models have been developed in the
last few decades, including the Bryan–Cox-Type models (MOM, Bryan, 1969; Cox, 1984), the
Princeton Ocean Model (POM, Blumberg and Mellor, 1987), the Miami Isopycnic Coordinate
Ocean Model (MICOM, Bleck et al., 1992), the MIT general circulation model (MITgcm, Mar-
shall et al., 1997), the S-Coordinate Rutgers University Model (SCRUM, Song and Haidvogel,
1994), and the Regional Ocean Model System (ROMS, Haidvogel et al., 2000; Shchepetkin
and McWilliams, in press). As noted by various model-comparison studies such as DYNAMO
(DYNAMO Group, 1997), DYMEE (Chassignet et al., 2000), and two recent reviews on this sub-
ject by Haidvogel and Beckmann (1999) and by Griffies et al. (2000), the choice of a vertical coor-
dinate system is the single most important aspect of an ocean model�s design. In fact, the existing
ocean circulation models can be roughly divided into four classes, each centering around a differ-
ent way of discretizing the vertical coordinate, based on the z(Cartesian)-coordinate, r(terrain-
following)-coordinate, q(isopycnal)-coordinate, or p(pressure)-coordinate system.

(1) z-coordinate system. This is the simplest and most commonly used vertical coordinate sys-
tem, which involves discretizing a vertical column of the ocean into fixed levels. The vertical
levels may have different thicknesses and great advantages for resolving surface mixing and
upper ocean dynamics. However, difficulties have been encountered in representing varying
topography, especially near coastal boundaries where the ocean bottom rapidly varies from
shallow to deep water. In such cases, the z-coordinates have had to approximate the bottom
slope as a series of staircases. This approximation was found to cause an inaccurate represen-
tation of bottom kinematic conditions (Gerdes, 1993), exchanging masses between shallow and
deep waters (Roberts and Wood, 1997; Beckmann and Döscher, 1997), and bottom pressure
torques (Bell, 1999; Hughes and De Cuevas, 2001). Recently, progress has been made to over-
come the topography representation problem by partial or shaved-cell techniques (Adcroft
et al., 1997; Pacanowski and Ghanadesikan, 1998). Such a technique has also been used in
the Hamburg Ocean Primitive Equation (HOPE) model (Drijfhout et al., 1996) and the Parallel
Ocean Program (POP) model (Smith et al., 1992).

(2) r-coordinate system. This is another widely used vertical coordinate system that transforms
the irregular physical domain, bounded by free surface and varying bottom topography, into a
regular computational domain. It is commonly used in estuarine and coastal ocean studies
(Oey et al., 1985). The major advantage of this system is that it follows the topography, and there-
fore naturally represents the bottom kinematic and stress boundary conditions (Gerdes, 1993) and
bottom pressure torques (Song and Wright, 1998). A corresponding disadvantage is that it cannot
maintain equally high resolution near the surface layer independent of local depth. This problem
is minimized via a stretching function, commonly called the s-coordinate (Song and Haidvogel,
1994), to maintain resolution in both surface and bottom mixed layers away from coasts. Another
well-known problem is that the terrain-following coordinates may generate pressure gradient
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errors over steep topography (Haney, 1991). Progress has also been made to reduce the errors by
both second-order Jacobian schemes (e.g., Song, 1998) and higher-order schemes (e.g., Chu and
Fan, 1997). More recently, Shchepetkin and McWilliams (2003) proposed to modify the Jacobian
schemes by fitting the density or pressure profiles into polynomials and then using analytical inte-
gration to further reduce the pressure gradient errors.

(3) q-coordinate system. This is an advanced approach of discretizing the vertical coordinate
system by dividing the water column into layers of constant density. This system is more natural
for large-scale ocean circulation because water tends to move mostly parallel to density surfaces
(Bleck et al., 1992). However, it does not easily handle nonlinear equations of state, and resolution
degrades when density stratification is weak (Haidvogel and Beckmann, 1998). It also suffers from
similar problems with the resolution of steep topography as with the level-models, because isopyc-
nals do not generally conform to topographic variations. However, a piecewise linear fashion of
topographic representation has been used to avoid the need to distinguish bottom from sides
(Bleck and Benjamin, 1993) as traditionally done with z-models (Griffies et al., 2000).

(4) p-coordinate system. To emphasize the importance of the compressible (conserving mass)
flow of ocean waters, the pressure coordinate system of Phillips (1957) is also used to formulate
ocean models (Huang et al., 2001). In such a system, the mass, instead of the volume of the ocean
model, is conserved and the bottom pressure becomes a prognostic variable, which provides
advantages for assimilating ocean-bottom-pressure measurements (Song and Zlotnicki, 2003).
So far, this system has not been widely used in realistic applications. Difficulties in dealing with
topography or pressure gradient calculation cannot be avoided if using either fixed pressure or
terrain-following levels.

Clearly, these traditional vertical coordinate systems are not, by themselves, optimal every-
where in the ocean. Different model classes have different advantages/disadvantages for solving
different scales of problems (Haidvogel and Beckmann, 1999; Griffies et al., 2000). As ocean
models have become multi-disciplinary research tools, a variety of applications from coastal
to global scale and from physical to biogeochemical problems require numerical models to
be flexible and highly optimized. Global ocean modeling cannot ignore estuarine and coastal
oceans; while coastal regions are not independent from open oceans (Walsh, 1991). The lim-
itations imposed by the traditional coordinate systems should be minimized, if possible, to
allow easy communication among those model classes and to extend their capabilities for mul-
tiscale applications.

Indeed, some efforts have been undertaken to improve the single-coordinate deficiencies in
each of those model classes. Most of these efforts have been trying to extend an individual coor-
dinate system to have some hybrid features of other coordinate systems. For example, Gerdes
(1993) proposed the hybrid z–r coordinate system for the GFDL model. Bottom boundary
layer schemes are also tested in the z-coordinate models (Killworth and Edwards, 1999; Song
and Chao, 2000). In the terrain-following model class, a great deal of energy has also been fo-
cused on reducing pressure gradient errors, including the work of Beckmann and Haidvogel
(1993), Song (1998), Chu and Fan (1997), and Shchepetkin and McWilliams (2003). More re-
cently, Mellor et al. (2001) implemented the z-coordinate system into POM as an option. Pietr-
zak et al. (2002) tested the hybrid z–r technique. In the isopycnal model class, HYCOM (Bleck,
2002) uses hybrid q–z coordinates, an advanced version of MICOM. To consider mass-conserv-
ing properties, relaxations of Boussinesq approximations have also been tested (e.g., Greatbatch
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et al., 2001; Losch et al., 2004). Despite these early efforts, each model class still has its intrinsic
limitations for certain types of applications. Each hybrid model has to adopt its inherent model
structure. Some of the hybrid schemes may lead to discontinuity or a mismatch at the interface
of two different coordinate regions (Deleersnijder and Seekers, 1992).

The present work focuses on generalizing the model coordinate system for multiscale, Bous-
sinesq (volume-conserving) and non-Boussinesq (mass-conserving) flow applications. The idea
of using generalized vertical coordinates for atmosphere and ocean models emerged several dec-
ades ago. Pioneer work includes Kasahara (1974), Bleck (1978), Simmons and Burridge (1981),
Baer and Ji (1989), Zhu et al. (1992), and Konor and Arakawa (1997) for atmospheric modeling,
and Bleck and Boudra (1981) and Gerdes (1993) for ocean modeling. Different from those ap-
proaches, Song and Haidvogel (1994) proposed the s-coordinate system with variable parameters
to adjust computational levels for better resolutions in the surface and bottom layers without
altering the original terrain-following numerical schemes. However, the s-coordinate system does
not permit non-Boussinesq physics, nor align the computational levels with isopycnals in the inte-
rior of the ocean. The methodology of this study differs from previous studies by introducing two
physical parameters into the basic ocean equations to further generalize an ocean model for using
the optimal or hybrid features of those traditional coordinate systems. The two parameters are
formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara
(1974), the Jacobian pressure gradient formulation of Song (1998), and a newly introduced para-
metric function that permits both Boussinesq and non-Boussinesq conditions. It will be shown
that the introduction of the two parameters does not incur computational expense, but allows
users to choose multiple vertical structures for multiscale applications on the same model
platform.

This paper is organized into three parts: model formulation, numerical method, and demonstra-
tions. The numerical implementation will be based on an existing model platform (SCRUM/
ROMS); however, it is not limited by the specific model configuration. The demonstrations con-
sist of solving several representing oceanographic problems with different scales and characteris-
tics: coastal canyon, seamount topography, a nested regional model into a non-Boussinesq Pacific
Ocean model, and a global ocean model. These application problems are chosen to test model
capabilities of coupling large-scale ocean dynamics with topography-following feature for coastal
oceans.
2. Model formulation

2.1. The basic equations

We begin with the basic ocean equations in the Cartesian coordinate system with the z-axis
pointing vertically upwards and the (x,y)-plane occupying the undisturbed water surface. The
horizontal momentum equations are written in the form:
ou
ot

þ~v � ru� fv ¼ � 1

q
op
ox

þ 1

q
op
oz

qKM
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� �
þDu þFu ð2:1Þ
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The tracer (temperature, salinity, biological, or chemical component) equations can likewise be
written:
oT̂
ot

þ~v � rT̂ ¼ 1

q
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þDT̂ þFT̂ : ð2:3Þ
The hydrostatic balance equation is
op
oz

¼ �gqðT ; S; pÞ: ð2:4Þ
Finally, the mass continuity equation is
oq
ot

þ oqu
ox

þ oqv
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þ oqw
oz

¼ 0: ð2:5Þ
The notations used in these equations are as follows:

u, v, w the x, y, z components of vector velocity~v
$ the three-dimensional gradient operator
T̂ ðx; y; z; tÞ tracers (temperature, salinity, or biogeochemical components)
q = q0 + q 0(x,y,z, t) total density
p pressure
f = 2Xsinw Coriolis parameter due to Earth�s rotation
g acceleration due to gravity
KM(x,y,z, t) vertical eddy viscosity
KH(x,y,z, t) vertical eddy diffusivity
Du; Dv; DT̂ horizontal viscous and diffusive terms
Fu; Fv; FT̂ forcing, sink, or source terms

Please notice that we have used T̂ to represent a tracer component, including temperature T and
salinity S. Discussions on the vertical eddy coefficients and horizontal viscous and diffusive terms
are referred to Song and Haidvogel (1994). In this work the K-profile parameterization (KPP)
scheme of Large et al. (1994) is used for vertical mixing and rotated tensors of Laplacian and
biharmonic formulation are used for horizontal mixing.

Historically, most existing ocean models (z- and r-models) impose incompressible (Boussinesq)
approximations on the oceanic flow (Boussinesq, 1903) by (1) using volume conservation to
replace mass conservation in the continuity equation, i.e., r �~v 	 0; (2) using mean density to
replace variable density in the momentum equations, i.e., 1

q � rp 	 1
q0
� rp; and (3) using

geopotential depth to replace the pressure in the equation of state, i.e., q(T,S,p) 	 q(T,S,p0(z)).
Although the effects of such approximations on the model simulation of the ocean circulation re-
main unclear (Mellor and Ezer, 1995; Huang et al., 2001), it is important to have ocean models
represent the real ocean as accurately as possible. Several ways of relaxing the Boussinesq approx-
imations are proposed recently, mainly for z-level models (De Szoeke and Samelson, 2002; Great-
batch et al., 2001; Losch et al., 2004). Here we offer an alternative way to relaxing the
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approximations by simply changing one of the two introduced parameters (the following section),
which is applicable to any coordinate system. As will be shown later, the inclusion of the com-
pressible physics to the model does not incur computational expense with our parametric coordi-
nate formulation. Such extended model capabilities are needed in currently used community
ocean models to faithfully represent satellite sensing data. For example, the TOPEX sea surface
elevation represents heat storage of sea water (Fu, 1983) due to expansion/contraction. The Grav-
ity Recovery and Climate Experiment (GRACE, Tapley et al., 2004) measures ocean bottom pres-
sure anomaly due to mass changes of ocean water (Hughes et al., 2000). It is important to have the
ocean model conserving mass, instead of volume, in assimilating satellite sensing data (Huang
et al., 2001; Song and Zlotnicki, 2003).
2.2. The parametric vertical coordinate system

There are two important reasons for generalizing the vertical coordinate system in ocean mod-
els. First, the computation of oceanic flow involves complex boundaries (free-surface, varying
coastline, and bottom topography) that do not coincide with the commonly used Cartesian coor-
dinates in physical space. For finite difference methods, the imposition of boundary conditions for
such problems has required a complicated interpolation of the data on local grid lines and, typ-
ically, a local loss of accuracy. The use of coordinate transformation can avoid some of these
problems by mapping an irregular physical space into a regular computational domain (Fletcher,
1991). Second, oceanic flow has far different dynamic scales between its horizontal and vertical
directions (Lardner and Song, 1991). Special care should be made on choosing the vertical coor-
dinates and computational levels (Gerdes, 1993). For these reasons, we require our generalized
coordinate system to be able to resolve the dynamical structures of the underlying physical solu-
tion and to follow the horizontal boundaries as well as possible.

We consider a generalized coordinate system, represented by
n ¼ nðx; yÞ; g ¼ gðx; yÞ; s ¼ sðx; y; z; tÞ ð2:6Þ

where s represents the vertical transformation, n and g are the horizontal transformations, and t is
time. As the focus of the work is on the vertical direction, the horizontal transformation is sim-
plified to the case of time-independent, orthogonal curvilinear coordinates. We also require the
coordinate transformation to satisfy tow conditions: (i) a unique, single-valued relationship
between (x,y,z) and (n,g, s) at any given time t, particularly, a vertical monotonic relationship
is assumed for z as a function of s
z ¼ zðn; g; s; tÞ; �1 6 s 6 0 ð2:7Þ

and (ii) the derivatives of all the mapping functions are continuous. With these conditions, the
coordinate metric tensor can be written as
ðdcÞn ¼
1

m

� �
dn; ðdcÞg ¼

1

n

� �
dg; ðdzÞs ¼ ðHzÞds ð2:8Þ
where m(n,g) and n(n,g) are the scale factors which relate the differential distances (Dn,Dg) to the
actual (physical) arc length dc (Fletcher, 1991), and Hz ¼ oz

os is the vertical metric factor corre-
sponding to a uniform grid Ds. One of the commonly used coordinate systems is the spherical
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coordinates for many ocean models, in which n = k and g = w represent longitude and latitude,
and u and v the zonal and meridional components of velocity. The transformation metrics are
1

m
¼ a cosw;

1

n
¼ a; Hz ¼ ðf þ hcÞ þ ðhðx; yÞ � hcÞC0ðsÞ ð2:9Þ
where a is the radius of the Earth, f is the sea-surface height, h(x,y) is the bathymetry, hc is a con-
stant chosen to be the minimum depth of the bathymetry or the width of boundary layer, and
C 0(s) is the derivative of the stretching function, introduced by Song and Haidvogel (1994),
CðsÞ ¼ ð1� bÞ sinhðhsÞ
sinh h

þ b tanh½hðsþ 0:5Þ� � tanhð0:5hÞ
2 tanhð0:5hÞ ð2:10Þ
and h and b are the surface and bottom control parameters. Typical parameter ranges are
0 6 h 6 20 and h 6 b 6 1, respectively. Such an analytical stretching function (called s-coordi-
nates) has been used in SCRUM and ROMS worldwide. In the following, we will further gener-
alize the vertical coordinate system.

Using the relationships (2.6)–(2.8) and following Kasahara (1974) and Song (1998), the basic
ocean equations (2.1)–(2.5) can be written into a new form of ‘‘differential-integral’’ equations
(notice the changes in the pressure and vertical diffusion terms):
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where X is the vertical velocity in the generalized coordinate system, defined by
X ¼ os
oz

w� oz
ot

� �
s

� um oz
on

� vn oz
og

� �
ð2:15Þ
b = �gq/q0 is the buoyancy, the vertical height can be obtained by
z ¼
Z s

�1

/
Bz

ds0 � h ð2:16Þ
In the new basic ocean equations we have introduced the parametric function as
/ðn; g; s; tÞ ¼ Hzðn; g; s; tÞBzðn; g; s; tÞ ð2:17Þ

where Hz and Bz are the newly defined two physical parameters: the metric parameter and the
Boussinesq parameter, respectively. Their forms can be written as Hz ¼ oz

os and Bz ¼
q
q0
in deriving

the generalized coordinate equations (2.11)–(2.15) from the primitive equations (2.1)–(2.5). How-
ever, they can be any positive, monotonic functions (vertically) as will be explained later. One of
the examples is assuming Bz = 1 in Eqs. (2.11)–(2.15) to recover the commonly used Boussinesq
primitive equations. It can be shown that (Hz,Bz) is a set of parametric curves of variable s at a
given location (n,g) and time t.

In addition, Eqs. (2.11)–(2.15) are subject to boundary conditions on sea surface f(n,g, t)
and at ocean bottom h(n,g). It should be pointed out that the formulation of boundary con-
ditions is not independent from the choice of vertical coordinate systems. For example, the
traditional z-models may need staircase or shaved-cell approximations of topography, there-
fore, have different formulations with those topography-following models. A generic derivation
of the boundary conditions is given by Kasahara (1974). Here, we only give the boundary
conditions for the coordinate systems that follow free surface and bottom topography, but
the model interior can be any system. In such cases, the surface conditions, evaluated at
z = f (or s = 0), are
B2
zKM
/

ou
os

¼ sn
s ðn; g; tÞ ð2:18Þ
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zKM
/

ov
os

¼ sg
s ðn; g; tÞ ð2:19Þ
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zKH
/
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os

¼ QT
q0Cp

þ 1

q0Cp

dQT
dT

ðT � T refÞ ð2:20Þ

B2
zKH
/

oS
os

¼ ðe� pÞS
q0

ð2:21Þ
where sn
s and sg

s are the components of wind stress acting on the free surface in the n and g direc-
tions, respectively, QT is the heat fluxes, e and p are the evaporation and precipitation rates,
respectively, and Cp is the heat capacity of sea water. (Note: the salinity flux should be modified
accordingly for non-Boussinesq cases.) Correspondingly, at the sea bed, z = �h (or s = �1), the
boundary conditions are
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where sn
b ¼ ðc1 þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þu and sg

b ¼ ðc1 þ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þv, and c1 and c2 are coefficients of linear

and quadratic bottom friction, respectively. It should be noted that this combined linear and qua-
dratic formulation of the bottom drag has the flexibility for both shallow or deep ocean applica-
tions. For deep ocean, if only the linear bottom drag is needed, c2 can be set to zero. Similarly, c1
can be set to zero for shallow seas.

It is worthy pointing out that there are several differences from the s-coordinate model of Song
and Haidvogel (1994): (1) a Boussinesq factor is introduced in the basic ocean equations as well as
in the boundary conditions, (2) the parametric functionHz becomes adaptive, instead of analytical,
and (3) the Jacobian form in the pressure gradient terms is required to allow parametric coordinate
transformations. Notice that we have combined both horizontal and vertical transformations into
one step in deriving the parametric equations. The horizontal curvilinear coordinates n = n(x,y)
and g = g(x,y) are useful for resolving coastlines in regional ocean models. For those readers only
interested in the vertical transformation, the horizontal transformations can be ignored by setting
m = n = 1 in the above equations.
2.3. The generalized modeling approach

Here we explain how the two parameters,Hz and Bz, can be used to develop a generalized ocean
model for multiscale applications. First of all, let us show how they can be simplified to recover
some of the known traditional and hybrid coordinate systems. The reader is suggested to substi-
tute the following functions (A–F) into Eqs. (2.11)–(2.15) for verification:

(A) To become a hybrid z–r-level model, the two parameters can be simply chosen as
Hz ¼ Dz

Bz ¼ 1

�
) / ¼ Dz: ð2:26Þ
In this case, the Boussinesq parameter Bz is constant and inactive. The parametric function / de-
pends on the choice of the vertical grid Dz, which is independent from topographic variations in
the interior of the ocean, but allows to align with the topography in bottom layer. If / = Dz is
imposed for the whole water column, the ocean bottom topography has to be approximated
step-like by the fixed vertical levels, which becomes the traditional z-level model. Such a capability
has been demonstrated in POM by Mellor et al. (2001) and will not be discussed here.
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(B) To become the traditional r-coordinate model, they can be chosen as
Hz ¼ H

Bz ¼ 1

�
) / ¼ H ð2:27Þ
where H = f + h is the total water depth. In such a case our Eqs. (2.11)–(2.15) should become the
original equations of Blumberg and Mellor (1987).

(C) To become a hybrid isopycnal system, the parameters can be chosen as
Hz ¼ � 1
gq

op
os

Bz ¼ q
q0

)
) / ¼ � 1

gq0

op
os

: ð2:28Þ
In this case, the computational levels follow isopycnals in the interior of the ocean, but gradually
align with the free-surface and topography in the surface and bottom layer, respectively. This
technique can be used to avoid problems of topographic truncations and surface layer outcrops
of isopycnals (Bleck and Benjamin, 1993).

(D) To use the traditional pressure coordinate system of Phillips (1957), the two parameters
become
Hz ¼ pbs
gq

Bz ¼ q
q0

)
) / ¼ pbs

gq0

ð2:29Þ
where pbs = pb � ps, ps and pb are the surface and bottom pressure, respectively, and the pressure-
sigma coordinate system is p = ps � pbss and �1 6 s 6 0. Such a pressure coordinate system has
been used by Huang et al. (2001).

(E) To become the s-coordinate system of Song and Haidvogel (1994), we obtain
Hz ¼ ðf þ hcÞ þ ðh� hcÞC0ðsÞ
Bz ¼ 1

�
) / ¼ Hz ð2:30Þ
It can be verified that Eqs. (2.11)–(2.15) with (2.30) are equivalent to those equations of Song and
Haidvogel (1994).

(F) Finally, we introduce a new non-linear pressure-coordinate system, called stretching pres-
sure coordinates or sp-coordinates for short, as
p ¼ psaðsÞ þ pcbðsÞ þ pbcðsÞ; �1 6 s 6 0 ð2:31Þ

where pc is a constant pressure near the thermocline, and a(s), b(s), and c(s) are stretching func-
tions determined by users. The two parameters in Eqs. (2.11)–(2.15) become
Hz ¼ � 1
gqHp

Bz ¼ q
q0

)
) / ¼ 1

gq0

Hp ð2:32Þ
where Hp = (pc � ps) + (pb � pc)C
0(s). It should be noted that this system has advantages over the

traditional p-coordinates used in atmospheric modeling (Phillips, 1957) for better resolving sur-
face and bottom layers of the ocean.

In summary, above formulations demonstrate that each of the known traditional or hybrid ver-
tical coordinate systems is a particular case of Eqs. (2.11)–(2.15), differing by the choice of the two



Fig. 1. Schematic of the proposed parametric modeling approach: the metric parameter Hz, is the height of the
computational layers, allowing to follow isopycnals, bottom topography, or geopotential levels. The Boussinesq
parameter Bz is the mass to volume ratio for determining compressible conditions of the computational layer. The
computational levels (solid lines) allow to align with free surface and bottom topography gradually within the boundary
layers (marked by the dashed lines). In realistic applications, the highest possible vertical resolution in the surface and
bottom layers as well as in the coastal oceans is desired to achieve accurate representation of the dynamic processes of
air–sea and ocean–Earth interactions.
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parameters, as indicated in Fig. 1 schematically. These two parameters have physical meanings.
The metric parameter,Hz, is the height of the computational layers, allowing to follow isopycnals,
bottom topography, or geopotential levels. If Hz is restricted to constant z-levels, q-levels, or
p-levels as in the traditional models, a staircase approximation of topography is the consequence.
The Boussinesq parameter, Bz, is the mass to volume ratio for determining Boussinesq conditions
(compressibility on incompressibility) of the computational layer. If the Boussinesq approxima-
tion is assumed as in the above cases (A), (B), and (E), the volume of that layer is conserved.
On the other hand, if non-Boussinesq approximation is assumed as in the above cases (C), (D),
and (F), the mass of the layer should be conserved.

Theoretically the two parameters can be arbitrarily chosen as long as they satisfy the monotonic
conditions
Dz 6 Hz 6
oz
os

Ds; 1 6 Bz 6
q
q0

ð2:33Þ
in the dimension of s, where oz
os P 1 and q/q0 P 1 are assumed to be physical meaningful. Math-

ematically the choices of model vertical systems only have two freedoms, controlled by the two
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parameters. In fact, all above six cases are special cases of (2.33). The Boussinesq approximation
is the extreme case when Bz = 1. Therefore, the model can be designed to have generalized mod-
eling capabilities and to offer users great freedom for choosing desired model structures by choos-
ing these two parameters, instead of changing the numerical algorithms. The imposed monotonic
condition on the parametric function is to avoid collapsing of computational levels, whether they
are allowed to intersect with topography and sea-surface is the user�s choice. In the next two sec-
tions, we will present the numerical method and its applications for solving multiscale, Boussinesq
and non-Boussinesq problems.
3. Numerical method

Here we briefly describe the numerical method used in implementing the proposed parametric
coordinate system. The method, although similar to Song and Haidvogel (1994), has been mod-
ified along the years of development of SCRUM/ROMS (http://marine.rutgers.edu/po/models/).
To be consistent with the new parametric coordinate system proposed here, some of the numerical
schemes have also been modified accordingly. Therefore, it is necessary to give the readers the
exact numerical configuration used in this study.

3.1. The mode splitting technique

Our model is based on the staggered (Arakawa C-grid) finite volume configuration. In the stag-
gered grid the oceanic flow is discretized into many control volumes. Each of them has six surfaces
with distances Dn, Dg and Ds in the general coordinate system (2.6)–(2.8). The pressure (pi,j,k) and
tracers ðT̂ ijkÞ located at the center of the control volume, and the velocity components (ui,vj,wk;
ui+1,vj+1,wk+1) are placed at the centers of the surfaces.

The staggered grid has two major advantages. First, it has good conservation (of mass, etc.)
properties (Fletcher, 1991). The conservation of physical properties in ocean models is critical
for long-term climate simulations and equilibrium circulation of coastal currents. Since errors
in the discrete equations cannot be eliminated completely, certain integral properties of the con-
tinuous equations should be satisfied to avoid the gradual development of large errors (Arakawa
and Suarez, 1983). Song and Wright (1998) also emphasized that the pressure gradient force
should be treated carefully to conserve total energy, momentum, and bottom torque. Second,
the finite volume method allows complicated computational domains to be discretized in a simpler
way than either the isoparametric finite element formulation or generalized curvilinear coordi-
nates. This method does not depend on the mesh regularity, but is suited to approximate mixed
derivatives and degenerates into the finite difference method when the mesh is regular (Hermeline,
2000). This is particularly important for ocean modeling because complex geometry and varying
topography are common features. However, the staggered grid needs averaging two neighbor
points to compute a variable of interest in a control volume. Such an averaging process can be

tedious in algorithm design. For simplicity, we will assume ð Þn; ð Þg and ð Þs represent aver-
ages taken over the distances Dn, Dg and Ds, respectively.

Based on the finite volume scheme, we solve the ocean basic equations (2.11)–(2.15) sepa-
rately for their external mode representing the depth-averaged flow and the internal mode

http://marine.rutgers.edu/po/models/
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representing the total flow. The main reason for splitting these two modes is to satisfy the
CFL condition arising from the fast moving surface gravity waves. Such a splitting technique
has been widely used in many three-dimensional atmosphere and ocean circulation models
(e.g., Arakawa and Lamb, 1977; Blumberg and Mellor, 1987). The semi-discrete (spatial only)
form for the internal mode is
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Here, dn, dg and ds denote simple centered finite-volume approximations to o/on, o/og and o/os
with the differences taken over the distances Dn, Dg and Ds, respectively. I0s indicates a second-
order vertical integral computed as a sum from level s to the surface at s = 0. The pressure
gradients are written into Jacobian form as given by Song (1998)
J nðb; zÞ ¼
oz
os

ob
on

� oz
on

ob
os

; J gðb; zÞ ¼
oz
os

ob
og

� oz
og
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os

: ð3:5Þ
The external mode equations can be obtained by vertical integration of the momentum equa-
tions (2.11, 2.12) and the mass (or volume) continuity equation (2.14). Using the corresponding
surface and bottom conditions, we obtain the depth-averaged equations in the semi-discrete form:
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here D ¼
R 0

�1
/d is the vertically integrated mass, and �u and �v are the depth-average velocity for

Boussinesq cases and mass-averaged velocity for non-Boussinesq cases. Notice that ��ug ¼ ð�uÞg.
It should be pointed out that the depth-averaged equations (external mode) are not indepen-

dent of the vertically varying equations (internal mode); they are coupled through the nonlinear
and pressure gradient terms, which are represented by Fru and Frv. The coupling procedures can be
important for the model performance. We will discuss the coupling issue after introducing the
time stepping schemes.
3.2. The implicit scheme for the internal mode

Because ocean flow has very different horizontal and vertical length scales, differing by one or
two orders of magnitude, they are usually solved by different numerical schemes (Lardner and
Song, 1991). Implicit treatment of the vertical parts of the process is necessary because time-step
limitation is more severe in the vertical than in the horizontal directions. Here, we follow the
method of Song and Haidvogel (1994), using the implicit generalized Crank–Nicolson scheme
for the vertical direction and the third-order Adams–Bashforth (AB3) scheme for the horizontal
directions. In this method, the vertical parts of the process can be written as:
oð/UÞ
ot

� o

os
B2
zj
/

oU
os

� �
¼ mnRU ð3:9Þ
where RU represents all of the forcing terms other than the vertical viscosity or diffusion. We use U
as the generic variable for Eqs. ((3.1)–(3.3)) and introduce
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eU ¼ kUnþ1 þ ð1� kÞUn ð3:10Þ
where k is an implicitness parameter, and approximate equation (3.1) and boundary conditions
(2.18) and (2.22) as
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where ~ss and ~sb are the surface and bottom boundary conditions. When k ¼ 1
2
, it becomes the trap-

ezoidal scheme. K stands for the corresponding vertical eddy coefficient. On the right hand side of
the equation, eRU is evaluated explicitly by the third-order Adams–Bashforth (AB3) scheme
eRU ¼ 1

12
ð23Rn � 16Rn�1 þ 5Rn�2Þ: ð3:13Þ
Treating eU as the new unknown, we can rewrite Eq. (3.11) as
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þ mneRU : ð3:14Þ
Once eU is solved, Un+1 can be updated through Eq. (3.10). This can be reorganized so that all the
terms involving eU are the solutions of the tridiagonal system:
�Ak eUk�1 þ Bk eU k � Ck eUkþ1 ¼ Dk; k ¼ 0; . . . ;N : ð3:15Þ
The tridiagonal system can be straightforwardly solved in O(N) operations by forward
elimination
Bk ¼ Bk � AkCk�1=Bk�1; Dk ¼ Dk þ AkDk�1=Bk�1; k ¼ 1; . . . ;N ð3:16Þ
and back substitution
eUN ¼ DN=BN ; eUk ¼ ðDk þ Ck eU kþ1Þ=Bk; k ¼ N � 1; . . . ; 0: ð3:17Þ

Here the coefficients of the tridiagonal system are as follows:

For k = 1, . . . ,N � 1,
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The implicit treatment of the vertical direction is necessary to relax the severe CFL restric-
tion which arises from the very thin vertical grid size near the surface and bottom layers
(Fig. 1). In realistic ocean modeling, the highest possible vertical resolution in the surface
and bottom layers as well as in the coastal oceans is desired to achieve an accurate represen-
tation of the dynamic processes of air–sea and ocean–Earth interactions in the ocean model.
Clearly, the longer the time-step is allowed in solving the internal mode equations, the more
efficient the model becomes, since the main cost is solving the three-dimensional equations.
This is particularly true when more tracers are needed in including biology and chemical
components.

However, the time-splitting between the external and internal modes can be a problem if they
deviate from each other too much in time stepping. The external mode equations are two dimen-
sional and shorter time-steps are used to resolve the fast moving surface waves. In our model, a
leapfrog-trapezoidal (second-order) scheme is used for the external mode. The ratio of the internal
time-step to the external one is about 40; therefore, the external mode only has one chance to cou-
ple with the internal mode in every 40 external time-steps. Another issue is the accuracy balanced
between these two modes. If both modes are solved by the same second-order scheme with a trun-
cation error of O[(Dt)2], they would have different accuracies because one time-step is much (40
times) longer than the other one. Their coupling would degrade the accuracy of the overall solu-
tion by the longer time-step scheme.
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To balance the accuracy, Song andHaidvogel (1994) first proposed the third-orderAdams–Bash-
forth (AB3) scheme for the internalmode equations,which is one-orderhigher than the second-order
scheme used for the externalmode. This is different from those previous oceanmodels. For example,
the Bryan–Coxmodel originally used the leapfrog schemewith aRobert filter. Blumberg andMellor
(1987) use the leapfrog-trapezoidal scheme for the external mode and leapfrog-Asselin scheme for
internal mode equations. MICOM/HYCOM and POSEIDON (Schopf and Loughe, 1995) use a
leapfrog with the time filter for both baroclinic and tracers, and HIM (Hallberg, 2000) uses the pre-
dictor-corrector for the baroclinic mode (Griffies et al., 2000). In the traditional second-order
schemes, the viscous/diffusive terms have to be treated by an Euler method to avoid unconditional
instability (Bryan, 1969), thereby reducing the accuracy to first-order of truncation error. Here, the
AB3 can achieve third-order accuracy for all right-hand-side terms in the internal mode equations
and reduce the time-splitting oscillation usually associated with the leapfrog scheme.

Recently, Shchepetkin and McWilliams (in press) further investigated the time stepping
schemes. Their study confirms that AB3 and LF-AM3 (leapfrog-third-order Adams–Moulton) of-
fer the best accuracy per computational cost, leaving RK4 (Runge–Kutta fourth-order) and leap-
frog-trapezoidal schemes behind. In addition, they also proposed to couple the two modes by a
weighted-averaging approach for the external time-steps at each internal time-step, which has
been used here.
4. Multiscale applications

In this section, several representative oceanographic problems have been used to demonstrate
the model�s capabilities for multiscale applications and test its numerical consistency with multiple
coordinate systems. These problems are chosen because of their different scales and characteris-
tics. Traditionally they would have to be solved by different models in order to take advantage
of various coordinate systems. Here we show that they can be solved by the new model in the
same numerical framework, and those advantages can be explored by simply choosing the two
physical parameters. We shall start with a small-scale coastal problem and end with a large-scale
global model. In the first two idealized problems, benchmark solutions are known and quantita-
tive comparisons are given. In the other two realistic applications, we focus on evaluating model
performances in long-term simulations.

4.1. The coastal canyon problem

This problem is designed to compare numerical ocean models in resolving residual (time-mean)
currents driven by oscillatory winds over a continental shelf and slope in the presence of an
across-shelf canyon (Haidvogel and Beckmann, 1998). The computational geometry is a coastal
channel periodic in the x direction, bounded by two inshore and offshore walls. The channel
dimensions are Lx = 128 km and Ly = 96 km. A grid size of 2 km is used in both horizontal direc-
tions. The topography is a steep continental shelf increasing in depth with cross channel distance
intersected by an isolated and idealized canyon. The problem has been configured to offer a wide
range of challenges to the ocean models due to the steep topography. The analytical form of the
topography is
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hðx; yÞ ¼ 20þ 1990ð1þ tanhððy � Y cÞ=LsÞÞ

where Yc = Y0 � Lcsin

24(px/Lx) and Y0 = 32 km, Ls = 10 km, Lc = 16 km. The circulation in the
coastal channel is driven by an along-shore wind stress:
sx ¼ s0 1� tanh y � 1

2
Ly

� ��
Lw

� �� ��
2

with a sinusoidally varying amplitude of s0 = 10�4sin(2pt/Tw) Pa kg
�1 m3 where Lw = 10 km and

Tw = 10 days. Constant Coriolis parameter f = 1 · 10�4 s�1 and linear bottom stress coefficient
cB = 3 · 10�4 m s�1 are used. Homogeneous fluid flow is assumed. Both the wind and bottom
stresses are applied as body forces acting on the whole water column. Laplacian friction with a
coefficient 5 m2 s�1 is used. Vertical eddy viscosity coefficient is 10�4 m2 s�1. Only free-slip lateral
conditions are tested here.

We have solved this problem with three different coordinate systems: the original r-coordinates,
the s-coordinates with h = 3 and b = 1, and the hybrid r–z-coordinates. All three experiments
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. Time mean surface currents (a) from the r-coordinates and (b) from the hybrid r–z coordinates. Results are
ed from day 90 to day 120. Contours are the coastal canyon bathymetry.
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have been carried out to day 120; the last 30 days (90 6 t 6 120 days) are averaged to give the
time-mean (residual) fields. Fig. 2 gives the surface layer velocity over the last 30 days (equivalent
to three oscillation periods) from the r and the hybrid r–z experiments. All experiments show the
similar features of an anticyclonic eddy at the left side of the canyon and a mean current over the
slope. However, some differences can be seen near the coast and from their maximum velocity,
which are 0.121 m s�1 and 0.123 m s�1, respectively. We have also calculated the along-channel,
depth- and time-averaged residuals �uxzt in Fig. 3. The r- and s-coordinates give almost the same
results, with a maximum of residual 3.95 cm s�1, and the hybrid s–z run gives 3.36 cm s�1. The net
transport through the channel hu

xzt
is about 0.328 Sv, 0.331 Sv, and 0.419 Sv, respectively. These

results compare well with those (see Table 1) from Haidvogel and Beckmann (1998) and Sheng
et al. (1998). Their benchmark solutions are �uxztmax ¼4.1 cm s�1 and hu

xzt
max ¼ 0:309 Sv, generated

by a high-order spectral element model of Iskandarani et al. (1995). It is worthy noting that
the partial or shaved-cell techniques (Adcroft et al., 1997) were not available with z-models in
Haidvogel and Beckmann�s collective comparisons, in which z-coordinate models performed
poorly in resolving the canyon topography. Although the hybrid approach in this example is
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Table 1
Intercomparison of the homogeneous coastal canyon experiments (free-slip)

Other models �utmax �uxztmax hu
xzt
max (Sv) Present model �utmax �uxztmax hu

xzt
max (Sv)

CANDIE 12.9 3.7 0.340 r-coord 12.1 3.95 0.328
MICOM 10.8 3.0 0.169 s-coord (h = 3, b = 1) 12.1 3.96 0.331
SCRUM 11.9 3.6 0.264 Hybrid r–z 12.3 3.36 0.419
SEOM 14.6 4.1 0.309

Units are cm s�1 for velocity and Sv (1 Sv = 106 m3 s�1) for transport.
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not as good as the true r-model, it is better than the previously reported z-level models. The cur-
rent z-models may have improved since then. Nevertheless, our hybrid r–z approach provides an
alternative way to tackle such a coastal problem with z-levels for open oceans.

4.2. The seamount topography

The seamount problem provides a measure of the errors in the pressure gradient term in the
presence of steep topography, which have been widely used to test ocean models (Beckmann
and Haidvogel, 1993; Song and Wright, 1998; Ezer et al., 2002; Shchepetkin and McWilliams,
2003). Here we show how the pressure gradient error can be reduced by allowing the computa-
tional levels to follow z-levels or isopycnals in the interior and gradually align with topography
in the bottom layer and z-levels in the surface layer.

The configuration is a tall, steep seamount in a channel, closed to the north and south and recir-
culating through the east and west boundaries. The computational domain has dimensions of
approximately 320 km by 320 km, and is divided into 48 · 48 grid cells. The isolated seamount
is located in the center of the channel and its topography is described by a Gaussian profile
hðx; yÞ ¼ 5000� 4500e�ðr=lÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where r ¼ ðx� xcÞ2 þ ðy � ycÞ

2 is the distance from the center of the domain and l = 40 km is
the width of the seamount. The stratification of the ocean is initialized by a single tracer
T ðzÞ ¼ 15þ 3ez=500:
A horizontal Laplacian viscosity is set to 50 m2 s�1. This is similar to the configuration of Shche-
petkin and McWilliams (2003), but slightly different from that of Beckmann and Haidvogel
(1993), and Song and Wright (1998) in removing a mean background density and adding a small
density perturbation. Although the removal of a mean background density is a common practice
in terrain-following coordinate modeling, we will not apply the removal option in the test problems.

We have carried out four experiments: the traditional r-coordinates, the s-coordinates with
h = 3 and b = 0, the hybrid s–z, and the hybrid s–q coordinates based on the background density
for the Boussinesq parameter. All experiments have 11 vertical levels: the r-levels are evenly
spaced, the s-levels are stretched with h = 3, the hybrid s�z levels locate at zr = [0 20 40 80 120
260 800 1600 2800 4000 5000] meters from deep ocean to the s-levels near the seamount, and
the hybrid s–q levels are q(zr) from the deep ocean to the sp-levels near the seamount. The model
starts from a state of rest with no surface forcing. Theoretically, there should be no motion; there-
fore, any velocity value is model error.



Fig. 4. Cross-section of vertical velocity w at the end of 180 days. Notice that both r- and s-coordinates (upper panels)
generate errors in the whole domain while the two hybrid coordinates (lower panels) have the errors only near the sleep
topography.
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Fig. 4 gives the distributions of the erroneous vertical velocity after 180 days. It can be seen that
both r- and s-experiments show errors in the whole domain, while the two hybrid coordinate cases
have errors only near the bottom. It is well-known that the model errors mainly come from the
pressure gradient formulations because the computational levels cannot be aligned with isopyc-
nals near steep topography (Haney, 1991; Beckmann and Haidvogel, 1993). The problem becomes
more severe if the computational levels also cross the isopycnals near the surface layer because the
surface errors will be carried out to the deep ocean, as shown by the r-experiment. The s-coordi-
nates clearly improve the r-coordinate errors near the surface, but not necessarily near the bot-
tom, which depends on the choices of h, b and the ‘‘optimal’’ weighting, as indicated by
Shchepetkin and McWilliams (2003). The two hybrid cases further reduce the errors by aligning
computational levels with density levels in the whole water column except for the bottom bound-
ary layer.

To further understand the dynamic process of the model errors, we have also calculated the
time series of mean kinetic energy (MKE) and maximum horizontal velocity (Vmax) in Fig. 5.
First, we have noticed that the traditional r-coordinate gives the worst erroneous energy and hor-
izontal maximum velocity, consistent with the above vertical velocity structures. Its mean kinetic
energy is about 0.006 m2 s�2 and maximum velocity is about 0.55 m s�1 after 180 days. The
s-coordinate is the second worst with the MKE error of 0.001 m2 s�2 and the Vmax error of
0.35 m s�1, and the two hybrid cases are equally the best with MKE error of 0.00004 m2 s�2

and Vmax error of 0.08 m s�1 after 180 days. A good feature of these experiments is that the errors
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Fig. 5. Time series of mean kinetic energy (upper panels) and maximum horizontal velocity (lower panels) from the
four experiments with different coordinate system. Notice the scale difference between the terrain-following coordinate
models (left panels) and the two hybrid models (right panels). The hybrid coordinates reduce the MKE error by a factor
of 10 and the Vmax error by a factor of 5, respectively.
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do not increase after 150 days. Secondly, we compare these results with those (their Fig. 9) of
Shchepetkin and McWilliams (2003). Their modified pressure gradient scheme has two steps: first
fitting the density profile into polynomials and then applying the (standard or weighted) Jacobian
schemes in the pseudo-flux form. It should be noticed that the polynomial fit approach might
change the original data (e.g., the e-fold function cannot be fit exactly by a polynomial), and
may be inconsistent with our tests here. Nevertheless, we noticed that our r- and s-experiments
gave larger errors than those corresponding cases (POM and Lin97) in Shchepetkin and McWil-
liams (2003). However, our hybrid experiments achieve better results than their CubicA case and
almost as good as their best CubicH case. The CubicA and CubicH give the MKE error of
0.00005 m2 s�2 and 0.00001 m2 s�2, and the Vmax error of 0.08 m s�1 and 0.05 m s�1, respectively.

We have also repeated the same seamount test of Song and Wright (1998) by removing a back-
ground density in the initial fields. The maximum velocity error after 30 days is about
0.0375 cm s�1 for the r-coordinates and 0.0095 cm s�1 for the hybrid s–z coordinates, i.e., the hy-
brid coordinate model reduces the velocity error by a factor of 4. These results add support to the
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contention that the hybrid coordinates can reduce the pressure gradient errors by following iso-
pycnals in the interior region and enhancing resolutions in the surface and bottom layers.
4.3. Non-Boussinesq pacific ocean with nested eastern tropics

The purpose of this demonstration has twofold: (a) to test the model�s capabilities of handling
large-scale, non-Boussinesq circulation problems; and (b) to test the model�s capabilities of han-
dling multiscale problems by nesting a high-resolution coastal model into the basin-scale model.
For this purpose, we have used the same model configuration for the two regions with different
resolutions:

Non-Boussinesq Pacific Ocean: The basin-scale model has a horizontal resolution of a 0.5� by
0.5� grid from 45� S to 65� N and from 100� E to 280� E. The model starts with initial condi-
tions of annual mean temperature and salinity of Levitus et al. (1994).
Eastern Tropical Region: The regional model has a horizontal curvilinear grid following the
coastline from 10� S to 20� N and from 210� E to 280� E with grid sizes from 5-km near the
coast to 15-km grid offshore. The model starts with initial conditions of the 10th-year output
of the Pacific basin model.

Both models are forced by the monthly mean air–sea fluxes of momentum, heat, and fresh
water derived from the Comprehensive Ocean-Atmosphere Data Set (COADS) climatology.
The water depth is divided into 20 vertical levels for the basin and 16 levels for the eastern tropics
model. Their bottom topographies are derived from the ETOP05 database and interpolated into
the model grids. The newly introduced sp-coordinate system is used in both models.

Non-Boussinesq models have not been widely used to simulate regional- and basin-scale ocean
circulations. To our knowledge, this is probably the first such kind model with both topography-
following and non-Boussinesq features for the Pacific basin with a nested regional model. Fig. 6
gives the nested-model configuration and the model sea-surface salinity after 11 years simulation.
It is known that the eastern Pacific of the cold tongue region off the Central America is challeng-
ing for regional modeling because of its complex coastal geometry and intense internal and exter-
nal interaction between local eddies and large-scale tropical instability waves. For demonstration
purpose, only one-way nesting is applied, i.e., the open boundary conditions for the coastal model
are extracted from the large-scale Pacific model, but no feedback information goes to the Pacific
model. Nevertheless, the high-resolution regional model gives the active eddy fields in the eastern
tropics, which cannot be resolved by the basin-scale Pacific model. The tropical instability waves
and trains of large-amplitude eddies, propagating westward, with a wavelength of 1100 km and a
phase speed of about 0.5 m s�1, are important features of the tropical oceans. Comparison with
TOPEX/Poseidon data indicates that they could have strong bottom pressure signals, likely alias
the GRACE measurements, which have a monthly-sampling period (Song and Zlotnicki, 2003).

As our models are non-Boussinesq, we have calculated the ocean bottom pressure (OBP) anom-
aly and its corresponding sea-surface height (SSH) anomaly in Fig. 7. The bottom pressure var-
iable is directly calculated using conservation of mass, and the surface elevation is retrieved from
the bottom pressure while considering the effect of heat expansion and contraction processes. The
SSH anomaly (upper panel) represents the changes of surface elevation and the OBP anomaly



Fig. 6. Model configuration of non-Boussinesq Pacific Ocean with the nested eastern Tropics: a snapshot of sea-surface
salinity after 11 years from the nested models. The box edges in the Pacific model are open boundary conditions
ðu; v; T ; S; f; �u;�vÞ for the nested eastern Tropics model.
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(lower panel) represents the total mass of changes of the water column, both with the annual mean
removed. The higher values in red and orange colors indicate gaining volume/mass, while the
lower values in blue and green colors indicate losing water volume/mass, in comparison with their
mean state. Clearly, the ocean�s volume change does not necessarily mean the mass changes. We
also give the surface velocity and temperature in Fig. 8. These results are reasonably good by com-
parison with known circulation features. For example, the Kuroshio separation is at the right
location, even with such a coarse grid, and the large-scale features of the equatorial cold-tongue
is well resolved, but not the filament features associated with the equatorial instability eddies,
which are revealed clearly in the finer-grid model.

To focus on the eastern tropical region, we give the corresponding surface velocity and temper-
ature fields for the tested model in Fig. 9. Notice that the train of eddies centered at 4� N and the
cold tongue with the cusp-shaped filaments are known features from observations (Song and
Zlotnicki, 2003), which could not be resolved in the coarser-grid Pacific model. It clearly shows
that the consistent coupling between the two models allows the tropical instability eddies to prop-
agate out of the domain without artificial reflection near the open boundaries.

It should be pointed out that one of the most challenging tasks in coastal ocean modeling is to
obtain proper open boundary conditions. To have the highest possible resolution for a coastal re-
gion, the model domain is often limited and cut off from large-scale ocean circulation systems. In
reality, a coastal region is not the only source of the local phenomena: it is forced by remotely
large-scale dynamics and needs outside information to get the local solution useful. The perfor-
mance of the coastal model greatly depends on the consistency between the external information



Fig. 7. A snapshot of non-Boussinesq model results after 11 years (or 3960 days): (a) sea-surface height, representing
volume change; (b) bottom pressure anomaly, representing mass change. Note the bottom pressure anomaly is
normalized by ðP b � P 0

bÞ=gq0, where Pb is the bottom pressure and P 0
b is the time mean pressure. Units are meters for

SSH and 10�2 m (mbar) for Pb.
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and the boundary algorithms. Therefore, the use of the multiscale nested models is a compromise
for obtaining high-resolution in the sub-domain of interest and minimizing the overall computa-
tional cost, without losing the influence of the large-scale dynamics. Here we demonstrate that
such a multiscale nested task can be carried out easily within the same model for both large-scale
information and local fine-scale dynamics. Though the nesting task can be carried out with differ-
ent single-coordinate models, modelers have to run different numerical models in order to use var-
ious coordinate features for the two regions with different scales. It is often difficult to maintain
multiple codes, perhaps even more difficult is to make them physically and numerically compatible
with each other. The present modeling approach clearly provides a better way of dealing such



Fig. 8. A snapshot of the non-Boussinesq Pacific model after 11 years: (a) sea-surface velocity, color bar represents the
speed; (b) sea-surface temperature (�C), showing the well-developed equatorial cold tongue in the eastern tropical
region.
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kinds of problems by using various vertical coordinate systems on the same numerical platform.
The inclusion of the non-Boussinesq physics in the model does not incur computational expense
with our parametric coordinate formulation. Such extended model capabilities are needed in cur-
rently used community ocean models to faithfully represent satellite sensing data (Huang et al.,
2001).

4.4. Global ocean circulation in S-coordinates

The purpose of this test is to demonstrate the capability of the new model in handling global-
scale applications for long-term simulations. The global model covers the world ocean from 75� S



Fig. 9. Same as the Fig. 8, but for the nested eastern Tropics model after one year simulation: (a) sea-surface velocity,
color bar represents the speed; (b) sea-surface temperature (�C). Please notice the train of tropical instability eddies
(upper panel) and the cusp of filaments generated by the eddies. These detail features are not seen in the coarser-grid
Pacific model.
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to 75� N with realistic geometry. The model grid resolution is 0.5� · 0.5�, with enhanced resolu-
tion to 1/3� in the range of 30� S to 30� N. The bottom topography is derived from the ETOPO5
database and is interpolated into the model grid. Initial T and S are obtained from the Levitus
et al. (1994) mean-monthly climatology data. Surface boundary conditions include heat and fresh
water fluxes and wind stress obtained from NCEP/NCAR reanalysis data. There are 20 vertical
levels with 10 levels in the upper 500-meter depth and the other 10 levels in the lower layer, using
the s-coordinate system of Song and Haidvogel (1994) with h = 5 and b = 0. Although this
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generalized terrain-following model (SCRUM/ROMS) has been widely used for coastal and
regional oceans, it has not been well tested for global-scale problems.

The model is first spun-up for 50 years with annual-mean NCEP/NCAR forcing. Time series of
global averaged kinetic energy and potential energy are shown in Fig. 10 to demonstrate the ex-
tent to which a quasi-steady state has been reached at the end of the 50-year spun-up run. The
early 10 years of the run are dominated by a kind of geostrophic adjustment process in which
the potential energy convert rapidly to the kinetic energy, which is then subject to dissipation.
The values of horizontal viscosity and diffusivity used in the model are 400 and 100 m2 s�1, respec-
tively. The physical reason for the energy conversion has been discussed by Song and Wright
(1998) as the advective elimination of the inconsistency between the finite-difference nature of
the model and the initial state. Such adjustment process is required for energetic consistency
and the success of long-term integrations. However, the dissipation process is extremely slow
as it can be seen that the potential energy still increases slightly after 50 years, but has reached
a quasi-steady state after 30 years.
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Fig. 10. Upper panel is the globally averaged kinetic energy and the lower panel is the averaged potential energy during
the 50-year spun-up run from the s-coordinate global model.
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As we have emphasized the topographic effect on ocean circulations, we show the zonal section
at 60� S along the Antarctic Circumpolar Current (ACC) in Fig. 11 for the temperature (upper
panel) and salinity (lower panel) after the 50-year simulation. The four ridges are the major topo-
graphic features in the Southern Ocean. They indeed have a significant effect on the temperature
and salinity structures; particularly, the temperature structure is clearly divided by the ridges into
four groups.

In Fig. 12, we give the sea-surface elevation and the velocity fields. These results are reasonably
good in comparison with known observations, such as the separation latitudes of the Kuroshio
and the Gulf Stream, the North Atlantic current system, the Agulhas Retroflection, the equatorial
current system, and the strength of the ACC. Some deficiencies can also be seen. For example,
there is no noticeable signature of the Azores current at about 35� N in the Atlantic Ocean, which
may be due to the insufficient resolution of the model. We will continue the spun-run of the model
Fig. 11. Zonal section at 60� S along the ACC: (Upper panel) vertical temperature structure (�C) and (Lower) vertical
salinity structure (psu). Both are monthly averaged at day 17,505 from the s-coordinate global model.



Fig. 12. Global ocean simulation after 50 years: (upper) sea-surface elevation and (lower) velocity fields. Both are
monthly averaged at day 17,505. Color bars are meter and (cm s�1), respectively.

Y.T. Song, T.Y. Hou / Ocean Modelling 11 (2006) 298–332 327
to a steady state, then apply the realistic atmospheric forcing for quantitative comparisons with
observations. Nevertheless, the initial 50-year simulations illustrate that the model with the new
scheme is stable for long-term integrations and capable of resolving global-scale problems with
topography-following coordinate system.
5. Discussions and summary

Traditional ocean models have been built upon an ‘‘explicit coordinate’’ formulation; the model
numerical design is based on a single (fixed) vertical coordinate system in the basic ocean equa-
tions. Therefore it results in a variety of model classes with different numerical configurations
as mentioned in the introduction. Users have limited freedom to choose different coordinate sys-
tems in a given model configuration. On the contrary, the present model is developed upon an
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‘‘parametric coordinate’’ formulation; the model numerical design is based on an arbitrary (para-
metric) vertical coordinate system. Users have the freedom to choose combined coordinate fea-
tures by selecting input parameters without altering the numerical configuration. Therefore, it
offers an easy way to take advantage of various coordinate features for multiscale modeling stud-
ies. The new model extends the previous s-coordinate model (Song and Haidvogel, 1994) in two
aspects:

(1) Numerically it offers flexible choices of the optimal or hybrid features of many traditional
coordinate systems, including the original s-coordinate system;

(2) Physically it allows both Boussinesq and non-Boussinesq flow conditions within the same
numerical configuration.

Adding these two extensions does not necessarily incur computational expense. Combining
these two extensions into a single model allows users to take advantages of various coordinate
combinations for multiscale applications. The inclusion of mass-conserving physics in the model
allows users to explore both Boussinesq and non-Boussinesq conditions in the same model con-
figuration. Although the effects of non-Boussinesq approximations on the model simulation of the
ocean circulation remain unclear (Mellor and Ezer, 1995; Huang et al., 2001; Greatbatch et al.,
2001; Losch et al., 2004), here we provide an alternative to relax the Boussinesq approximations
in the terrain-following coordinate system (Song and Zlotnicki, 2003). This is particularly useful
in nested modeling, in which the large-scale model that could be global needs characteristics of
z-coordinates or non-Boussinesq approximations for a proper representation of thermodynamical
and biogeochemical processes; while the nested small-scale model that could be coastal or regional
needs to resolve boundary layer dynamics and fine-scale topographic features.

So far, we have demonstrated that the parametric modeling techniques can be easily imple-
mented into an existing ocean model, like SCRUM/ROMS. We have also shown that the model
is capable of resolving multiscale ocean-related problems from coastal to basin-scale and to global
ocean within a single numerical configuration. These test problems are chosen to have different
scales and challenging topographic features. In the coastal canyon problem, we have demon-
strated that the predominant z-coordinate option of the model is able to perform as well as
r-coordinate models. In the regional model with a seamount topography, we have found that
the hybrid s–z and s–q coordinates can be used to reduce pressure gradient errors greatly. In
the basin-scale Pacific model, we are able to simulate the large-scale circulations with both
non-Boussinesq and topography-following features and a nested regional model with active trop-
ical instability waves. In the global ocean model, we have demonstrated that the s-coordinate sys-
tem, widely used in coastal and regional ocean modeling, is capable of handling the global-scale
problems for long-term simulations.

Clearly, this paper could not possibly test and include all the available options of the proposed
modeling approach. Here we have only reported some of the commonly used hybrid configura-
tions with the topography-following feature for coastal oceans. Some new features should be ex-
plored by expert users, who often have the best knowledge to choose the optimal coordinate
structure for their specific applications. Many of the advanced features of the model are still under
testing and will be reported in following papers. Obvious future work includes comparisons with
truly z-level and isopycnal models. These would need to run different models or significantly
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modify the code to allow step-like/shaved-cell capabilities (Adcroft et al., 1997) and truly isopyc-
nals (Bleck, 2002), which are beyond the scope of this paper.

Finally, it is interesting to note that most of the traditional coordinate systems in ocean mod-
eling, such as the z, r, and p-coordinates, are directly borrowed from atmospheric modeling
(Kasahara, 1974). However, the ocean and the atmosphere have fundamental differences. One
of these is that the ocean has both surface and bottom boundary layers that interact with atmo-
sphere and bottom topography simultaneously. The two boundary layers meet in the coastal
oceans, creating the most dynamically and biologically active regions of the ocean as well as great
challenges for ocean model design. Mainly due to this fundamental difference, we have paid spe-
cial attention to the two boundary layers in the model design, as schematically shown in Fig. 1,
and introduced innovative numerics particularly suitable for ocean-related problems. These inno-
vative techniques, such as the stretched pressure sp-coordinates, the Jacobian formulation of the
pressure gradients, and the newly introduced parametric function, / = HzBz, have only been
tested in ocean modeling. Whether they can be used for atmospheric modeling has not been
verified.
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