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In this paper, we develop an effective and robust
adaptive time-frequency analysis method for signals
with intra-wave frequency modulation. To handle
this kind of signals effectively, we generalize our
data-driven time-frequency analysis by using a
shape function to describe the intra-wave frequency
modulation. The idea of using a shape function in
time-frequency analysis was first proposed by Wu
(Wu 2013 Appl. Comput. Harmon. Anal. 35, 181–199.
(doi:10.1016/j.acha.2012.08.008)). A shape function
could be any smooth 2π -periodic function. Based
on this model, we propose to solve an optimization
problem to extract the shape function. By exploring
the fact that the shape function is a periodic function
with respect to its phase function, we can identify
certain low-rank structure of the signal. This low-rank
structure enables us to extract the shape function from
the signal. Once the shape function is obtained, the
instantaneous frequency with intra-wave modulation
can be recovered from the shape function. We
demonstrate the robustness and efficiency of our
method by applying it to several synthetic and
real signals. One important observation is that this
approach is very stable to noise perturbation. By using
the shape function approach, we can capture the intra-
wave frequency modulation very well even for noise-
polluted signals. In comparison, existing methods
such as empirical mode decomposition/ensemble
empirical mode decomposition seem to have difficulty
in capturing the intra-wave modulation when the
signal is polluted by noise.

2016 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Nowadays, data play a more and more important role in our lives. At the same time, the
scientific community faces a challenging problem: how to effectively extract useful information
from the massive amount of data. In many real-world problems, especially in engineering and
physical problems, the frequencies of a signal are usually very useful to help us understand
the underlying physical mechanism. Hence, many time-frequency analysis methods have been
developed, including the windowed Fourier transform, the wavelet transform [1,2], the empirical
mode decomposition (EMD) method [3,4] and the Wigner–Ville distribution [5], to name a few.
In particular, the EMD method has found many applications in different disciplines. Inspired by
the EMD method, several methods have been proposed in recent years that attempt to provide a
mathematical foundation for the EMD method; see, for example, the synchrosqueezed wavelet
transform [6,7], the data-driven time-frequency analysis method [8], the empirical wavelet
transform [9], the variational mode decomposition [10], the iterative filtering approach [11,12], the
approximation method based on short-time Fourier transform [13] and the non-local mean-based
method [14].

The data-driven time-frequency analysis method is formulated as a nonlinear optimization
problem by looking for the sparsest time-frequency representation of multi-scale data [8]. This
is similar in spirit to the compressive sensing [15–17], although we do not know the basis under
which the signal has a sparse representation. In this method, the signal is decomposed into several
components,

f (t) =
M∑

j=1

aj(t) cos θj(t) + r(t), t ∈ R, (1.1)

where aj(t), θj(t) are smooth functions, θ ′
j (t) > 0, j = 1, . . . , M, and r(t) is a small residual. We

assume that aj(t) and θ ′
j are less oscillatory than cos θj(t). The exact meaning of less oscillatory

will be made clear later. We call aj(t) cos θj(t) the intrinsic mode functions (IMFs) [3]. This model
is widely used in the time-frequency analysis literature under the name adaptive harmonic
model [6,13].

One main difficulty in computing the decomposition (1.1) is that the decomposition is not
unique. To pick up the ‘best’ decomposition, we proposed to decompose the signal by looking for
the sparsest decomposition by solving a nonlinear optimization problem,

minimize
(ak)1≤k≤M,(θk)1≤k≤M

M

subject to: f =
M∑

k=1

ak cos θk + r(t), ak cos θk ∈D,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.2)

where D is the dictionary consisting of all IMFs (see [8] for its precise definition).
To solve (1.2), we proposed two algorithms. The first one is based on matching pursuit [8] and

the other one is based on basis pursuit [18]. In a subsequent paper [19], the authors proved the
convergence of the nonlinear matching pursuit algorithm for periodic data that satisfy a certain
scale separation property.

Although model (1.1) has been applied to a number of applications with success and the
decomposition methods have been shown to be effective and efficient, there are also some
applications such as the Stokes waves or some nonlinear dynamic systems for which our
methods do not work well. Figure 1 gives one example of the Stokes wave. In the Stokes wave,
comparing with the cosine wave, the trough is flatter and the crest is sharper, which implies
that the instantaneous frequency is small near the trough and large near the crest. Thus, the
instantaneous frequency of the Stokes wave has one cycle within one wave cycle, which means
that the instantaneous frequency is as oscillatory as the original wave. For those signals whose
instantaneous frequency is as oscillatory as or even more oscillatory than the original wave, we
call them signals with intra-wave frequency modulation [20]. It is observed that the intra-wave
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Figure 1. One example of signals with intra-wave modulation: Stokes wave. (Adapted from [3].)

frequency modulation is very common in some nonlinear dynamic systems and this is also
closely related to the nonlinear feature of the underlying physical system [3,20]. The intra-wave
modulation can reveal the nonlinear feature of a signal. The EMD method can be used to compute
the intra-wave frequency modulation for signals without noise. However for signals with noise,
the EMD (or ensemble empirical mode decomposition (EEMD)) method tends to give artificial
harmonic waves rather than a wave with intra-wave frequency modulation, since the EMD (or
EEMD) acts essentially as a dyadic filter bank for Gaussian noise [4,21,22]. One of the main
purposes of this paper is to develop an efficient and robust method to compute the intra-wave
modulation of a signal even when it is corrupted by noise.

Unfortunately, the model we used before (1.1) does not work well for signals with intra-wave
modulation. The reason for this is that our previous method requires that the instantaneous
frequencies are less oscillatory than the signal. Therefore, this method cannot compute the
instantaneous frequency with intra-wave modulation.

Inspired by the idea of introducing a shape function in [23], we can develop an alternative
way to capture the intra-wave modulation by introducing a shape function to replace the cosine
function in model (1.1). The key observation is that the intra-wave modulation can be absorbed
into a shape function which captures the essential wave pattern of the signal. For example, in
the Stokes wave shown in figure 1, the shape function should be a cosine-like function with a
flat trough and a sharp crest. After introducing the shape function which absorbs all intra-wave
modulation, the amplitude and the instantaneous frequency remain smooth. This enables us to
develop a more efficient numerical algorithm that is stable to noise perturbation.

By incorporating the idea of a shape function into our previous model (1.1), we get the
following model:

f (t) =
M∑

k=1

ak(t)sk(θk(t)) + r(t), (1.3)

where sk is an unknown 2π -periodic ‘shape function’ which is adapted to the signal. The envelope
ak(t) and the phase function θk(t) are smooth functions and are less oscillatory than s(θk(t)). We also
assume that θ ′

k(t) > 0.
With the introduction of the shape function, the model has more degrees of freedom, which

makes the problem more difficult to solve. To simplify the problem, in this paper, we only consider
those signals that have one dominated shape function, i.e. M = 1 in (1.3). By exploring the fact
that the shape function is a periodic function of the phase function, θ , we can identify a certain
low-rank structure of the signal. This structure enables us to extract the shape function from the
signal.

We remark that, in the model with the shape function, all intra-wave modulation is captured
by the shape function. The amplitude function a(t) and the phase function remain as smooth
functions, which means that they have only inter-wave modulation. If we adopt the definition of
the degree of nonlinearity from Huang et al. in [20], only the intra-wave modulation contributes to
the degree of nonlinearity. In this sense, the essential nonlinear feature of the signal is encoded in
the shape function. The amplitude and the phase function in the model using the shape function
would have no contribution to the degree of nonlinearity.
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We would like to emphasize that we can recover the instantaneous frequency with intra-wave
modulation in the original EMD method once the shape function is obtained. One advantage
of this approach is that the instantaneous frequency with intra-wave modulation obtained from
the shape function is very stable to noise perturbation. Using this approach, we can capture the
intra-wave frequency modulation very well even for noise-polluted signals. In comparison, some
existing methods such as the EMD/EEMD seem to have difficulty in capturing the intra-wave
modulation when the signal is polluted by noise. The EMD method is known to be unstable
to noise perturbation. Although the EEMD method is more stable to noise perturbation, the
instantaneous frequencies obtained by the EEMD tend to be smoothed out by the ensemble
averaging process as demonstrated in the example of the Duffing equations. As a consequence,
the EEMD does not capture very well the strong intra-wave frequency modulation in comparison
with the original EMD method for noise-free signals.

The rest of this paper is organized as follows. In §2, the decomposition model for data with
intra-wave frequency modulation is presented. The details of the algorithm and the localized
version are given in §§3 and 4. We present some numerical results in §5. Some concluding remarks
are made in §6.

2. Models for a signal with intra-wave frequency modulation
In order to design a computational algorithm for model (1.3), we first need to define the meaning
of ‘less oscillatory’. To simplify the discussion, in this section, we assume that the signal is
periodic. We will discuss general non-periodic signals in §4. With a given phase function θ (t),
we construct a linear space V(θ , λ) which is spanned by the following basis:{(

cos
(

kθ
Lθ

))
,
(

sin
(

kθ
Lθ

))}
0≤k≤λLθ

, (2.1)

where λ < 1/2 is a parameter to control the smoothness of functions in V(θ , λ), Lθ = (θ (1) −
θ (0))/2π is a positive integer and [0, 1] is the range of the signal in time. And we require ak(t)
and θ ′

k(t) to be V(θk, λ) to enforce that they are less oscillatory than cos θk. In this paper, we choose
λ = 1/2 and, in the rest of the paper, we drop λ in V(θ , λ) to simplify the notation.

Then, the model of the signal is given as follows:

f (t) =
M∑

k=1

ak(t)sk(θk(t)) + r(t), ak, θ ′
k ∈ V(θk) and θ ′

k > 0, sk is 2π -periodic. (2.2)

Corresponding to this model, we propose to solve the following optimization problem to find
the sparsest decomposition (2.2):

min
ak ,θk ,sk

M

subject to:
M∑

k=1

aksk(θk) + r(t) = f , aksk(θk) ∈M,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

where the dictionary M is defined as

M= {
aksk(θk) : ak, θ ′

k ∈ V(θk), θ ′
k > 0, sk is a 2π -period function.

}
(2.4)

This optimization problem is very difficult to solve. In this paper, we focus on a simpler case. We
assume that the signal is dominated by one component in M, i.e.

f (t) = a(t)s(θ (t)) + r(t), a, θ ′ ∈ V(θ ), and θ ′ > 0, s is 2π -periodic. (2.5)

Here, r(t) is the residual. The residual r(t) could be noise or a trend or some kind of perturbation.
No matter what r(t) is, we assume that it is small in amplitude compared with a(t)s(θ (t)).
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Using the idea of matching pursuit, the decomposition in (2.5) can be obtained by solving the
following optimization problem:

min
a,θ ,s

‖f (t) − a(t)s(θ (t))‖2
2, subject to: a(t)s(θ (t)) ∈M. (2.6)

Although this optimization problem is much simpler than (2.3), it is still very difficult to solve. It is
highly nonlinear. The envelope a, the phase function θ and the shape function s are all unknown.
They are all adaptive to the data. This feature makes our method fully adaptive to the signal, but
it also introduces additional difficulty to solve the resulting optimization problem (2.6).

Inspired by our previous work in the data-driven time-frequency analysis [8], we develop an
efficient method to solve (2.6). This method consists of two steps. First, the smooth phase function
is computed by our data-driven time-frequency analysis [8].

Since s is periodic, it can be represented by the Fourier basis,

s(t) =
K∑

k=−K

ckeikt = b0 +
K∑

k=1

(bk cos(kt) + dk sin(kt)), (2.7)

where bk = Re(ck), dk = −Im(ck) and k = 0, . . . , K. In the above Fourier series representation, we
assume that s is K-band limited, which is a good approximation as long as s is smooth enough
and K is large enough. Then the signal f (t) can be written as follows:

f (t) = a(t)s(θ (t)) + r(t)

= b0a(t) + a(t)
K∑

k=1

(bk cos(kθ (t)) + dk sin(kθ (t))) + r(t)

= b0a(t) +
K∑

k=1

(
a(t)

√
b2

k + d2
k

)
cos(kθ (t) + φk) + r(t), (2.8)

where φk = arctan(dk/bk).
From the above derivation, f (t) can be seen as a signal composed by K IMFs with instantaneous

frequency kθ ′(t), respectively. Note that the instantaneous frequencies, kθ ′(t), are well separated
without intersections, which means that the signal f satisfies the scale separation property. Then,
we could use the method developed in [8] to compute its phase function. We refer to [8] for the
details of the algorithm.

From the representation (2.8), we can also see another advantage of the model with shape
function. All the artificial harmonic waves are absorbed to the shape function. This enables us to
obtain a sparse representation of the signal.

Once the phase function is obtained, by exploring the fact that s is a periodic function of θ , we
can identify certain low-rank structure of the signal. This structure enables us to extract the shape
function from the signal. The details will be given in the next section.

3. An efficient algorithm to compute the shape function
The phase function θ has been obtained in the previous section, then the optimization problem
(2.6) can be reduced to the following problem:

min
a,s

‖f (t) − a(t)s(θ (t))‖2
2, subject to: a ∈ V(θ ), s(·) is 2π -periodic.

Using the Fourier series representation of the shape function (2.7), the optimization problem
becomes

min
a,ck

∥∥∥∥∥∥f − a
K∑

k=−K

ck eikθ

∥∥∥∥∥∥
2

2

, subject to: a ∈ V(θ ).

 on March 2, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150194

.........................................................

Next, in order to further simplify the above optimization problem, we replace the standard l2

norm in the objective function to the l2 norm in the θ -space,

‖f‖2,θ =
(∫ 2π

0
f 2 dθ̄

)1/2

=
(∫ 1

0
f 2(t)θ̄ ′(t) dt

)1/2

,

where θ̄ = θ/Lθ is the normalized phase function which is used as the coordinate function in the
θ -space and Lθ = (θ (1) − θ (0))/2π . In this paper, we assume that the signal lies in [0, 1].

Then, the above optimization problem is reduced to

min
a,ck

∥∥∥∥∥∥
+∞∑

ω=−∞
f̂ θ (ω) eiωθ/Lθ − a

K∑
k=−K

ck eikθ

∥∥∥∥∥∥
2

2,θ

, subject to: a ∈ V(θ ), (3.1)

where f̂ θ is the Fourier coefficients of f in the θ -space,

f̂ θ (ω) =
∫ 1

0
f (t) e−iωθ̄ (t)θ̄ ′(t) dt.

Next, we represent the envelope a by the Fourier basis in the θ -space,

a =
+∞∑

ω=−∞
âθ (ω) eiωθ̄ .

Then we have

a
K∑

k=−K

ck eikθ =
K∑

k=−K

ck

( +∞∑
ω=−∞

âθ (ω) ei(ω+kLθ )θ̄

)

=
K∑

k=−K

ck

( +∞∑
ω=−∞

âθ (ω − kLθ ) eiωθ̄

)

=
+∞∑

ω=−∞

⎛
⎝ K∑

k=−K

ckâθ (ω − kLθ )

⎞
⎠ eiωθ̄ .

Then, (3.1) becomes

min
âθ ,ck

∥∥∥∥∥∥
+∞∑

ω=−∞

⎡
⎣f̂ θ (ω) −

K∑
k=−K

ckâθ (ω − kLθ )

⎤
⎦ eiωθ̄

∥∥∥∥∥∥
2

2,θ

subject to: a ∈ V(θ ).

Using the well-known Parseval identity, the objective function is equal to the l2 norm of the
Fourier coefficients, which gives rise to the following equivalent optimization problem:

min
âθ ,ck

+∞∑
ω=−∞

∣∣∣∣∣∣ f̂ θ (ω) −
K∑

k=−K

ckâθ (ω − kLθ )

∣∣∣∣∣∣
2

, subject to: a ∈ V(θ ).

 on March 2, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150194

.........................................................

Since a ∈ V(θ ), using the definition of V(θ ), we have âθ (ω) = 0, |ω| ≥ Lθ /2. Then we get

+∞∑
ω=−∞

∣∣∣∣∣∣ f̂ θ (ω) −
K∑

k=−K

ckâθ (ω − kLθ )

∣∣∣∣∣∣
2

=
+∞∑

j=−∞

Lθ /2−1∑
ω=−Lθ /2

∣∣∣∣∣∣ f̂ θ (ω + jLθ ) −
K∑

k=−K

ckâθ (ω + ( j − k)Lθ )

∣∣∣∣∣∣
2

=
K∑

j=−K

Lθ /2−1∑
ω=−Lθ /2

| f̂ θ (ω + jLθ ) − ckâθ (ω)|2

+
∑

|j|>K,
j∈Z

Lθ /2−1∑
ω=−Lθ /2

| f̂ θ (ω + jLθ )|2,

where we have used the fact that, if k �= j, âθ (ω + ( j − k)Lθ ) = 0 for any −Lθ /2 ≤ ω < Lθ /2 in
obtaining the last equality.

Using the above derivation, we have the following equivalent optimization problem:

min
âθ ,ck

K∑
k=−K

∑
|ω|<Lθ /2

| f̂ θ (ω + kLθ ) − ckâθ (ω)|2.

Denote

f̂ θ ,k(ω) =
⎧⎨
⎩

f̂ θ (ω), kLθ ≤ ω < (k + 1)Lθ ,

0, otherwise

and

fθ ,k(θ̄) =F−1
θ ( f̂ θ ,k(ω))(θ̄) =

+∞∑
ω=−∞

f̂ θ ,k(ω) eiωθ̄ .

Then, using the Parseval identity one more time, we need only to solve the following equivalent
problem:

min
aθ ,ck

K∑
k=−K

‖ fθ ,k(θ̄ ) − ckaθ (θ̄ )‖2
2, (3.2)

where aθ (θ̄(t)) = a(t) is the representation of a in the θ -space. Fortunately, after discretization, the
above optimization problem can be solved by the singular value decomposition (SVD).

Suppose aθ and fθ ,k is sampled over θ̄j = ( j − 1)/N, ( j = 1, . . . , N), which is a uniform grid in
the θ̄ -space. Let

fθ ,k = ( fθ ,k(θ̄1), . . . , fθ ,k(θ̄N))t, (3.3)

Fθ = (Re(fθ ,0), . . . , Re(fθ ,K), Im(fθ ,1), . . . , Im(fθ ,K)) (3.4)

and aθ = (aθ (θ̄1), . . . , aθ (θ̄N))t, (3.5)

c = (Re(c0), . . . , Re(cK), Im(c1), . . . , Im(cK)). (3.6)

Then, the discrete version of (3.2) is

min
c∈R

2K+1,
aθ ∈R

N

‖Fθ − aθ · c‖2
F, (3.7)

where ‖ · ‖F is the Frobenius norm of a matrix. It is well known that the above optimization
problem can be solved by SVD.

Suppose
Fθ = U · S · V

is the SVD of Fθ , diag(S) = (s1, . . . , s2K+1) and s1 ≥ s2 ≥ · · · ≥ s2K+1 ≥ 0. Then the solution of the
optimization problem (3.7) is

aθ = u1, c = v1, (3.8)

where u1 is the first column of matrix U and v1 is the first row of matrix V.
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Summarizing the above discussion, we obtain algorithm 1 to compute the shape function with
a given phase function.

Algorithm 1. (Extraction of a shape function).

Input: Signal f = ( f (t1), . . . , f (tN)) is sampled over tl, l = 1, . . . , N, the phase functions θ , and the
band width of shape function K.

Output: The shape function s and the corresponding envelope a(t).
1: Interpolate the original signal f from tl, l = 1, . . . , N to a uniform grid θ̄j = j/N, j = 0, . . . , N − 1

in the θ̄ -space.

f j
θ = interpolate(θ (tl), f (tl), θ̄j).

In the computation, we use the cubic spline to do the interpolation.
2: Compute the Fourier coefficients of f in the θ -space

f̂ θ (ω) =
N−1∑
j=0

f j
θ e−iωθ̄j , ω = −N

2
, . . . ,

N
2

− 1.

3: Compute fθ ,k, k = 0, . . . , K,

fθ ,k(θ̄j) =
(k+1/2)Lθ −1∑
ω=(k−1/2)Lθ

f̂ θ (ω) eiωθ̄j .

4: Assemble the matrix Fθ according to (3.4).
5: Apply SVD on Fθ to get the envelope aθ (θ̄j), j = 1, . . . , N and ck, k = 0, . . . , K according to (3.5),

(3.6) and (3.8).
6: Compute the shape function and the envelope function in the t-space

s(tl) =
K∑

k=−K

ckeiktl , l = 1, . . . , N,

a(tl) = interpolate(θ̄j, aθ (θ̄j), θ (tl)),

where c−k = c∗
k is the complex conjugate of ck. The interpolation is also implemented by the

cubic spline.

4. The signal with varying shape function
For non-stationary signals, the shape function may change over time. In many applications, it is
important to characterize the changing of the shape function, which could reveal the physical
mechanism under the signal. In [24], inspired by the concept of the degree of nonlinearity
which was proposed by Huang et al. [20], we assume that the shape function of the signal is
governed by a second-order ordinary differential equation (ODE) with polynomial nonlinearity.
Then we formulated an optimization problem to calculate the coefficients of the ODE. The
coefficients of the second-order ODE are used to describe the changing of the shape function.
Using these techniques, we can see clearly how the shape function changes and detect the time
when significant change occurs. In order to apply this method to detect the changing of the shape
function, we need to develop one local method to extract the ‘instantaneous’ shape function,
which is the main purpose of this section.

The idea we use here is straightforward. First, we cut the whole signal into a number of small
pieces and apply the method proposed in the previous section to obtain the shape function in each
piece. Then we can get a series of shape functions which could show us how the shape function
varies.
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Suppose we have a signal f = ( f (t1), . . . , f (tN)) which is sampled at t1, . . . , tN , and the phase
function θ = (θ (t1), . . . , θ (tN)) is also given. For each tm, m = 1, . . . , N, we want to use the signal
around tm to get a shape function.

First, we extract a small piece of signals fm and the phase function θm around tm, the length of
fm depends on the phase function θ ,

fm = fTχT and θm = θT,

where fT = ( f (tj))j∈T and θT = (θ (tj))j∈T. Here, T = {1 ≤ j ≤ N : |θ (tj) − θ (tm)| ≤ μπ} and

χT =
(

1
2

(
1 + cos

( tj

μ

)))
j∈T

.

Here, μ is a parameter to control the length of the segment. In this paper, we choose μ = 3, which
means that, for each point, we localize the signal within three local periods to extract the shape
function.

Once we get the segments fm and θm, the shape function can be obtained by using the method
described in the previous section. For each tm, repeat this process; then we get a series of shape
functions which could capture the change of the shape function.

5. Numerical results
In this section, we will present some numerical results to demonstrate the performance of our
algorithm.

Example 5.1. The first example is a simple synthetic signal which is generated by the following
formula:

θ (t) = 40π t + 2 cos(6π t), (5.1)

a(t) = 1
2 + sin(2π t)

(5.2)

and f (t) = a(t)
1.1 + cos[θ (t) + cos(2θ (t))]

. (5.3)

From the phase function, θ (t) + cos(2θ (t)) in (5.3), it is clear that the signal has intra-wave
frequency modulation. If we do not insist that the shape function must be a cosine function, then
the phase function becomes θ given in (5.1), which is much smoother than f (t), and the shape
function s(t) has the form 1/(1.1 + cos(t + cos 2t)). In figure 2, the shape function given by our
method is shown. As we can see, our method could capture the shape function very accurately.
Next, we add Gaussian noise, 0.3X(t), to the clean signal to test the robustness of our method.
X(t) is the standard Gaussian noise with zero mean and variance σ 2 = 1. The result is shown in
figure 3. Even with noise, our method still recovers the shape function with reasonable accuracy.

Example 5.2 (Duffing equation). In the second example, the signal is given by the solution
of the Duffing equation. We use this example to demonstrate the importance of the intra-wave
frequency modulation in some complex dynamical system.

The Duffing equation is a nonlinear ODE which has the following form:

d2u
dt2 + u + εud = γ cos(βt), (5.4)

where ε is a small parameter, γ is the amplitude of the driving force and β is the basic frequency
of the driving force.
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Figure 2. (a) The original data in example 5.1. (b) The shape function obtained by our method (blue) and the exact shape
function (red). (Online version in colour.)
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Figure 3. (a) The noise data f (t) + 0.3X(t), where f (t) is given in example 5.1 and X(t) is the white noise with standard
derivativeσ 2 = 1. (b) The shape function obtained by our method (blue) and the exact shape function (red). (Online version in
colour.)

The Duffing equation can be solved by a perturbation method (e.g. [25]). The solution is
expressed as a series in terms of the small parameter ε as follows:

u(t) = u0(t) + εu1(t) + ε2u2(t) + · · · . (5.5)

Substituting the series (5.5) into the original equation (5.4), we can obtain the equations
for uj(t), j = 0, 1, 2, . . ., by matching the coefficients of different order of ε. To simplify the
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Figure 4. (a) The solution of the Duffing equation; (b) the shape function s; (c) the Fourier coefficients of s. (Online version in
colour.)

derivation, we replace the real driving force γ cos(βt) by γ eiβt. The resulting equations for uj are
given below:

O(1) :
d2u0

dt2 + u0 = γ eiβt,

O(ε) :
d2u1

dt2 + u1 = −(u0(t))d,

O(ε2) :
d2u2

dt2 + u2 = −d(u0(t))d−1u1(t).

...
...

From these equations, we get

u0(t) = c0 eiβt, u1(t) = c1 eidβt, u2(t) = c2 ei(2d−1)βt, . . . , (5.6)

where c0 = γ /(1 − β2), c1 = −cd
0/(1 − d2β2), c2 = −dcd−1

0 c1/(1 − (2d − 1)2β2), . . ..
Therefore, we can approximate the solution of equation (5.4) by an infinite series in ε,

u(t) =
∞∑

j=0

cjε
j ei( j(d−1)+1)βt. (5.7)

Then, using the model of the shape function, (1.3), the shape function of the above solution is
given by

s(t) =
∞∑

j=0

cjε
j ei( j(d−1)+1)t. (5.8)

From this expression for the shape function, we observe a very interesting phenomenon. The
Fourier coefficients of the shape function of the solution of (5.4) should be 0 for the wavenumber
k = 2, . . . , d − 1. Now if we do not have any prior knowledge of the parameters ε, d, γ and β, and
we are given only one solution of equation (5.4), we can still estimate the degree of nonlinearity d
by analysing the Fourier coefficients of the shape function of this particular solution.

Next, we will use a set of parameters, ε = −1, γ = 0.1, β = 1
25 and d = 3, to generate a specific

solution of (5.4), which is shown in figure 4a. The initial condition is u(0) = u′(0) = 1. We remark
that the parameters we use here are the same as those in Huang’s original EMD paper [3]. The
shape function extracted from the solution is given in figure 4b and the Fourier coefficients are
given in figure 4c.

We also add Gaussian noise X(t) with variance σ 2 = 1 to the original solution of the Duffing
equation. Figure 5 shows the corresponding results. We can see that the shape function extracted
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Figure 5. (a) The solution of the Duffing equation with noise X(t); (b) the shape function s; and (c) the Fourier coefficients of s.
(Online version in colour.)

from the noisy signal still retains the main characteristics of the shape function extracted from the
signal without noise.

As we can see from figure 4, when the solution is not polluted by noise, the Fourier coefficient
of the shape function is almost 0 for the wavenumber k = 2. From the previous discussion, this
actually implies that d = 3 in the Duffing equation if we know that the signal comes from an ODE
of the form given in (5.4). When the solution is corrupted by noise, as shown in figure 5, the
Fourier coefficient at k = 2 is also much smaller than the Fourier coefficients at k = 1 and k = 3,
which strongly suggests that d = 3 in the original Duffing equation. This phenomenon may be
very special, but it suggests that some quantities, such as the deviation of the Fourier coefficients
of the shape function, may reflect some important feature of the underlying physical system.
This idea is similar in spirit to the definition of the degree of nonlinearity introduced by Huang
et al. in [20]. They used the deviation of the instantaneous frequency to quantify the degree of
nonlinearity,

DN =
〈(

IF − IFz

IFz

)2
〉1/2

, (5.9)

where IF stands for the instantaneous frequency, IFz stands for the constant mean frequency over
one wave cycle and 〈·〉 denotes the average over one wave cycle.

Actually, the deviation of the instantaneous frequency is closely related to the Fourier
coefficients of the shape function. When the Fourier coefficients are concentrated at k = 1, there
is no intra-wave frequency modulation, which implies that the degree of nonlinearity is zero.
If the shape function has large Fourier coefficients at k �= 1, the intra-wave modulation of the
instantaneous frequency is also very large; in that case, the degree of nonlinearity would be large.

This example shows that the shape function may contain a key feature that characterizes the
degree of nonlinearity of a signal. In this paper, we just make this observation. Whether or not this
observation is true for more general data still requires further investigation. The shape function
captures a certain key nonlinear feature of the signal. The discussion of the degree of nonlinearity
based on the shape function will appear in our subsequent paper. In the current paper, we will
focus on the computation of the shape function.

Actually, in this example, the instantaneous frequency with intra-wave modulation could be
recovered from the shape function. After the normalization to make max s = 1 and min s = −1, we
can express s(t) in terms of cos φ(t) by taking

φ(t) = arccos(s(t)).
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Figure 6. (a) The instantaneous frequency recovered from the shape function for the solution of the Duffing equation; (b) the
instantaneous frequency recovered from the shape function for the solution of the Duffing equation with noise; and (c) the
instantaneous frequency given by the EMD for the noise-free solution in one wave cycle. (Online version in colour.)

From the phase function φ, we can recover the instantaneous frequency with intra-wave
modulation by defining the instantaneous frequency as

IFs = dφ(t)
dt

= φ′(t).

By adopting the definition of the degree of nonlinearity in (5.9), we have the following definition
of the degree of nonlinearity with the instantaneous frequency recovered from the shape function:

DNs =
⎛
⎝ 1

2π

∫ 2π

0

(
φ′(τ ) − φ̄′

φ̄′

)2

dτ

⎞
⎠

1/2

,

where φ̄′ = (1/2π)
∫2π

0 φ′(τ ) dτ .
We remark that the instantaneous frequency, IFs, recovered from the shape function is not

exactly the same as the instantaneous frequency in the EMD method, since, in IFs, only the intra-
wave modulation is taken into account; in the EMD method, the instantaneous frequency includes
both the intra-wave and inter-wave modulation. The difference can be clearly seen in figure 6.
However, these two instantaneous frequencies actually give an equivalent degree of nonlinearity,
as shown in appendix A. The reason for this is that in the definition of the degree of nonlinearity,
(5.9), the inter-wave modulation is actually factored out. This fact also shows that the nonlinearity
is encoded in the shape function, while the amplitude and instantaneous frequency have no
contribution to the nonlinearity if the definition of the degree of nonlinearity given by Huang
et al. is adopted.

In figure 6a,b, we give the instantaneous frequencies recovered from the shape function for the
solution without and with noise in one wave cycle. As we can see, they both have very strong
intra-wave modulation. And even with a large noise perturbation to the solution of the Duffing
equation, we can still get the instantaneous frequency that captures the main feature of the
underlying Duffing equation. For the noise-free signal, the EMD method could also capture the
intra-wave frequency modulation, as shown in figure 6c. The instantaneous frequency obtained
from the shape function is not the same as that obtained by the EMD method. The difference
between the instantaneous frequencies obtained by the two methods is due to the fact that the
inter-wave modulation is not included in the shape function; see appendix A for a detailed
explanation.

When the signal is polluted by noise, the EMD/EEMD methods seem to have difficulty
in capturing the intra-wave frequency modulation. In figure 7, the IMFs obtained by the
EMD/EEMD for the noise-free signal and the noisy signal are shown. When the signal is free
of noise, we can see that there is a sharp cusp-like pattern near the crests and the troughs of
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Figure 7. The IMFs given by the EMD/EEMD in the noise-free case (a) and the noisy case (b). (Online version in colour.)
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Figure 8. (a) The original electrocardiogram (ECG) data and (b) the shape function obtained by our method for the ECG data.
(Online version in colour.)

the wave. Such a pattern is responsible for the strong intra-wave modulation of the solution, as
shown in figure 6c. However, for the IMF extracted from the noisy signal by the EEMD method,
such a sharp pattern near the crests and the troughs of the wave is smoothed out. As a result,
the intra-wave frequency modulation is significantly reduced. On the other hand, our method
based on the shape function still gives the instantaneous frequency with intra-wave modulation,
as shown in figure 6b.

Example 5.3 (ECG data). In this example, we consider a section of electrocardiogram (ECG)
data. The length of the data used here is 16 s. Figure 8a shows the shape function extracted from
this set of ECG signals. We remark that it is challenging to extract the shape function from ECG
data since the data have sharp peaks in each period. This means that the shape function is not
regular and needs many Fourier coefficients to represent it accurately. The shape function that we
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have extracted seems to have all the characteristics of a typical ECG period. The interpretation of
the significance of the shape function requires expertise in medicine and is beyond the scope of
this paper.

6. Concluding remarks
In this paper, we present an efficient and robust method to extract the shape function from signals
with intra-wave frequency modulation by exploiting the intrinsic low-rank structure of the data.
This method works only for those signals with one dominating shape function. Extracting shape
functions for signals with multiple shape functions is much more involved and requires more
effort. Once the shape function is obtained, we can recover the instantaneous frequency with
intra-wave modulation. We would like to emphasize that the instantaneous frequency obtained
from the shape function is very stable to noise perturbation. As a consequence, we can capture
the intra-wave frequency modulation very well even for noise-polluted signals. In comparison,
some existing methods such as the EMD/EEMD seem to have difficulty in capturing the strong
intra-wave frequency modulation for noisy signals. The Fourier coefficients of the shape function
seem to contain important information regarding the degree of nonlinearity of the signal. Since
our method of extracting the shape function is quite stable with respect to noise perturbation, one
can potentially use the Fourier coefficients of the shape function to give an alternative definition
of the degree of nonlinearity of a signal, as done by Huang et al. in [20]. Further studies in this
direction will be reported in our future work.
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Appendix A. Degree of nonlinearity
Consider an IMF with a constant amplitude a(t) = 1. Let θE(t) be the phase function in the EMD
method and θS(t) be the corresponding phase function in the model with the shape function.
We assume that the shape function has been normalized so that its amplitude is bounded by 1,
i.e. maxt s(t) = 1 and mint s(t) = −1. Denote φ(t) = arccos(s(t)).

Using the fact that both cos θE(t) and s(θS(t)) are the representations of the same signal, we
have

cos θE(t) = s(θS(t)),

which implies that

θE(t) = φ(θS(t)).

Thus, the instantaneous frequency in the original EMD method can be computed as follows:

IF = d
dt

θE(t) = φ′(θS(t))(θS)′(t), (A 1)

and the mean frequency over one wave cycle, IFz, becomes

IFz = 1
T

∫ t1

t0

φ′(θS(t))(θS)′(t) dt,
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where the time interval [t0, t1] contains one wave cycle and T = t1 − t0. Then we have θS(t1) −
θS(t0) = 2π , which gives that

IFz = 1
T

∫ 2π

0
φ′(τ ) dτ .

Using the fact that θS is a smooth function which is approximately a constant over one wave cycle,
it follows that

[(θS)′(t)]T ≈ θS(t1) − θS(t0) = 2π , ∀t ∈ [t0, t1].

Using the above approximation, we get

IFz ≈ (θS)′(t)

(
1

2π

∫ 2π

0
φ′(τ ) dτ

)
. (A 2)

Recall that the degree of nonlinearity is defined as

DN =
〈(

IF − IFz

IFz

)2
〉1/2

.

Substituting (A 1) and (A 2) into the above definition, we have

DN =
〈(

IF − IFz

IFz

)2
〉1/2

≈
〈(

φ′(θS(t)) − φ̄′

φ̄′

)2〉1/2

≈
(

1
2π

∫ 2π

0

(
φ′(τ ) − φ̄′

φ̄′

)2

dτ

)1/2

,

where φ̄′ = (1/2π)
∫2π

0 φ′(τ ) dτ .
This formal derivation shows that using the instantaneous frequency recovered from the shape

function actually gives an equivalent definition of the degree of nonlinearity by using the shape
function.
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