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Abstract

We investigate the self-similar singularity of a 1D model for the 3D axisymmetric Euler
equations, which approximates the dynamics of the Euler equations on the solid
boundary of a cylindrical domain. We prove the existence of a discrete family of
self-similar profiles for this model and analyze their far-field properties. The self-similar
profiles we find are consistent with direct simulation of the model and enjoy some
stability property.

Introduction andmain results
Whether the 3D Euler equations develop finite-time singularity is regarded as one of the
most important open problems in mathematical fluid mechanics, and interested readers
may consult the surveys [2,9,13] and references therein for more historical background
about this outstanding problem. In this paper, we investigate the self-similar singularity of
a 1D model for the 3D axisymmetric Euler equations, which approximates the dynamics
of the axisymmetric Euler equations on the solid boundary of a cylindrical domain. It is
hoped that this work may help to analyze the singularity of the 3D Euler equations.
The investigated model is motivated by the numerical computation of Luo and Hou

[21]. In that computation, the 3D axisymmetric Euler equations [22] are solved in a
cylinder,

u1,t + uru1,r + uzu1,z = 2u1φ1,z, (1.1a)

w1,t + urw1,r + uzw1,z = (u21)z , (1.1b)

− [∂2r + (3/r)∂r + ∂2z
]
φ1 = w1, (1.1c)

where ur = −rφ1,z and uz = 2φ1 + rφ1,r are radial and axial velocity, and u1 = uθ /r,
w1 = wθ /r, and φ1 = φθ/r are transformed angular velocity, vorticity, and stream
function, respectively.
According to the numerical results reported in [21], the solutions to (1.1) develop

self-similar singularity in the meridian plane for certain initial conditions with no flow
boundary condition at r = 1. The solid boundary and special symmetry of uθ , ωθ , and ψθ

in the axial direction seem to make the flow in the meridian plane remain hyperbolic near
the singularity point and be responsible for the observed finite-time singularity. A 1D
model which approximates the dynamics of the 3D axisymmetric Euler equations along
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the solid boundary of the cylindrical domain r = 1 has been proposed and investigated
by Hou and Luo in [15]. The finite-time singularity of this model is proved very recently
by Choi, Hou, Kiselev, Luo, Sverak, and Yao in [6]. Motivated by the new singularity for-
mation scenario in [21], Kiselev and Sverak [17] constructed an example of 2D Euler
solutions in a setting similar to [21] and proved that the gradient of vorticity exhibits dou-
ble exponential growth in time, which is known to be the fastest possible rate of growth
for the 2D Euler equations. This example provides further evidence that the new singu-
larity formation scenario reported in [21] is an interesting candidate to investigate the 3D
Euler singularity.
Inspired by the work of [15] and [17], Choi, Kiselev, and Yao proposed the following 1D

model (we call it the CKY model for short) [7] on [ 0, 1]:

∂tw + u∂xw = ∂xθ , (1.2a)

∂tθ + u∂xθ = 0, (1.2b)

u(x, t) = −x
∫ 1

x

w(y, t)
y

dy, (1.2c)

w(0, t) = 0, θ(0, t) = 0, ∂xθ(0, t) = 0. (1.2d)

This 1D model can be viewed as a simplified approximation to the 1D model proposed
by Hou and Luo in [15], and its finite-time singularity from smooth initial data has been
proved in [7]. Like the 1D model of Hou and Luo, the CKY model approximates the 3D
axisymmetric Euler equations (1.1) on the boundary of the cylinder r = 1 with

θ ∼ u21, w ∼ w1, u ∼ uz. (1.3)

The positivity of θx(x, t) near the origin creates a compressive flow which is respon-
sible for the finite-time singularity of this model (1.2), and we will use this fact in our
construction in the next section. Numerical simulation suggests that this model develops
finite-time singularity in a way similar to that of the 3D axisymmetric Euler equations
on the boundary of the cylinder [21]. Moreover, the singular solutions to this model also
appear to develop self-similar structure. The main purpose of this paper is to prove the
existence of self-similar singular solutions to this CKY model from smooth initial data.
We make the following self-similar ansatz to the local singular solutions,

θ(x, t) = (T − t)cθ �
(

x
(T − t)cl

)
, (1.4a)

u(x, t) = (T − t)cuU
(

x
(T − t)cl

)
, (1.4b)

w(x, t) = (T − t)cwW
(

x
(T − t)cl

)
. (1.4c)

Plugging these self-similar ansatz into (1.2) and matching the exponents of
(T − t) for each equation, we get

cw = −1, cu = cl − 1, cθ = cl − 2. (1.5)
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And the self-similar profiles U(ξ), W (ξ), and �(ξ) satisfy the following equations
defined on R+,

(2 − cl)�(ξ) + clξ�′(ξ) + U(ξ)�′(ξ) = 0, (1.6a)

W (ξ) + clξW ′(ξ) + U(ξ)W ′(ξ) − �′(ξ) = 0, (1.6b)

U(ξ) = −ξ

∫ ∞

ξ

W (η)

η
dη. (1.6c)

According to (1.2d), we require the following boundary condition for the self-similar
profiles at ξ = 0,

W (0) = 0, �(0) = 0, �′(0) = 0. (1.7a)

If we assume that the finite-time singularity of this CKY model is an isolated point sin-
gularity, as we have observed in our numerical simulation, then the ansatz (1.4) requires
the following matching condition for the self-similar profiles at infinity,

�(ξ) ∼ O
(
ξ1−2/cl

)
, W (ξ) ∼ O

(
ξ−1/cl

)
, U(ξ) ∼ O

(
ξ1−1/cl

)
, ξ → +∞.

(1.7b)

We refer (1.6) as the self-similar equations, which can be easily verified to enjoy the
following scaling-invariant property:

U(ξ) → 1
λ
U(λξ), W (ξ) → W (λξ), �(ξ) → 1

λ
�(λξ), λ > 0. (1.8)

In this paper, we investigate the solutions to the self-similar equations (1.6). A key fact
for the CKY model is that the velocity and the vorticity field satisfy a local relation (1.9c),
and the self-similar equation is equivalent to the following ODE system

(2 − cl)�(ξ) + clξ�′(ξ) + U(ξ)�′(ξ) = 0, (1.9a)

W (ξ) + clξW ′(ξ) + U(ξ)W ′(ξ) − �′(ξ) = 0, (1.9b)
(
U(ξ)

ξ

)′
= W (ξ)

ξ
, (1.9c)

with a decay condition

lim
ξ→+∞

U(ξ)

ξ
= 0. (1.10)

We first ignore the decay condition (1.10) and consider the ODE system (1.9) which
has a singularity at the origin since the coefficients of the first-order derivatives vanish at
ξ = 0.We confine ourselves to analytic solutions of (1.9) and use the power series method
to construct the manifold of local solutions. We prove that for fixed cl and leading order
of �(ξ) at the origin, there exist unique (up to rescaling) analytic solutions to the singular
ODE system, and these local solutions can be extended to the whole R+ through the
ODE system (1.9). Then, we show that the decay condition (1.10) determines the scaling
exponent cl, and there exist a discrete family of cl, corresponding to different leading
orders of �(ξ), to make the constructed self-similar profiles satisfy the decay condition
(1.10). We achieve this with the assistance of numerical computation and rigorous error
control. Given the decay condition (1.10), we further analyze the far-field properties of the
constructed self-similar profiles and show that they satisfy the desiredmatching condition
(1.7b) at infinity.
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Our main result is the following theorem:

Theorem 1.1. There exist a discrete family of scaling exponents cl (determined by the
decay condition (1.10)), such that the self-similar equations (1.6) have analytic solu-
tions U(ξ),W (ξ), and �(ξ) with boundary and far-field conditions (1.7). This family of
solutions correspond to different leading orders of �(ξ) at the origin, s ≥ 2, where

s = min
{
k ∈ N+| dk

dξ k
�(0) �= 0

}
. (1.11)

Moreover,W (ξ), U(ξ)ξ−1, and�(ξ)ξ−1 are analytic with respect to ζ = ξ−1/cl at ζ = 0.

Remark 1.1. We only consider analytic self-similar profiles in our construction, thus our
results do not rule out possible existence of self-similar profiles that are non-analytic.

An interesting fact for this model is that self-similar profiles (1.6) exist for a discrete set
of scaling exponent cl, corresponding to different leading orders of�(ξ). We also find that
these self-similar profiles are consistent with direct simulation of the 1D model and enjoy
some stability property in the sense that for fixed leading order of θ(x, 0) at x = 0, the
singular solutions using different initial conditions converge to the same set of self-similar
profiles.
The self-similar profiles we construct are non-conventional in the sense that the velocity

does not decay to zero at infinity but grows with certain fractional power. As a result,
the velocity field at the singularity time is Hölder continuous. Such behavior was also
observed in the numerical simulation of the 3D Euler equations in [15], which is very
different from the Leray type of self-similar solutions of the 3D Euler equations, whose
existence has been ruled out under certain decay assumptions on the self-similar profiles
[3-5].
Our method of analysis is of interest by itself. The existence result relies on the use of a

power series method to deal with the singularity of the self-similar equations at the origin,
and some very subtle and relatively sharp estimates of the self-similar profiles. However,
the method of analysis presented in this paper does not generalize directly to study the
singularity formation of the full 3D Euler equations. Due to the global nature of the Biot-
Savart law for the 3D Euler equations, we need a new set of techniques to control the
nonlinear interaction terms.
Another novelty in our analysis is the use of numerical computation with rigorous error

control, which is an important step in establishing the existence of self-similar solutions.
Our strategy to rigorously control the numerical error, including the truncation error
of the integration scheme for an ODE system and the roundoff error introduced due to
floating point operation, is quite general and can be used for other purposes.
The rest of this pager is organized as follows. We first construct the local self-similar

profiles using a power series method and extend them to the whole R+. Then we show
that the decay condition in the Biot-Savart law determines the scaling exponents in the
self-similar solutions. After that we prove the existence of self-similar profiles for different
leading orders of �(ξ) at the origin. We also analyze the far-field behavior of the self-
similar profiles. Finally, we present our numerical results.
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Construction of the near-field solutions
In this section, we ignore the decay condition (1.10) and use a power series method to
construct the manifold of local analytic solutions to (1.9). We also show that these local
solutions can be extended to the whole R+.
The use of power series to analyze analytic differential equations is classical and can

be traced back to the Cauchy-Kowalevski Theorem [11,18]. At a regular point of an ODE
system, the manifold of local solutions can be parametrized by the initial values of the
solution [8]. For the non-linear system (1.9), we consider its analytic solutions near a
singular point (the origin) and show that the manifold of local analytic solutions can be
parameterized by the values of the leading order of �(ξ).

Theorem 2.1. For fixed cl > 2, and leading order of �(ξ), s ≥ 2, there exist a unique (up
to rescaling) local analytic solution to (1.9) with boundary condition (1.7a).

Proof. According to the boundary condition of the self-similar profiles (1.7a), we assume

�(ξ) =
∞∑
k=2

�kξ
k , U(ξ) =

∞∑
k=1

Ukξ
k , W (ξ) =

∞∑
k=1

Wkξ
k . (2.1a)

Based on the local relation in the Biot-Savart law (1.9c), we have

Wk = kUk+1. (2.1b)

Plugging (2.1) into (1.9) and matching the kth (k ≥ 1) order term ξ k , we get

(2 − cl) �k + kcl�k +
k−1∑
m=1

(k − m + 1)�k−m+1Um = 0, (2.2a)

(k − 1)Uk + cl(k − 1)2Uk +
k−1∑
m=1

Um(k − m)2Uk−m+1 − k�k = 0. (2.2b)

Note that if initially the leading order of θ(x, 0) at the origin is s, then according to
(1.2b), s will remain as the leading order of the solution θ(x, t) as long as the velocity field
is smooth. Correspondingly, we assume that the leading order of �(ξ) at the origin is s
(1.11). As we have discussed in the introduction section, ∂xθ(x, t) should be positive near
x = 0 to produce finite-time singularity, so in the corresponding self-similar profile (2.1a),
we require that

�i = 0 for i < s, �s > 0, s ≥ 2. (2.3)

To make (2.2a) hold for 1 ≤ k ≤ s, we require

(2 − cl + scl + sU1) �s = 0. (2.4)

Since �s �= 0, we require

U1 = (1 − s)cl − 2
s

. (2.5)

To make (2.2b) hold for 2 ≤ k < s, we require[
(k − 1) + cl(k − 1)2 + U1(k − 1)2

]
Uk = 0. (2.6)

Since cl > 2, and
[
(k − 1) + cl(k − 1)2 + U1(k − 1)2

]
> 0, we require

Uk = 0, 1 < k < s. (2.7)
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And to make (2.2b) hold for k = s, we require

Us = s2�s
(scl − cl − s + 2) (s − 1)

> 0. (2.8)

For k > s, to make (2.2) hold, the coefficients �k and Uk should satisfy

�k = −∑k−1
m=s Um(k − m + 1)�k−m+1

(k/s − 1)(cl − 2)
, (2.9a)

Uk = k�k −∑k−1
m=s Um(k − m)2Uk−m+1

(k − 1) + (cl/s − 2/s)(k − 1)2
, (2.9b)

which means the power series (2.1) can be determined inductively.
To complete the proof, we need to verify that the constructed power series (2.1) con-

verge for ξ small enough. We choose u0, θ0, r > 0 such that the following condition holds

|Us| ≤ 1
s2
u0rs, |�s| ≤ 1

s
θ0rs,

(s + 1)u0r
cl/s − 2/s

≤ 1,
9
4

θ0/u0 + u0r
cl/s − 2/s

< 1. (2.10)

We can achieve this by choosing u0r and θ0/u0 small enough to make the last two hold
and then choosing r large enough to make the first two hold. For example, let

A = min
{

cl − 2
s(s + 1)

,
2(cl − 2)

9s

}
, B = 2(cl − 2)

9s
, C = max

{
s�s
AB

,
s4�s

A (scl − cl − s + 2)

}
.

(2.11)

Then, the choice of

u0 = A
C1/(s−1) , θ0 = u0B, r = C1/(s−1), (2.12)

will make (2.10) hold. And we will use induction to prove that for all k ≥ s,

|Uk| ≤ 1
k2

u0rk , |�k| ≤ 1
k
θ0rk . (2.13)

For k = s, (2.13) holds by (2.10). Assume now that for s ≤ k < n, (2.13) holds, then for
k = n ≥ s + 1, based on (2.9a), we have

|�n| ≤
∑n−1

m=s |Um||(n − m + 1)||�n−m+1|
(n − s)(cl/s − 2/s)

. (2.14)

Using the induction assumption and the fact that
∑∞

m=2
1
m2 ≤ 1, we have

|�n| ≤ θ0u0rn+1

(n − s) (cl/s − 2/s)
≤ θ0rn

n
× (s + 1)u0r

cl/s − 2/s
≤ θ0rn

n
, (2.15)

where we have used the fact n ≥ s + 1 in the second inequality and (2.10) in the third
inequality. Thus, (2.13) holds for �n. Based on (2.9b), we have

|Un| ≤ |n�n| +∑n−1
m=s |Um(n − m)2||Un−m+1|

(cl/s − 2/s) (n − 1)2
(2.16)

Using the induction assumption and the fact that
∑∞

m=2
1
m2 ≤ 1, we get

|Un| ≤ θ0rn + (u0)2rn+1

(cl/s − 2/s) (n − 1)2
≤ u0rn

n2
× θ0/u0 + u0r

cl/s − 2/s
× n2

(n − 1)2
≤ u0rn

n2
, (2.17)

where we have used (2.10) and the fact that n ≥ 3, n2/(n−1)2 ≤ 9/4 in the last inequality.
So we get that (2.13) holds by induction, which implies that the power series (2.1) con-

verge in some interval [ 0, 1/r). Note that we have one degree of freedom �s (2.4) in
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constructing the power series solutions, which can be easily verified to play the same role
as the rescaling parameter (1.8). With this, we complete the proof of Theorem 2.1.

Remark 2.1. We require cl > 2 in Theorem 2.1. If cl = 2, there exist only trivial solutions
to (1.6). If cl < 2, then cθ < 0 according to (1.5), which means θ(x, t) blows up in finite time
according to (1.4). This is impossible since θ(x, t) is transported by the fluid (1.2b).

The power series (2.1) that we construct only converge in a short interval near ξ = 0.
However, these local self-similar profiles can be extended to +∞.

Theorem 2.2. For cl > 2, the analytic solutions (2.1) that we construct in Theorem 2.1
can be extended to the whole R+, resulting in global solutions to the ODE system (1.9).
Moreover, we have that for ξ > 0,

W (ξ) > 0, �(ξ) > 0. (2.18)

Proof. Since cl +U1 = (cl −2)/s > 0, �s > 0,Ws = (s−1)Us > 0, based on the leading
orders of the power series (2.1), we can choose ε < 1

r small enough such that

clε + U(ε) > 0, W (ε) > 0, �(ε) > 0. (2.19)

Then, we consider extending the self-similar profiles from ξ = ε to +∞ by solving the
ODE systemwith initial conditions given by the power series (2.1). Let Ũ(ξ) = clξ +U(ξ),
then according to (1.9), Ũ(ξ), �(ξ), andW (ξ) satisfy the following ODE system,

�′(ξ) = (cl − 2)�(ξ)

Ũ(ξ)
, (2.20a)

W ′(ξ) = (cl − 2)�(ξ)

Ũ(ξ)2
− W (ξ)

Ũ(ξ)
, (2.20b)

(
Ũ(ξ)

ξ

)′
= W (ξ)

ξ
. (2.20c)

The right hand side of (2.20) is locally Lipschitz continuous for Ũ(ξ) �= 0, ξ �= 0, so we
can solve the ODE system from ε and get its solutions on interval [ ε,T). We first prove
thatW (ξ) is positive on [ ε,T). Otherwise, denote ξ = t as the first timeW (ξ) reaches 0,
i.e.

t = inf {s ∈[ ε,T) : W (s) ≤ 0} . (2.21)

Then, we haveW (ξ) is positive on [ ε, t), and

W ′(t) ≤ 0. (2.22)

Based on (2.20c), Ũ(ξ)
ξ

is increasing on [ ε, t), thus Ũ(ξ) > Ũ(ε) > 0 for ξ ∈[ ε, t]. Then,
based on (2.20a), �(ξ) is increasing on [ ε, t], and �(t) > 0. Evaluating (2.20b) at ξ = t,
we get

W ′(t) = (cl − 2)�(t)
Ũ(t)2

> 0, (2.23)

which contradicts with (2.22). So,W (ξ) > 0 and consequently �(ξ) > 0 for ξ ∈[ ε,T).
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Using the fact thatW (ξ) > 0 in (2.20c), we have that for ξ > ε,

Ũ(ξ) ≥ C0ξ . (2.24)

Using this lower bound in (2.20a), we get

�′(ξ) ≤ C1�(ξ)

ξ
. (2.25)

This implies that for ξ > ε

�(ξ) ≤ C2ξ
C1 . (2.26)

Using (2.26), (2.24) and the fact thatW (ξ) is positive in (2.20b), we have

W ′(ξ) ≤ C3ξ
C1−2. (2.27)

Thus for ξ > ε,

W (ξ) ≤ C4ξ
C1 . (2.28)

Finally using (2.28) in (2.20c), we get that for ξ > ε,

Ũ(ξ) ≤ C5ξ
C1+1. (2.29)

The C0, C1,. . .C5 in the above estimates are positive constants. These a priori esti-
mates, (2.24), (2.29), (2.26) and (2.28), together imply that we can get solutions to (2.20)
on [ ε,+∞), i.e., the local self-similar profiles constructed using power series can be
extended to +∞.

Determination of the scaling exponents
In constructing self-similar profiles in the previous section, we did not consider the decay
condition (1.10). In this section, we show that the decay condition determines the scaling
exponent cl, i.e., only for certain cl do the constructed self-similar profiles satisfy the decay
condition. Recall that for fixed leading order of �(ξ), s, and �s = 1, the constructed
profiles U(ξ), �(ξ), andW (ξ) depend on cl only. So we can define a function G(cl) as

G(cl) = lim
ξ→+∞

U(ξ)

ξ
. (3.1)

We will prove that G(cl) < +∞ and it is a continuous function of cl. Then, the exis-
tence of cl to make the decay condition (1.10) hold will follow from the intermediate value
theorem if we can show that there exist cll and crl such that

G
(
cll
)

< 0, G
(
crl
)

> 0. (3.2)

Theorem 3.1. For fixed cl > 2 and leading order of�(ξ), s ≥ 2, construct the power series
(2.1) with �s = 1 and extend the profiles to R+ by solving (2.20). Then,

G(cl) = lim
ξ→∞

U(ξ)

ξ
< +∞, (3.3)

and G(cl) is a continuous function of cl.

We first make the following change of variables,

η = ξ1/cl , Ŵ (η) = W (ξ), Û(η) = U(ξ)ξ−1, �̂(η) = �(ξ)ξ−1+2/cl . (3.4)
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Then, we have

G(cl) = lim
η→+∞ Û(η), (3.5)

and the ODE system satisfied by Û(η), �̂(η), and Ŵ (η) is

�̂′(η) = (2/cl − 1) �̂(η)Û(η)

η + 1/clÛ(η)η
, (3.6a)

Ŵ ′(η) = −Ŵ (η)

η + 1/clÛ(η)η
+ (1 − 2/cl)�̂(η)

(1 + 1/clÛ(η))2η3
, (3.6b)

Û ′(η) = clŴ (η)

η
. (3.6c)

According to (2.5) and (2.18) and the fact that Û(η) is monotone increasing, we have

Û(η) > Û(0) = (1 − s)cl − 2
s

, Ŵ (η) > 0, �̂(η) > 0, for η > 0. (3.7)

Before proving Theorem 3.1, we will first prove the following two lemmas.

Lemma 3.1. For all cl > 2, G(cl) > −2.

Proof. Assume that for some cl > 2, G(cl) ≤ −2. Then, according to (3.7) and the fact
that Û(η) is increasing, we have that for all η > 0,

(1 − s)cl − 2
s

< Û(η) < −2. (3.8)

Then, we get

(2/cl − 1)Û(η)

1 + 1/clÛ(η)
≥ 2. (3.9)

It follows from (3.6a) that

�̂′(η) ≥ 2
�̂(η)

η
. (3.10)

By direct integration and (3.7), we have that for η large enough,

�̂(η) ≥ C1η
2. (3.11)

Using this estimate and (3.7) in (3.6b), we get

Ŵ ′(η) ≥ −C2Ŵ (η)

η
+ C3

η
. (3.12)

This implies(
ηC2Ŵ (η)

)′ ≥ C3η
C2−1. (3.13)

Then, we have that for η large enough,

ηC2Ŵ (η) ≥ C3
C2

ηC2 − C4. (3.14)

Using this lower bound in (3.6c), we get

Û ′(η) ≥ C5
η

− C6
ηC2+1 . (3.15)
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The constants C in the above estimates are positive and independent of η. The inequal-
ity (3.15) implies that Û(η) → +∞ as η → +∞, which contradicts with G(cl) ≤ −2.
This completes the proof of Lemma 3.1.

We add a subscript cl to indicate the dependence of the profiles on cl for the rest part of
this section:

Ûcl (η) = Û(η), Ŵcl (η) = Ŵ (η), �̂cl (η) = �̂(η). (3.16)

Lemma 3.2. Choose �s = 1 in constructing the power series (2.1), and extend the local
profiles to R+. Then for fixed η, Ûcl (η), Ŵcl (η), and �̂cl (η) are continuous functions of cl.

Proof. We need to prove that for any c0l > 2, Ûcl (η), �̂cl (η), and Ŵcl (η) as functions of
cl are continuous at cl = c0l . In our construction of the power series using (2.9), we can
easily see that the coefficients Uk and �k depend continuously on cl. And based on the
condition (2.10), there exist uniform upper bounds of these coefficients

|Uk| ≤ u0rk

k2
, |�k| ≤ θ0rk

k
, (3.17)

for cl in a neighborhood of c0l . This means there exists a fixed ε small enough, such that
Ŵcl (ε), �̂cl (ε), and Ûcl (ε) are continuous at c0l . Then, we use the continuous dependence
of ODE solutions on initial conditions and parameter to complete the proof of this lemma.

Now we begin to prove Theorem 3.1. We use an iterative method which enables us
to get shaper estimates of the profiles after each iteration. We finally attain that Ûcl (η)

converges uniformly to G(cl), with which we can complete the proof of this theorem.

Proof. Consider c0l > 2, we will prove that G(c0l ) < +∞, and G(cl) is continuous at
cl = c0l .
According to Lemma 3.1 and Lemma 3.2, there exist η0 large enough and a neigh-

borhood of c0l , I0 = (c1, c2) with c1 > 2, c2 < +∞, such that for cl ∈ I0 and
η > η0,

Ûcl (η) > Ûcl (η0) > −2 + ε1. (3.18)

Then for cl ∈ I0 and η > η0, there exists ε2 > 0, such that

(2/cl − 1) Ûcl (η)

1 + 1/clÛcl (η)
< 2 − ε2. (3.19)

Using this in (3.6a), we have that for cl ∈ I0 and η > η0,

�̂′
cl (η) ≤ (2 − ε2) �̂cl (η)

η
. (3.20)

Using direct integration and Lemma 3.2, we have that for cl ∈ I0, η > η0,

�̂cl (η) ≤ C1η
2−ε2 . (3.21)
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Using this upper bound of �̂(η) in (3.6b), we have that for cl ∈ I0, η > η0,

Ŵ ′
cl (η) ≤

(
−1

1 + 1/clÛcl (η)

)
Ŵcl (η)

η
+ C3η

−1−ε2 . (3.22)

The first term in (3.22) is negative according to (3.7) and the second term is integrable
for η > η0. Then using Lemma 3.2, we have that for cl ∈ I0, η > η0,

Ŵcl (η) < C4. (3.23)

Putting this upper bound in (3.6c) and using Lemma 3.2, we get that for cl ∈ I0, η > η0,

Ûcl (η) < C5 ln η. (3.24)

Putting this upper bound of Û(η) back in (3.6b), we have that for cl ∈ I0, η > η0,

Ŵ ′
cl (η) < −C6Ŵcl (η)

η ln η
+ C3η

−1−ε2 , (3.25)

which by direct integration gives that for cl ∈ I0, η > η0,

Ŵcl (η) exp
(∫ η

η0

C6
ζ ln ζ

dζ
)

< C7. (3.26)

Thus, we have that for cl ∈ I0 and η > η0,

Ŵcl (η) < C8/ ln η. (3.27)

Using this sharper upper bound of Ŵ (η) in (3.6c), we get that for cl ∈ I0, η > η0,

Ûcl (η) < C9 ln ln η. (3.28)

Again putting this sharper upper bound in (3.6b), we have that for cl ∈ I0, η > η0,

Ŵ ′
cl (η) < −C10Ŵcl (η)

η ln ln η
+ C3η

−1−ε2 . (3.29)

By direct integration, we get

Ŵcl (η) exp
(∫ η

η0

C11
ζ ln ln ζ

dζ
)

< C12. (3.30)

Since
∫ η

η0
C11

ζ ln ln ζ
dζ > C13(ln η)α − C14 for some α ∈ (0, 1), we have that for cl ∈ I0,

η > η0,

Ŵcl (η) < C15 exp
(−C13(ln η)α

)
. (3.31)

C1,C2, . . .C15 in the above estimates are all positive constants independent of η. Using
the upper bound of Ŵcl (η) (3.31) in (3.6c), we conclude that Ûcl (η) converges uniformly
as η → +∞ for cl ∈ I0 and complete the proof of this theorem.

To complete the proof of our main result Theorem 1.1, we still need to verify condi-
tion (3.2) for different s. And we leave this part to next section.

Existence of self-similar profiles
In this section, we verify (3.2) for s = 2, i.e., there exist cll, c

r
l > 2, such that G(cll) <

0, G(crl ) > 0, with which we can complete the first half of Theorem 1.1.

Lemma 4.1. Consider solving equations (3.6) with initial conditions given by power series
(2.1). For some η0 > 0, let u0 = Û(η0), θ0 = �̂(η0), and w0 = Ŵ (η0).
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If

u0 > 0, (4.1a)

then

G(cl) > 0. (4.1b)

If

u0 > −2, u0 + clw0 + (cl − 2) θ0

(u0 + 2) (1 + u0/cl) η20
< 0, (4.1c)

then

G(cl) < 0. (4.1d)

Proof. G(cl) = limη→+∞ Û(η), and Û(η) is increasing according to (3.6c) and (2.18). So
if u0 > 0, then G(cl) > u0 > 0; and we finish the first part of the Lemma (4.1b).
We prove the second part (4.1d) by contradiction. If G(cl) ≥ 0, then there exists η1 ∈

(η0,+∞] such that Û(η1) = 0, and for η ∈ (η0, η1), Û(η) > u0. According to (3.6a), we
have

�̂′(η) ≤ (2/cl − 1)u0
1 + u0/cl

�̂(η)

η
. (4.2a)

By direct integration, we get that for η ∈ (η0, η1),

�̂(η) ≤ θ0η
(1−2/cl)u0
1+u0/cl

0 η
(2/cl−1)u0
1+u0/cl . (4.2b)

Using this upper bound of �̂(η) and the fact that Û(η) < 0 for η ∈ (η0, η1) in (3.6b), we
get

(
Ŵ (η)η

)′ ≤ 1 − 2/cl
(1 + u0/cl)2

θ0η

(1−2/cl)u0
1+u0/cl

0 η
−u0−2
1+u0/cl . (4.3a)

Since u0 > −2, integrating (4.3a) from η0 to η, we have that for η ∈ (η0, η1),

Ŵ (η)η ≤ w0η0 + 2/cl − 1
(1 + u0/cl) (u0/cl − u0 − 1)

θ0

⎛
⎝η−1

0 − η

(1−2/cl)u0
1+u0/cl

0 η
−u0−1+u0/cl

1+u0/cl

⎞
⎠ .

(4.3b)

Putting this upper bound of Ŵ (η) in (3.6c) and integrating it from η0 to η1, we get

0 − u0 = Û (η1) − Û (η0) ≤ clw0 + (cl − 2) θ0

(u0 + 2) (1 + u0/cl) η20
, (4.4)

which contradicts (4.1c). Then, we complete the proof of this lemma.

We use numerical computation with rigorous error control to verify (4.1a) or (4.1c).
Computer programs have been used to prove mathematical theorems including, to name
a few, the four color theorem [1], Kepler conjecture [14], and some others [10,16,19]. One
method of computer-assisted proof is to use the interval arithmetic and inclusion princi-
ple to ensure that the output of a numerical program encloses the solution of the original
problem. One first reduces the computation to a sequence of the four elementary opera-
tions and then proceeds by replacing numbers with intervals and performing elementary
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operations between such intervals of representable numbers under appropriate rounding
rules.
To be precise, assume that x ∈[ xmin, xmax] and y ∈[ ymin, ymax], where xmin, xmin, ymin,

and ymax are floating point numbers that can be represented exactly on a computer. Then,
for one of the four elementary operations, 
 ∈ {+,−, ∗, /}, we have

x 
 y ∈ [zmin, zmax] , (4.5a)

where

zmin = min
{
xmin
ymin, xmin
ymax, xmax
ymin, xmax
ymax

}
, (4.5b)

zmax = max
{
xmin
ymin, xmin
ymax, xmax
ymin, xmax
ymax

}
, (4.5c)

and 
 and 
 refer to standard floating point operations with rounding modes set to
‘DOWNWARD’ and ‘UPWARD,’ respectively [23]. Namely, x
y is the largest floating
number less than x 
 y, and x
y is the smallest floating number larger than x 
 y. For
the case that 
 is division, we require that 0 /∈[ ymin, ymax]. The RHS of (4.5) involve only
floating point operations, so (4.5) allows us to track the numerical errors using computer
programs.
Using the above interval arithmetic strategy, we first numerically construct the power

series (2.1) locally with �s = 1 and then extend them to some η0 by solving the ODE
system (3.6) to verify condition (4.1a) or (4.1c). We only illustrate this computer-assisted
proof procedure for the case s = 2 with cll = 3 and crl = 8. But the same process can be
applied to other s > 2 to verify the existence of self-similar profiles. The computer pro-
grams used for this part of proof can be found at https://sites.google.com/site/pengfeiliuc/
home/codes.

The case s = 2 and cl = 3

We verify that for s = 2, G(3) < 0.
Step 1 We need to control the numerical error in the local power series solutions. To
numerically compute (2.1), we first truncate the power series to finite terms. For the case
s = 2 and cl = 3, the following choice of θ0, u0, and r makes (2.10) hold:

u0 = 1
9 × 162

, θ0 = 1
9 × 9 × 162

, r = 162. (4.6)

Based on (3.4), at ξ = 10−3, corresponding to ηs = 10−1, we have

Û(ηs) =
∞∑
k=1

Ukη
3k−3
s , �̂(ηs) =

∞∑
k=2

�kη
3k−1
s , Ŵ (ηs) =

∞∑
k=1

Wkη
3k
s . (4.7)

Using estimates (2.13), if we truncate the power series (4.7) to m = 20 terms, the
truncation errors of the three series can be bounded respectively by

u0rm+1η3ms
(m + 1)2

(
1 − rη3s

) , θ0
(
rη3s
)m+1

(m + 1)
(
1 − rη3s

)
ηs
,

u0rm+2η3m+2
s

(m + 2)
(
1 − rη3s

) . (4.8)

Then, we need to estimate the truncated power series

Û(ηs) ≈
20∑
k=1

Ukη
3k−3
s , �̂(ηs) ≈

20∑
k=2

�kη
3k−1
s , Ŵ (ηs) ≈

20∑
k=1

Wkη
3k
s . (4.9)

Using the interval arithmetic (4.5) strategy in each elementary operation of (2.9), we
can inductively get computer-representable intervals enclosing the values of Uk and �k

https://sites.google.com/site/pengfeiliuc/home/codes
https://sites.google.com/site/pengfeiliuc/home/codes
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for all k ≤ 21. Then, we use these intervals in computing (4.9) to get intervals enclos-
ing the values of the truncated power series (4.9). Finally, we add back the the intervals
(4.8) enclosing the truncation errors using interval arithmetic and get intervals strictly
enclosing Û(ηs), Ŵ (ηs), and �̂(ηs). We denote them as

I0Û , I0Ŵ , I0
�̂
, (4.10)

and use them as initial conditions to solve (3.6).
We use the forward Euler scheme [20] to numerically integrate the ODE system (3.6).

For a general ODE system with given initial conditions,

y = (y1(x), y2(x), . . . yN (x))T , y′(x) = f (x, y), x ∈[ a, b] , y(a) = y0, (4.11)

the forward Euler scheme discretizes the domain to finite points, a = x0 < x1 · · · < xm =
b with step size xi − xi−1 = h, and the numerical solutions yn ≈ y(xn) are obtained by

yn+1 = yn + hf (xn, yn). (4.12)

For the solution of the ODE system (4.11), using Taylor expansion, we have

y (xn+1) = y (xn) + hf (xn, y(xn)) + 1/2
(
y′′
1
(
x∗
1
)
, y′′

2
(
x∗
2
)
, . . . y′′

N
(
x∗
N
))T h2, (4.13)

where x∗
i ∈ [xn, xn+1], for i = 1, 2, . . .N . Then, we have

y (xn+1) = yn+1 + I1 + I2, (4.14)

where

I1 = ∇yf
(
xn, y∗) (y(xn) − yn) h, (4.15)

I2 = 1/2
(
y′′
1
(
x∗
1
)
, y′′

2
(
x∗
2
)
, . . . y′′

N
(
x∗
N
))T h2, (4.16)

and y∗ lies between yn and y(xn). Note that I1 is the propagation of error from the previous
steps and I2 is the local truncation error of the integration scheme.
We solve (3.6) from ηs = 10−1 to η0 = 3 with step size h = 2.9 × 10−6 and denote the

node point and solutions at the nth step as

ηn = 0.1 + nh,
(
Ûn, Ŵn, �̂n

)T
, n = 0, . . . , 106. (4.17)

We already have I0
Û
, I0

Ŵ
, and I0

�̂
(4.10) that enclose Û0, Ŵ 0, and �̂0. And we will update

InÛ , InŴ , In
�̂

(4.18)

step by step and make sure that they enclose Ûn, Ŵn, and �̂n.
Step 2 We need to control the roundoff error in computing yn+1 (4.12). In the nth step,
we have intervals In

Û
, In

Ŵ
, and In

�̂
that enclose the values of the profiles at ηn. To update

these intervals, we first choose the middle points of these intervals and use them as the
numerical solution yn. Then, we use interval arithmetic to update (4.12) to get intervals
enclosing the numerical solutions yn+1 at the n + 1-th step.
Step 3 We need to control the propagation of error from previous steps, I1. Note
that the values of the profiles at ηn are enclosed in intervals In

Û
, In

Ŵ
, and In

�̂
, and we

have used their middle points as the numerical solution yn. So we use interval arith-
metic to deduct the middle points from these intervals and get intervals enclosing
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y(xn) − yn in (4.15). Then, we need estimates of the Jacobian matrix of RHS of (3.6),
which is

∂
(
Ŵ ′(η), Û ′(η), �̂′(η)

)
∂
(
Ŵ , Û , �̂

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−cl
clη+Ûη

cl
(
4�̂−2cl�̂+

(
cl+Û

)
η2Ŵ

)
(
Û+cl

)3
η3

cl(cl−2)
(cl+Û)2η3

cl
η

0 0

0 cl(2−cl)�̂(
cl+Û

)2
η

(2−cl)Û
clη+Ûη

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.19)

Using intervals In
Û
, In

Ŵ
, and In

�̂
and interval arithmetic in computing (4.19), we can get

intervals enclosing each entry of ∇yf (x, y∗) in (4.15). Then using interval arithmetic in the
matrix-vector multiplication ∇yf (x, y∗) (y(xn) − yn) gives us intervals enclosing I1.
Step 4 We need to control the local truncation errors I2 of the scheme, which are

1
2
Û ′′ (η1) h2,

1
2
Ŵ ′′(η2)h2,

1
2
�̂′′ (η3) h2, (4.20)

with η1, η2, η3 ∈ [ηn, ηn+1]. According to (3.6), for cl = 3, we have

Ŵ ′′(η) =
3η2

(
3 + Û(η)

)
Ŵ (η)

(
6 + Û(η) + 3Ŵ (η)

)
− 6�̂(η)

(
6 + 2Û(η) + 3Ŵ (η)

)
η4(3 + Û(η))3

,

(4.21a)

Û ′′(η) =
9�̂(η) − 3η2

(
3 + Û(η)

) (
6 + Û(η)

)
Ŵ (η)

η4
(
3 + Û(η)

)2 , (4.21b)

�̂′′(η) =
�̂(η)Û(η)

(
3 + 2Û(η)

)
− 9�̂(η)Ŵ (η)

η2
(
3 + Û(η)

)2 . (4.21c)

To control the local truncation error (4.20), we need the following a priori estimates.

Lemma 4.2. Consider the ODE system (3.6) with cl > 2 and initial conditions given by
power series (2.1). Assuming that at ηn > 0, the solutions are Ûn, Ŵn, and �̂n; then for
η ∈[ ηn, ηn+1], we have the following a priori estimates,

�̂(η) ∈ [θmin, θmax] , Û(η) ∈ [umin,umax] , Ŵ (η) ∈ [wmin,wmax] . (4.22a)

where

θmax = �̂n (ηn+1/ηn
)2−cl+scl , θmin = �̂n (ηn+1/ηn

)2−cl , (4.22b)

umin = Ûn, wmax = Ŵn + s2clθmaxh
(cl − 2)(ηn)3

, (4.22c)

umax = Ûn + wmaxh/ηn, wmin = Ŵn − h
clwmax

η0 (cl + umin)
. (4.22d)

Proof. According to (3.6a) and the lower bound of Û(η) (3.7), we have

�̂′(η) ≤ �̂(η)

η
(scl − cl + 2), �̂′(η) ≥ �̂(η)

η
(2 − cl). (4.23)



Hou and Liu Research in theMathematical Sciences  (2015) 2:5 Page 16 of 26

By direct integration, we can get θmax and θmin. Û(η) is increasing according to (3.6c), so
we get the lower bound umin. Then using the upper bound θmax and (3.7) in (3.6b), we get

Ŵ ′(η) ≤ s2clθmax
(cl − 2)(ηn)3

. (4.24)

By direct integration, we get the upper bound wmax. Putting the upper bound of Ŵ (η)

in (3.6c), we get the upper bound of Û(η), umax. Using the upper bound wmax and the
lower bound umin in (3.6b), we have

Ŵ ′(η) ≥ − clwmax
ηn (cl + umin)

. (4.25)

By direct integration, we can get the lower bound of Ŵ (η), wmin.

Remark 4.1. The a priori estimates (4.22) that we get are relatively sharp for small h since
they deviate from the values of the profiles only by O(h).

We first use intervals In
Û
, In

Ŵ
, and In

�̂
and the interval arithmetic in (4.22) to get intervals

enclosing the values of the profiles in [ ηn, ηn+1]. Then, we can use these intervals and
interval arithmetic in (4.21a) to get intervals enclosing the local truncation error (4.20), I2.
Step 5 Finally, adding up the intervals enclosing the numerical solutions yn+1 (step 2),
the intervals enclosing the propagation of errors from previous steps I1 (step 3), and the
intervals enclosing the local truncation error I2 (step 4), we get intervals enclosing the
values of the profiles at ηn+1, In+1

Ŵ
, In+1

Û
, and In+1

� . We keep updating these intervals and
finally get intervals enclosing the values of the self-similar profiles at η = 3. They are

Û(3) ∈[−1.61167791024607,−1.61167791022341] ,

Ŵ (3) ∈[ 0.110808868817194, 1.10808868851010] ,
�̂(3) ∈[ 0.934100399788941, 9.34100399819680] ,

from which (4.1c) follows immediately, and we complete the proof that G(3) < 0.

Remark 4.2. Since Ŵn, Ûn, and �̂n are enclosed in the intervals In
Ŵ
, In

Û
, and In

�̂
, we can

directly use interval arithmetic in (4.12) to get intervals enclosing y(xn)+hf (xn, y(xn)). This
strategy avoids estimating the Jacobian matrix ∇yf (x, y) but will amplify the propagation
of errors from previous steps and lead to meaningless numerical results for this problem.

The case s = 2 and cl = 8

We verify that for s = 2, G(8) > 0.
The verification of G(8) > 0 can be done in the same way. In the construction of the

local solutions (2.1), we can easily verify that the choice of

u0 = 1
6
, �0 = 1

18
, r = 6, (4.26)

makes the constraint (2.10) hold. Then, we truncate the power series (2.1) to the first 20
terms and evaluate them at ηs = 0.7. Using the same technique as the case cl = 3, we can
get intervals enclosing the self-similar profiles at ηs = 0.7 and denote them as

I0Ŵ , I0Û , I0
�̂
. (4.27)
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Then, we begin to numerically solve (3.6) using (4.27). We use the same techniques as
the previous case to control the numerical errors introduced in each step of the numerical
integration and finally get intervals enclosing the profiles at η = 3. They are

Û(3) ∈ [5.66176313743309, 5.66176313745025] ,

Ŵ (3) ∈ [1.13763978495371, 1.13763978496956] ,

�̂(3) ∈ [2.54776073991655, 2.54776074039048] ,

from which (4.1a) follows and we complete the proof that for s = 2, G(8) > 0.
With G(3) < 0, G(8) > 0, we conclude that there exists a cl such that the self-similar

equations (1.6) have analytic solutions with the leading order of�(ξ) at ξ = 0 being s = 2.

Remark 4.3. We only verify the existence of self-similar profiles for s = 2. But the same
procedure can be applied to the cases s > 2 without difficulty.

Behavior of the self-similar profiles at infinity
In this section, we prove that the constructed self-similar profiles satisfy the matching
condition (1.7b), and that the profiles are analytic with respect to a transformed variable
ζ = ξ−1/cl at ζ = 0. With this, we can complete the proof of Theorem 1.1. This far-field
property of the self-similar profiles explains the Hölder continuity of the velocity field at
the singularity time that is observed in numerical simulation of this model.

Theorem 5.1. For some cl > 2 and s ≥ 2, if the self-similar profiles constructed using
power series (2.1) and extended to the whole R+ satisfy the decay condition (1.10), then the
profiles satisfy the matching condition (1.7b). After the following change of variables,

ζ = ξ−1/cl , Ũ(ζ ) = U(ξ)ξ−1+1/cl , �̃(ζ ) = �(ξ)ξ−1+2/cl , W̃ (ζ ) = W (ξ)ξ1/cl ,

(5.1)

Ũ(ζ ), W̃ (ζ ), and �̃(ζ ) are analytic functions at ζ = 0.

Our strategy is the following: we first prove that Ũ(ζ ), W̃ (ζ ), and �̃(ζ ) are smooth at
[ 0,+∞). Then, we show that there exist analytic solutions to the ODE system of Ũ(ζ ),
W̃ (ζ ), and �̃(ζ ) with the same initial conditions at ζ = 0. Finally, we show that smooth
solutions to the ODE of Ũ , W̃ , �̃ with the given initial conditions are unique to complete
the proof.

Proof. If the decay condition (1.10) holds, then Û(η) tends to 0 in (3.6), so there exists
η0 > 0 such that for η > η0,

(2/cl − 1)Û(η)

1 + 1/clÛ(η)
∈ (0, 1/2). (5.2)

Then based on (3.6a), we have that for η > η0,

�̂′(η) ≤ 1/2�̂(η)

η
, (5.3)

which implies that for η > η0,

�̂(η) ≤ C1η
1/2. (5.4)
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Using this estimate in (3.6b), we have that for η > η0,(
Ŵ (η)η

)′ ≤ C2η
−3/2, (5.5)

which gives

Ŵ (η)η < C3. (5.6)

Using the above estimate in (3.6c), we get that for η > η0,

Û ′(η) ≤ C4η
−2, (5.7)

which together with Û(+∞) = 0 implies that for η > η0,

Û(η) ≥ −C5η
−1. (5.8)

Based on (3.6b) and (3.6c), we have

�̂′(η) = (2/cl − 2)�̂(η)Û(η)

η + 1/clÛ(η)η
,
(
Ŵ (η)η

)′ = 1/clÛ(η)Ŵ (η)

1 + 1/clÛ(η)
+ (1 − 2/cl) �̂(η)(

1 + 1/clÛ(η)
)2

η2
.

(5.9)

Using (5.8), (5.6) and (5.4) in (5.9), we can see that |�̂′(η)| and |(Ŵ (η)η)′| are both
integrable from η0 to +∞, thus �̂(η) and Ŵ (η)η converge as η → +∞,

lim
η→∞ Ŵ (η)η = Ŵ∞ ∈[ 0,+∞), lim

η→∞ �̂(η) = �̂∞ ∈ (0,+∞). (5.10)

Based on (3.6c) and the fact that Û(+∞) = 0, we have

lim
η→+∞ Û(η)η = −clŴ∞. (5.11)

The above limits imply that after changing variables, Ũ(ζ ), �̃(ζ ), and W̃ (ζ ) are
continuous for ζ ∈[ 0,+∞). The ODE system they satisfy for ζ ∈ (0,+∞) is

�̃′(ζ ) = (2/cl − 1)�̃(ζ )Ũ(ζ )

−1 − Ũ(ζ )ζ
, (5.12a)

W̃ ′(ζ ) = 1/clŨ(ζ )W̃ (ζ ) + (1 − 2/cl)�̃(ζ ) − 1/cl�̃′(ζ )ζ

−1 − Ũ(ζ )ζ
, (5.12b)

Ũ ′(ζ ) = − Ũ(ζ )

ζ
− clW̃ (ζ )

ζ
, (5.12c)

with initial conditions given by (5.10) and (5.11),

W̃ (0) = Ŵ∞, �̃(0) = �̂∞, Ũ(0) = −clŴ∞. (5.12d)

(5.12c) can be written as

Ũ(ζ ) = − cl
ζ

∫ ζ

0
W̃ (η)dη. (5.13)
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Using a simple bootstrap argument, we can get W̃ (ζ ), �̃(ζ ), and Ũ(ζ ) are in
C∞([ 0,+∞)

)
. On the other hand, given the initial conditions (5.12d), we can construct

the following power series solutions to (5.12):

Ũ(ζ ) = −clŴ∞ +
∞∑
k=1

Ũkζ
k , W̃ (ζ ) = Ŵ∞ +

∞∑
k=1

W̃kζ
k , �̃(ζ ) = �̂∞ +

∞∑
k=1

�̃kζ
k .

(5.14)

Plugging these power series ansatz in (5.12) and matching the coefficients of ζ k , we
can uniquely determine the coefficients Ũk , W̃k , and �̃k and prove that the power series
(5.14) converge in a small neighborhood of ζ = 0. We omit the details here, because the
argument is the same as that in our construction of the near field solutions. Then to prove
the analyticity of Ũ(ζ ), W̃ (ζ ), and �̃(ζ ) at ζ = 0, we only need the uniqueness of smooth
solutions to (5.12) with initial condition (5.12d).
Assume that Ũi(ζ ), W̃ i(ζ ), �̃i(ζ ), i = 1, 2 are two different solutions to (5.12) with

initial condition (5.12d). And let δU(ζ ), δW (ζ ), and δ�(ζ ) be the difference of the two
solutions,

δŨ(ζ ) = Ũ1(ζ ) − Ũ2(ζ ), δW̃ (ζ ) = W̃ 1(ζ ) − W̃ 2(ζ ), δ�̃(ζ ) = �̃1(ζ ) − �̃2(ζ ).

(5.15)

Then based on (5.12c),

δŨ(ζ ) = − cl
ζ

∫ ζ

0
δW̃ (τ )dτ . (5.16)

Using Hardy inequality [12], there exists C1 independent of ε such that

‖δŨ‖L2([0,ε]) ≤ C1‖δW̃‖L2([0,ε]). (5.17)

Since the RHS of (5.12a) and (5.12b) are Lipschitz continuous, we have∣∣∣∣ ddζ
(
δW̃ (ζ )

)∣∣∣∣+
∣∣∣∣ ddζ

(
δ�̃(ζ )

))∣∣∣∣ ≤ C2
(∣∣∣δW̃ (ζ ) |+| δŨ(ζ ) |+| δ�̃(ζ )

∣∣∣) (5.18)

Integrating the square of both sides on the interval [ 0, ε] and using (5.17),
we get
∥∥∥(δW̃ (ζ )

)′∥∥∥
L2([0,ε])

+
∥∥∥∥(δ�̃(ζ )

)′∥∥∥∥
L2([0,ε])

≤ C3

(∥∥∥δW̃ (ζ )
∥∥L2([0,ε])+∥∥ δ�̃(ζ )

∥∥∥
L2([0,ε])

)
.

(5.19)

Since δW̃ (ζ ) and δ�̃(ζ ) vanish at ζ = 0, by Poincaré-Friedrichs inequality, we have

∥∥δW̃ (ζ )
∥∥
L2([0,ε]) +

∥∥∥δ�̃(ζ )

∥∥∥
L2([0,ε])

≤ C4ε

(∥∥(δW̃ (ζ ))′
∥∥
L2([0,ε]) +

∥∥∥(δ�̃(ζ ))′
∥∥∥
L2([0,ε])

)
.

(5.20)

The Ci in the above estimates are all positive constants independent of ε. Choosing ε

small enough, we get a contradiction between (5.19) and (5.20), thus

W̃ 1 = W̃ 2, Ũ1 = Ũ2, �̃1 = �̃2, (5.21)

which means the solution is unique. And we complete the proof of this theorem.
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The above theorem implies that the self-similar profiles that we construct are non-
conventional in the sense that the velocity does not decay to 0 at +∞ but grows with
certain fractional power. Coming back to the self-similar ansatz (1.4), we have

u(x, t) = (T − t)cl−1U
(

x
(T − t)cl

)
. (5.22)

For t close to T , based on Theorem 5.1, we have

u(x, t) ≈ C(T − t)cl−1 x
(T − t)cl

(
x

(T − t)cl

)− 1
cl = Cx1−

1
cl . (5.23)

This explains the Hölder continuity of the velocity at the singularity time observed
in numerical simulation of the 1D model, which was also observed for the 3D Euler
equations [15]. We will numerically verify this in the next section.

Numerical results
In this section, we numerically locate the root of G(cl) for several s and construct the
corresponding self-similar profiles. The obtained cl and self-similar profiles are consistent
with numerical simulation of the CKY model. We also find that for fixed leading order
of θ(x, 0), the singular solutions using different initial conditions converge to the same
self-similar profiles, which implies that the self-similar profiles have some stability.

Numerical methods for solving the self-similar equations

For fixed cl > 2, we first numerically compute the coefficients �k and Uk in (2.1) up to
k = 50 and determine the convergence radius of the power series using the following
linear regression for s ≤ k ≤ 50,

log�k = k log r1 + c1, logUk = k log r2 + c2. (6.1)

We choose r = 1/2min{1/r1, 1/r2} and construct the truncated power series (2.1) on
[ 0, r/2].
Then, we continue to solve (1.9) from ξ = r/2 to ξ = 1 using the fourth order explicit

Runge-Kutta method with step-size h = 1−r/2
104 . After ξ = 1, we make the change of

variables (3.4) and solve (3.6) from η = 1 to η = 105 using fourth order Runge-Kutta
method with step-size h = 105−1

106 . We use Ûcl (105) as an approximation to G(cl).
We use the bisection method to find the root of G(cl). After getting cl, we construct

the local self-similar profiles using power series (2.1) and extend them from ξ = r/2 to
ξ = 10 using the explicit fourth order Runge-Kutta method with step-size h = 9

104 . Then,
we locate the maxima of W , which is Wmax = W (ξ0). For the cases that we consider,
s = 2, 3, 4, 5, the located ξ0 are all less than 10. Finally, we rescale the maxima ofW (ξ) to
(1, 1) and get

Ws(ξ) = 1
Wmax

W (ξξ0), ξ ∈[ 0, 1] . (6.2)

We only compare the self-similar profiles Ws with direct simulation of the CKY model
in this paper, but the numerical results for the profiles � and U are similar.
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Numerical methods for simulating the model

Weuse a particlemethod to simulate themodel and considerN+1 particles with position,
density, and vorticity given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q = (q0(t), q1(t), . . . qN (t))T ,

θ = (θ0(t), θ1(t), . . . θN (t))T ,

w = (w0(t),w1(t), . . .wN (t))T .

(6.3)

In computing the velocity field, we use the trapezoidal rule to approximate (1.6c),

ui = −qi

⎛
⎝N−1∑

j=i

wj + wj+1

2
(
qj+1 − qj

)⎞⎠ . (6.4)

In computing θx, we use the three-point rule:

(θx)i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 0,

θi − θi+1
qi − qi+1

+ θi − θi−1
qi − qi−1

+ θi+1 − θi−1
qi+1 − qi−1

, 0 < i < N ,

θi − θi−2
qi − qi−2

+ θi − θi−1
qi − qi−1

+ θi−2 − θi−1
qi−2 − qi−1

, i = N .

(6.5)

Initially, 105 + 1 particles are equally placed in the short interval [ 0, 10−3], which are
sufficient to resolve the solutions in the self-similar regime. Outside this short interval,
105 − 102 particles are equally placed. So the total number of particles is N + 1 = 2 ×
105 − 102.
Then, we need to solve the following ODE system

d
dt

q = u,
d
dt

w = θx,
d
dt

θ = 0. (6.6)

The initial condition of θ is

θ(x, 0) = (1 − cos(πx))s/2, (6.7)

whose leading order at x = 0 is s.
We solve the ODE system (6.6) using the fourth order explicit Runge-Kutta method,

and the time step dt is chosen adaptively to avoid the particles crossing each other:

dti = 1

max
(
ui−ui+1
qi+1−qi , 0

) , dt = min
(
dti
10

, 10−3
)
. (6.8)

At each time step, we record the maximal vorticity wmax(ti) and the position where it is
attained qmax(ti). According to the self-similar ansatz (1.4), we have

wmax(t) = C1(T − t)cw , qmax(t) = C2(T − t)cl . (6.9)

Thus we can compute cl, cw, and the singularity time T through linear regressions,(
d
dt

logwmax(t)
)−1

≈ − 1
cw

t + T
cw

, (6.10a)

(
d
dt

log qmax(t)
)−1

≈ − 1
cl
t + T

cl
. (6.10b)
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Table 1 cw obtained from linear regression (6.10a)

s = 2 s = 3 s = 4 s = 5

cw −0.9747 −1.0001 −1.0006 −1.0007

We compute the time derivatives of logwmax(t) and log qmax(t) using the center differ-
ence method, and the linear regressions (6.10) are done in some time interval close to the
singularity time while the numerical solutions still have good accuracy.
At certain time steps close to the singularity time, ti, i = 1, 2, 3, let wi be the maximal

vorticity at time ti and qi be the position the maximal vorticity is attained. We rescale the
numerical solution and get the self-similar profiles of w,

Wi
s (ξ) = 1

wmax
w
(
ξqi, ti

)
, ξ ∈[ 0, 1] . (6.11)

We will compare the self-similar profiles Wi
s (ξ) (6.11) obtained from direct simulation

of the model, withWs(ξ) (6.2) obtained from solving the self-similar equations (1.6).
At the singularity time, the velocity field is Hölder continuous near the origin,

u(x,T) ≈ Cxα . (6.12)

Then, we can determine the Hölder exponent α through linear regression

lnu(x,T) ≈ lnC + α ln x. (6.13)

We will compare the exponents α (6.13) obtained from the singular solutions, with 1 −
1/cl (5.23) obtained from analyzing the self-similar equations (1.6).

Comparison results

In simulating the CKY model, we first choose w(x, 0) as

w(x, 0) = 1 − cos(4πx). (6.14)

We compute the scaling exponents cw and cl for different leading orders of θ , s =
2, 3, 4, 5 using (6.10a) and (6.10b), and the results are listed in Tables 1 and 2. The Hölder
exponents of the velocity field at the singularity time (6.13) and 1 − 1/cl are listed in
Table 3, where the cl are obtained from solving the self-similar equations.
For s = 2, the linear regressions (6.10a) and (6.10b) are done in the time interval[

6.4371 × 10−1, 6.4391 × 10−1] , (6.15)

the predicted singularity time T for (6.10a) and (6.10b) are both 6.4402×10−1. The linear
regression (6.13) is done at t = 6.4391 × 10−1 and on the interval [ 10−10, 10−9].
For s = 3, the linear regressions (6.10a) and (6.10b) are done in the time interval[

6.804297 × 10−1, 6.804300 × 10−1] , (6.16)

the predicted singularity time T for (6.10a) and (6.10b) are both 6.804302 × 10−1. The
linear regression (6.13) is done at t = 6.804302 × 10−1 and on the interval [ 10−10, 10−9].

Table 2 cl obtained from linear regression (6.10b) and self-similar equations (1.6)

s = 2 s = 3 s = 4 s = 5

Linear Regression 3.7942 3.3143 3.1718 3.0773

Self-Similar Equations 3.7967 3.3157 3.1597 3.0841
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Table 3 Hölder exponent of the velocity field at x = 0, and 1 − 1/cl
s = 2 s = 3 s = 4 s = 5

Hölder exponent 7.3381 × 10−1 6.9823 × 10−1 6.9131 × 10−1 6.7610 × 10−1

1 − 1/cl 7.3661 × 10−1 6.9841 × 10−1 6.8351 × 10−1 6.7576 × 10−1

For s = 4, the linear regressions (6.10a) and (6.10b) are done in the time interval[
6.571218 × 10−1, 6.571221 × 10−1] , (6.17)

the predicted singularity time T for (6.10a) and (6.10b) are both 6.571223 × 10−1. The
linear regression (6.13) is done at t = 6.571223 × 10−1 and on the interval [ 10−10, 10−9].
For s = 5, the linear regressions (6.10a) and (6.10b) are done in the time interval[

5.9698511 × 10−1, 5.9698515 × 10−1] , (6.18)

the predicted singularity time T for (6.10a) and (6.10b) are both 5.9698517 × 10−1. The
linear regression (6.13) is done at t = 5.9698517×10−1 and on the interval [ 10−10, 10−9].
From the Tables 1, 2, and 3, we can see that the exponents cw we obtain from the sin-

gular numerical solutions are close to −1 (1.5). And the cl we obtain from the singular
solution (6.10b) are close to those obtained from solving the self-similar equations. At the
singularity time, the Hölder exponents of the velocity field are close to 1 − 1/cl.
For the case s = 2, the dependence of G(cl) on cl is plotted in Figure 1. We can see

that G(cl) seems to be a monotone increasing function, which implies that for fixed s, the
scaling exponent cl to make the decay condition (1.10) hold is unique.
The self-similar profiles that are obtained from solving the self-similar equation (6.2)

and from direct simulation of the model (6.11) are plotted in Figure 2. The lines labeled
‘exact’ are obtained from solving the self-similar equation (6.2). Others are obtained from
rescaling the solution at different time steps corresponding to different maximal vorticity
(6.11).

Figure 1 Dependence of G(cl) on cl for s = 2.
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(A) (B)

(C) (D)

Figure 2 Self-similar profiles ofw using initial conditionw(x,0) = 1 − cos(4πx). (A) The re-scaled
solutions and self-similar profiles we construct s = 2. (B) The re-scaled solutions and self-similar profiles we
construct s = 3. (C) The re-scaled solutions and self-similar profiles we construct s = 4. (D) The re-scaled
solutions and self-similar profiles we construct s = 5.

To demonstrate the stability the self-similar profiles, we consider another initial
condition,

w(x, 0) = x − x2. (6.19)

The profiles obtained from rescaling the singular solutions (6.11) are plotted in Figure 3.
From Figures 2 and 3, we can see that after rescaling, the singular solutions at differ-

ent time steps before the singularity time are very close, which implies that the solutions
develop self-similar singularity. Besides, the self-similar profiles obtained from direct sim-
ulation of the model (6.11) agree very well with the self-similar profiles (6.2) we construct
by solving the self-similar equations (1.6). Moreover, for fixed leading order of θ(x, 0) at
the origin, the singular solutions with different initial conditions converge to the same set
of self-similar profiles, which implies that the profiles have some stability property.

Remark 6.1. If the initial leading order of θ(x, 0) is s ≥ 3, and a small perturbation
of θ , which we denote by εθ̃(x, t), has leading order 2 ≤ s̃ < s, then the profiles of the
perturbed singular solutions will be determined by s̃, not s. From this point of view, only the
self-similar profiles for s = 2 are stable in the sense of perturbation.

Concluding remarks
The existence of a discrete family of analytic self-similar profiles corresponding to differ-
ent leading orders of the solutions at the origin for the CKY model has been established.
The profiles are constructed using a power series method near the origin and then
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(A)

(B)

Figure 3 Self-similar profiles ofw using initial conditionw(x,0) = x − x2. (A) s = 2. (B) s = 3.

extended to infinity by solving an ODE system. The decay condition in the Biot-Savart
law determines the scaling exponents in the self-similar solutions. Numerical compu-
tation together with rigorous error estimation is used to prove the existence of these
self-similar profiles. Far-field properties of the self-similar profiles are analyzed. The
constructed self-similar profiles are consistent with direct simulation of the model and
enjoy some stability property. The current method of analysis does not generalize directly
to study the 3D Euler singularity, and a new set of techniques are required to deal with
the non-local Biot-Savart law. The existence of self-similar singularity for the 3D Euler
equations is under investigation.
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